第2章

実験装置

2.1 実験風洞

図 2.1 に実験室の様子を示す。環状タービン翼列風洞の概観を図 2.2 に,環状タ ービン翼列風洞の写真を図 2.3 に示す。

本風洞は開放型の吸込風洞であり、ベルマウス部に吸い込まれた大気は、測定 部を通って、送風機(15kW)により実験室内に排気される。ベルマウス部に3枚 の整流網を取り付けることによって、測定部の流れが均一になり、測定部入口の 乱れ度が0.5%に抑えられている。整流網に、乱れ発生用の閉塞板を貼り付けるこ とによって、静翼入口の主流乱れ度 *Tu_{in}を0.5%から8.9%*まで5段階に変化させる ことができる(詳細は後述)。

図 2.4 に、風洞測定部の写真を示す。測定部は、外径 500 mm、内径 350 mm、 流路幅 75 mm の円筒であり、最大軸流速度は 30 m/s となっている。図 2.4(a)のよ うに、測定部にはアクリル製の観察窓が設置され、油膜法などで流れを観察でき るようになっている。測定部は、レール(図 2.2 参照)の上に設置されているため、 図 2.4(b)のように、測定部を開いて、プローブ設置作業などを容易に行えるように なっている。測定部の内部には、1 組の静翼・動翼から構成される単段軸流ター ビン(図 2.5)を設置できる。ただし、第4章と第5章のタービン静翼の実験では、 静翼の基本特性を調べるため、動翼を取り外して、静翼のみを取り付けて実験を 行った。

本風洞の測定部で得られる速度とマッハ数は,

・タービン静翼出口流れの絶対速度	$V_{Abs} = 10 \text{ m/s} \sim 62 \text{ m/s}$

・タービン静翼出口流れのマッハ数 $M_{out}=0.03\sim0.18$ であり、非圧縮流れになっている。

2.2 タービン翼列

図 2.5 に、本研究で用いた環状タービン翼列を示す。静翼 28 枚、動翼 31 枚の単 段軸流タービンとなっている。図 2.6 と図 2.7 に、タービン静翼の写真と、チップ (翼先端部)、ミッドスパン(翼の平均高さ部)、ハブ(翼根部)での翼形状を示 す。また、表 2.1 には、タービン静翼の仕様を示す。図 2.8 と図 2.9 に、タービン 動翼の写真と、チップ、ミッドスパン、ハブでの翼形状を示す。表 2.2 は、タービ ン動翼の形状と仕様を示す。本翼列は、アルミ合金のディスクに5 軸マシニング センタで翼を削り出すことによって製作したブレード・ディスクー体型の翼列で ある。翼列製作時に用いたタービン静翼とタービン動翼の 3 次元座標データを、 表 2.3~2.6 に示す。

3次元翼にするために、半径方向の流れの設計には、最も基礎的なフリーボル テックス法を用いた。各種の設計パラメータは、

- ・静翼入口の絶対流れ角 0 deg
- ・動翼出口の絶対流れ角 0 deg(旋回なし)
- ・ミッドスパンでの流量係数 0.5
- ・ミッドスパンでの翼負荷係数 1.2
- ・ミッドスパンでの反動度 0.4

となるように設計した。表 2.7 に,チップ,ミッドスパン,ハブでの流量係数と翼 負荷係数と反動度,およびそれらの定義式をまとめる。本研究ではレーザー計測 を用いるので,翼表面およびハブ側壁面につや消し黒の塗装を施して,レーザー 光の反射を抑えた。

なお,巻末の付録1には,タービン静翼・動翼の翼配置,仕様,座標データを さらに詳細に掲載してある。

2.3 乱れ発生用閉塞板の特性

図 2.10 に、乱れ発生用の閉塞板の写真を示す。閉塞板は、厚さ1 mm の厚紙に 多数のパンチ孔を等間隔に開けたものである。表 2.8 に、閉塞板の特性を示す。孔 の大きさと間隔、閉塞板の貼付位置(整流網1または3)を変えることによって、 主流乱れ度を調整できる。

図 2.11 と表 2.9 に,それぞれの閉塞板設置状態での主流乱れ度を熱線流速計に より測定した結果を示す。閉塞板で得られる乱れ度は,レイノルズ数によって, わずかに変化する。

図 2.12 と表 2.10 に, 乱れの積分尺度を示す。乱れの尺度(渦粒子の大きさ)も, レイノルズ数に依存する。平均の乱れの積分尺度は, 9.1~12.5 mm(表 2.8 の右欄) であり, NASA 等の高主流乱れ度での風洞実験(Boyce ら, 1998, Ames, 1997) に近い値を示した。

2.4 計測システム

図 2.13 に, 計測システムを示す。本風洞には, 5 孔ピトー管, 熱線流速計, LDV の計測系が設置されている。それぞれのプローブは, ステッピングモータ内蔵の トラバース装置により位置を制御できる。動翼軸には, 回転位置検出用のエンコ ーダ(1,800 パルス/回転)が付いている。本システムでは, コンピュータによる 自動計測を採用し, 全てのデータはハードディスクに保存される。

図 2.14 に,計測装置の写真を示す。図の一番上の精密微差圧計は,風洞の流速 調整のために測定部の上流に設置したピトー管(JIS 標準型)の差圧を測定するた めに用いる。図の下側のマルチロガーは,実験時の基本データ(大気温度,大気 圧,風洞の流量),および、5 孔ピトー管と3 孔ピトー管の圧力データ(圧力トラ ンスデューサで変換した電圧データ)や熱線流速計の電圧データなどの実験デー タを測定するために用い、コンピュータから GP-IB 経由で制御される。図 2.15 は、 5 孔ピトー管や熱線などのプローブをトラバースする装置であり、コンピュータ制 御によって、プローブを軸中心の回転させることと、上下方向(翼スパン方向) へ移動させることができる。

2.5 5 孔ピトー管

本研究で用いた5孔ピトー管の設計図を図2.16に、写真を図2.17に示す。全長275mm,支柱の直径4mmであり、測定部の直径は2.1mm(直径0.7mmのパイプを用いて製作)となっている。5孔ピトー管では、先端に開けられた5個の違う方向の圧力データに対して、予め得た検定データに基づいて換算することによって、全圧、静圧、速度、周方向流れ角(ヨー角)、半径方向流れ角(ピッチ角)を測定することができる。5孔ピトー管は、3次元流れを測定することができるが、時間応答が悪いので、本研究では、第4章と第5章の静翼出口の3次元定常流れを測定するために用いている。

2.6 3孔ピト一管

図 2.18 に、本研究で用いた 3 孔ピトー管の写真を示す。全長 275 mm,支柱の直径 4 mm であり、測定部は高さ 0.7 mm,幅 2.1 mm となっている。3 孔ピトー管では、先端に開けられた 3 個の違う方向の圧力データを、検定データに基づいて換算することにより、全圧、静圧、速度、周方向流れ角(ヨー角)を測定することができる。3 孔ピトー管も、5 孔ピトー管と同様に時間応答が悪いので、本研究では、静翼入口の流れを測定するために用いている。

2.7 熱線流速計

図 2.19 と図 2.20 に,本研究で用いた熱線プローブの写真を示す。熱線流速計は, 時間応答に優れているため,乱れ度の計測に利用される。図 2.19 は,平行流型プ ローブ(日本カノマックス MODEL 0247R)であり,静翼ウェークの計測に用い る。図 2.20 は,上流型プローブ(日本カノマックス MODEL 0478R)であり,静 翼出口の壁面境界層の測定に用いる。どちらの熱線プローブも,直径 5 µm のタン グステン製で,ワイヤ幅 2 mm(有効センサ幅は 1 mm)となっている。熱線流速 計は,前述の図 2.14 の中央のように,1 チャンネル標準計測システム(日本カノ マックス SYSTEM 7114)を用いている。

2.8 検定風洞

図 2.21 に、検定風洞の設計図と写真を示す。検定風洞は、5 孔ピトー管などの 各種プローブの特性を調べるための風洞である。この検定風洞は、3.7 kW の送風 機により駆動される大気吹き出し型の風洞であり、吹き出しノズルの出口直径は 70 mm で、最大流速は 70 m/s である。測定部には、5 孔ピトー管などの各種プロー ブを支持できるトラバース装置が設置され、プローブのヨー角とピッチ角をコン ピュータから制御できる。

2.9 レーザードップラ流速計 (LDV)

図 2.22 に、レーザードップラ流速計の計測システムの写真を示す。

レーザードップラ流速計は、光ファイバプローブ型2次元LDV(TSI社 System 90-3)を用いた。出力4Wのアルゴンイオンレーザからのレーザー光は、青(波長 488 nm)と緑(514.5 nm)に分光され、光ファイバプローブから出射する。測定点 の体積は、直径73 µm、長さ0.85 mm である。レーザー光の散乱粒子として、図 2.23 に示すような煙発生装置(Dantec 社 Fog Generator Model 2001)によって、平 均粒子径1.068 µm の煙を発生させた。図2.24 に、風洞への煙の導入方法を示す。 本研究で用いた煙発生装置は、煙の発生量が多く、そのまま風洞に煙を導くと、 測定部が煙で真っ白になってしまい、レーザー計測ができなくなる。そこで、煙 を一時的に保管するチャンバー(ダンボール箱を5個つなぎ合わせたもの)を作 製し、煙発生装置自体は内蔵のタイマー機能によって間欠的に動作させるように して、煙の濃度を調整するようにした。図2.24(b)のように、塩化ビニール製のダ クトを用いて、煙チャンバーから煙を風洞入口に導いた。ダクトの出口部分は、 レーザー計測位置に応じて、煙を測定部の最適な位置に導入できるように、自由 に位置を変更できるようになっている。

2.10 LDV の不確かさ解析

表 2.11 に、レーザードップラ流速計による計測データに関する不確かさ解析の 結果をまとめる。同一条件(動翼出口速度レイノルズ数 *Re_{out,RT}* = 3.6×10⁴, 主流乱 れ度 Tu_{in}=0.5%, ミッドスパン位置) で測定した5組の計測データから, アメリカ 機械学会性能試験規約, 計測機器及び試験装置に関する補則, 第一部,「計測の不 確かさ」, ASME Performance Test Codes, Supplement on Instruments and Apparatus, Part 1, "Measurement Uncertainty," ANSI/ASME PTC19.1-1985 (日本機械学会, 1987) に従って, 相対速度, 相対流れ角, 乱れ度の不確かさを解析した。本研究の LDV 計測の誤差要因としては, LDV システムのデータ収集に伴う誤差, コンピュータ 上でのデータ処理に伴う誤差, タービン動翼回転数の設定の誤差, 送風機回転数 の設定の誤差 (測定部流量の誤差), 光ファイバーの位置設定の誤差 (計測位置の 空間的な設定誤差) が挙げられる。

表 2.11(a)は,時間平均流れ分布に対する不確かさ(約 99%包括度)を示す。相対速度の不確かさは,0.0092 であり,基準速度(動翼出口の平均速度 V₄)の 0.92% に相当する。相対流れ角の不確かさは 0.21 deg,乱れ度の不確かさは,0.41%と見積もられた。

表 2.11(b)は,時間依存非定常流れ分布に対する不確かさ(約 99%包括度)を示 す。前述の時間平均流れよりも不確かさは大きい値を示す。この理由は,平均化 処理するデータ量が時間平均流れよりも少ないためである。相対速度の不確かさ は,0.0283 であり,基準速度(動翼出口の平均速度 V₄)の 2.83%に相当する。相 対流れ角の不確かさは 0.69 deg,乱れ度の不確かさは,0.66%と見積もられた。

他の研究グループの非定常流れ計測では、「単線熱線流速計による非定常速度計 測の不確かさは 5% (Burd ら、2000)」、「LDV による乱れ度測定の精度は 1.5%

(McCarter ら, 2001)」,「PIV による速度計測の不確かさは 1.5% (Chow ら, 2002)」 などの報告がある。これらの報告例と上記の不確かさ解析の比較から、本研究の 実験データが良好な精度を有していることが確認できる。

(a) 環状タービン翼列風洞とレーザードップラ流速計

- (b) 計測システム
- 図 2.1 実験室の様子

(a) 全体

(b) 測定部付近

(a) アクリル窓

(b) 測定部を開けたところ

図 2.4 環状タービン翼列風洞の測定部

外径	500 mm
内径	350 mm
翼高さ	静翼 75 mm
	動翼 74 mm
翼枚数	静翼 28 枚
	動翼 31 枚

図 2.5 環状タービン翼列(単段軸流タービン)

(a) ディスク全体の写真

(b) 前縁側からの写真

図 2.6 タービン静翼の写真

図 2.7 タービン静翼形状(原寸大)

表 2.1 タービン静翼の仕様

			Nozzle	
		Тір	Midspan	Hub
Number of Blades	N		28	· · · · · · · · · · · · · · · · · · ·
Chord	C	69.11 mm	67.52 mm	66.08 mm
Axial Chord	C _{ax}	45.25 mm	42.73 mm	40.22 mm
Passage Height	Н		75.00 mm	
Blade Span	H _B		75.00 mm	
Tip Clearance	k		0.00 mm	
Blade Pitch	S	56.10 mm	47.69 mm	39.27 mm
Aspect Ratio	H/C	1.085	1.111	1.135
Solidity	C/S	1.232	1.416	1.683
Inlet Blade Angle	α1	0.00 deg	0.00 deg	0.00 deg
Exit Blade Angle	α2	63.94 deg	67.43 deg	71.10 deg
Blade Turning Angle	α ₂ - α ₁	63.94 deg	67.43 deg	71.10 deg
Stagger Angle	ξ	49.34 deg	50.99 deg	52.78 deg
Zweifel Coefficient	Ψ_{z}	0.602	0.796	0.985
Trailing Edge Diameter	d _{TE}	0.60 mm	0.60 mm	0.60 mm
Inner Diameter	D _{in}	· · · · · · · · · · · · · · · · · · ·	350 mm	
Outer Diameter	Dout	500 mm		
Hub / Tip Ratio	D _{in} /D _{out}		0.700	

(a) ディスク全体の写真

(b) 前縁側からの写真

図 2.8 タービン動翼の写真

			Rotor			
		Тір	Midspan	Hub		
Number of Blades	N		31			
Chord	С	58.64 mm	58.52 mm	58.65 mm		
Axial Chord	C _{ax}	33.10 mm	41.02 mm	49.43 mm		
Passage Height	Н		75.00 mm			
Blade Span	H _B		74.00 mm			
Tip Clearance	k		1.00 mm			
Blade Pitch	S	50.47 mm	43.07 mm	35.47 mm		
Aspect Ratio	H/C	1.279	1.282	1.279		
Solidity	C/S	1.161	1.335	1.654		
Inlet Blade Angle	α1	-16.22 deg	22.06 deg	51.86deg		
Exit Blade Angle	α2	66.89 deg	63.44 deg	58.74 deg		
Blade Turning Angle	$\alpha_2 + \alpha_1$	50.68 deg	85.50 deg	110.60 deg		
Stagger Angle	ξ	55.88 deg	44.82 deg	33.43 deg		
Zweifel Coefficient	Ψ_z	1.137	1.007	0.965		
Trailing Edge Diameter	d _{TE}	0.60 mm	0.60 mm	0.60 mm		
Inner Diameter	D _{in}		350 mm			
Outer Diameter	Dout		500 mm			
Hub / Tip Ratio	D _{in} /D _{out}		0.700			

表 2.2 タービン動翼の仕様

No.	Тір	-side coordina	ates	Hut	side coordin	ates
_	Xmm	Y mm	Z mm	X mm	Y mm	Z mm
1	249.4999	-0.2024	1.3655	175.0000	0.0000	6.4000
2	249.4990	-0.7156	1.4437	174.9993	-0.4909	6.4695
3	249.4977	-1.0808	1.5947	174.9980	-0.8401	6.6041
4	249.4959	-1.4318	1.8138	174.9960	-1.1751	6.7997
5	249.4937	-1.7759	2.0966	174.9935	-1.5025	7.0524
6	249.4910	-2.1172	2.4393	174.9905	-1.8255	7.3587
7	249.4879	-2.4593	2.8386	174.9868	-2.1471	7.7158
8	249.4842	-2.8062	3.2923	174.9826	-2.4702	8.1214
9	249.4800	-3.1623	3.7994	174.9776	-2.7981	8.5738
10	249.4750	-3.5326	4.3599	174.9719	-3.1347	9.0728
11	249.4688	-3.9445	5.0098	174.9649	-3.5035	9.6492
12	249.4580	-4.5765	6.0323	174.9529	-4.0583	10.5508
13	249.4455	-5.2148	7.0646	174.9394	-4.6067	11.4549
14	249.4307	-5.8817	8.1180	174.9236	-5.1702	12.3723
15	249.4129	-6.5933	9.2000	174.9050	-5.7648	13.3110
16	249.3914	-7.3617	10.3148	174.8828	-6.4035	14.2764
17	249.3653	-8.1965	11.4643	174.8560	-7.0972	15.2717
18	249.3338	-9.1049	12.6489	174.8236	-7.8550	16.2984
19	249.2958	-10.0924	13.8677	174.7844	-8.6845	17.3569
20	249.2502	-11.1629	15.1191	174.7369	-9.5922	18.4467
21	249.1957	-12.3191	16.4012	174.6797	-10.5835	19.5664
22	249.1311	-13.5626	17.7118	174.6109	-11.6627	20.7145
23	249.0550	-14.8943	19.0487	174.5288	-12.8336	21.8891
24	248.9660	-16.3143	20.4097	174.4311	-14.0992	23.0884
25	248.8627	-17.8222	21.7928	174.3156	-15.4618	24.3104
26	248.7433	-19.4169	23.1962	174.1798	-16.9236	25.5533
27	248.6064	-21.0973	24.6179	174.0208	-18.4863	26.8154
28	248.4504	-22.8617	26.0565	173.8359	-20.1514	28.0952
29	248.2736	-24.7080	27.5107	173.6217	-21.9201	29.3913

表 2.3 タービン静翼の座標(翼正圧面側)

第2章	実	験	装	置
-----	---	---	---	---

30	248.0743	-26.6341	28.9792	173.3749	-23.7936	30.7024
31	247.8511	-28.6374	30.4609	173.0918	-25.7728	32.0275
32	247.6022	-30.7152	31.9551	172.7683	-27.8589	33.3656
33	247.3261	-32.8643	33.4610	172.4002	-30.0528	34.7160
34	247.0213	-35.0816	34.9781	171.9829	-32.3557	36.0782
35	246.6865	-37.3633	36.5058	171.5113	-34.7687	37.4516
36	246.3204	-39.7054	38.0440	170.9801	-37.2934	38.8360
37	245.9218	-42.1035	39.5924	170.3833	-39.9317	40.2312
38	245.4900	-44.5526	41.1510	169.7141	-42.6865	41.6373
39	245.0242	-47.0466	42.7198	168.9648	-45.5619	43.0542
40	244.5245	-49.5784	44.2988	168.1262	-48.5653	44.4823
41	243.9917	-52.1376	45.8881	167.1841	-51.7152	45.9220
42	243.9800	-52.1919	46.0359	167.1722	-51.7538	46.0440
43	243.9677	-52.2494	46.1371	167.1512	-51.8216	46.1371
44	243.9644	-52.2647	46.2531	167.1423	-51.8502	46.2502
45	243.9707	-52.2354	46.3662	167.1470	-51.8352	46.3662

表 2.4 タービン静翼の座標(翼負圧面側)

No.	Tip	-side coordina	ates	Hub-side coordinates		
	X mm	Y mm	Z mm	X mm	Y mm	Z mm
1	249.4999	-0.2024	1.3655	175.0000	0.0000	6.4000
2	249.4998	0.3105	1.4487	174.9993	0.4906	6.4738
3	249.4991	0.6725	1.6203	174.9980	0.8373	6.6259
4	249.4979	1.0130	1.8852	174.9961	1.1640	6.8603
5	249.4964	1.3321	2.2477	174.9938	1.4717	7.1809
6	249.4947	1.6246	2.7117	174.9912	1.7563	7.5912
7	249.4929	1.8826	3.2804	174.9884	2.0113	8.0941
8	249.4912	2.0962	3.956	174.9858	2.2285	8.6919
9	249.4898	2.2536	4.7397	174.9836	2.3981	9.3862
10	249.4890	2.3418	5.6314	174.9820	2.5091	10.1774
11	249.4890	2.3442	6.6848	174.9814	2.5487	11.1143
12	249.4907	2.1580	8.3519	174.9830	2.4413	12.6023

13	249.4937	1.7699	10.0098	174.9868	2.1521	14.0884
14	249.4971	1.2043	11.6469	174.9917	1.7013	15.5616
15	249.4995	0.4797	13.256	174.9965	1.1036	17.0139
16	249.4997	-0.3894	14.8326	174.9996	0.3707	18.4399
17	249.4961	-1.3908	16.3748	174.9993	-0.4878	19.8365
18	249.4873	-2.5148	17.8824	174.9939	-1.4642	21.2018
19	249.4718	-3.7530	19.3561	174.9814	-2.5521	22.5357
20	249.4479	-5.0989	20.7973	174.9599	-3.7464	23.8387
21	249.4141	-6.5467	22.2081	174.9273	-5.0431	25.1118
22	249.3688	-8.0916	23.5906	174.8815	-6.4393	26.3568
23	249.3102	-9.7296	24.9469	174.8201	-7.9328	27.5754
24	249.2368	-11.4571	26.2791	174.7408	-9.5219	28.7695
25	249.1468	-13.2710	27.5894	174.6409	-11.2058	29.9408
26	249.0385	-15.1684	28.8796	174.5177	-12.9837	31.0914
27	248.9101	-17.1467	30.1513	174.3683	-14.8557	32.2227
28	248.7599	-19.2033	31.4061	174.1896	-16.8217	33.3364
29	248.5861	-21.3358	32.6455	173.9783	-18.8822	34.4338
30	248.3869	-23.5416	33.8704	173.7309	-21.0377	35.5161
31	248.1606	-25.8183	35.0821	173.4434	-23.2890	36.5845
32	247.9054	-28.1633	36.2813	173.1120	-25.6369	37.6397
33	247.6196	-30.5740	37.4687	172.7321	-28.0826	38.6826
34	247.3017	-33.0473	38.6448	172.2991	-30.6271	39.7136
35	246.9500	-35.5803	39.8101	171.8079	-33.2721	40.7333
36	246.5630	-38.1697	40.9649	171.2531	-36.0192	41.7418
37	246.1395	-40.8116	42.1092	170.6285	-38.8705	42.7393
38	245.6783	-43.5019	43.2431	169.9274	-41.8292	43.7258
39	245.1785	-46.2357	44.3665	169.1421	-44.8993	44.7010
40	244.6397	-49.0068	45.4792	168.2633	-48.0880	45.6646
41	244.0622	-51.8062	46.5807	167.2773	-51.4130	46.6157
42	244.0309	-51.9536	46.5338	167.2253	-51.5819	46.5683
43	244.0067	-52.0671	46.5182	167.1919	-51.6901	46.5384
44	243.9856	-52.1660	46.4593	167.1644	-51.7790	46.4674
45	243.9707	-52.2354	46.3662	167.1470	-51.8352	46.3662

No.	Tip	-side coordina	ates	Hub	side coordin	ates
	X mm	Y mm	Z mm	X mm	Y mm	Z mm
1	248.6261	-13.6405	15.8644	175.0000	0.0000	9.4000
2	248.6429	-13.3314	15.8358	174.9999	0.1716	9.8423
3	248.6557	-13.0900	15.8879	174.9999	0.1586	10.2643
4	248.6687	-12.8407	15.9963	175.0000	0.0425	10.7546
5	248.6820	-12.5795	16.1585	174.9999	-0.1619	11.3132
6	248.6958	-12.3041	16.3730	174.9995	-0.4395	11.9364
7	248.7101	-12.0121	16.6388	174.9983	-0.7728	12.6192
8	248.7249	-11.7008	16.9552	174.9963	-1.1425	13.3554
9	248.7404	-11.3666	17.3224	174.9933	-1.5280	14.1372
10	248.7567	-11.0053	17.7410	174.9896	-1.9078	14.9554
11	248.7747	-10.5900	18.2385	174.9852	-2.2784	15.8448
12	248.8018	-9.9340	19.0382	174.9791	-2.7071	17.1159
13	248.8278	-9.2601	19.8561	174.9748	-2.9683	18.2513
14	248.8530	-8.5551	20.6929	174.9727	-3.0935	19.2871
15	248.8775	-7.8098	21.5492	174.9724	-3.1081	20.2682
16	248.9011	-7.0175	22.4250	174.9739	-3.0231	21.2420
17	248.9235	-6.1727	23.3199	174.9770	-2.8354	22.2480
18	248.9442	-5.2714	24.2333	174.9817	-2.5333	23.3117
19	248.9627	-4.3101	25.1644	174.9874	-2.1044	24.4445
20	248.9783	-3.2862	26.1121	174.9932	-1.5394	25.6472
21	248.9903	-2.1974	27.0755	174.9980	-0.8345	26.9146
22	248.9978	-1.0419	28.0533	175.0000	0.0095	28.2389
23	248.9999	0.1816	29.0447	174.9972	0.9885	29.6120
24	248.9956	1.4744	30.0485	174.9875	2.0957	31.0266
25	248.9838	2.8375	31.0639	174.9684	3.3229	32.4762
26	248.9634	4.2716	32.0898	174.9379	4.6612	33.9552
27	248.9330	5.7774	33.1256	174.8936	6.1013	35.4593
28	248.8913	7.3555	34.1705	174.8334	7.6336	36.9847
29	248.8371	9.0061	35.2237	174.7554	9.2488	38.5285

表 2.5 タービン動翼の座標(翼正圧面側)

30	248.7687	10.7298	36.2849	174.6579	10.9375	40.0884
31	248.6847	12.5268	37.3534	174.5392	12.6906	41.6621
32	248.5834	14.3974	38.4289	174.3983	14.4993	43.2483
33	248.4632	16.3419	39.5110	174.2341	16.3550	44.8456
34	248.3222	18.3605	40.5995	174.0458	18.2495	46.4529
35	248.1585	20.4535	41.6943	173.8332	20.1749	48.0694
36	247.9703	22.6211	42.7952	173.5959	22.1236	49.6944
37	247.7555	24.8637	43.9021	173.3342	24.0886	51.3276
38	247.5119	27.1819	45.0152	173.0483	26.0631	52.9684
39	247.2372	29.5765	46.1346	172.7388	28.0411	54.6168
40	246.9289	32.0488	47.2604	172.4064	30.0170	56.2726
41	246.5841	34.6019	48.3929	172.0520	31.9863	57.9360
42	246.5667	34.7258	48.4268	172.0287	32.1114	58.0174
43	246.5577	34.7892	48.5248	172.0196	32.1600	58.1235
44	246.5547	34.8106	48.6398	172.0186	32.1650	58.2404
45	246.5581	34.7868	48.7544	172.0260	32.1256	58.3504

表 2.6 タービン動翼の座標(翼負圧面側)

No.	Tip-side coordinates			Hub-side coordinates		
	X mm	Y mm	Z mm	X mm	Y mm	Z mm
1	248.6261	-13.6405	15.8644	175.0000	0.0000	9.4000
2	248.6109	-13.9146	16.0107	174.9996	-0.3936	9.1332
3	248.6013	-14.0845	16.1943	174.9981	-0.8185	9.0622
4	248.5935	-14.2230	16.4394	174.9948	-1.3439	9.0984
5	248.5873	-14.3297	16.7485	174.9890	-1.9662	9.2420
6	248.5832	-14.4010	17.1232	174.9795	-2.6770	9.4963
7	248.5814	-14.4321	17.5645	174.9657	-3.4642	9.8666
8	248.5823	-14.4171	18.0729	174.9469	-4.3126	10.3591
9	248.5862	-14.3492	18.6485	174.9226	-5.2042	10.9815
10	248.5936	-14.2210	19.2907	174.8931	-6.1174	11.7431
11	248.6055	-14.0118	20.0373	174.8570	-7.0740	12.7067
12	248.6299	-13.5713	21.2021	174.8012	-8.3385	14.3615

	-					
13	248.6597	-13.0131	22.3490	174.7528	-9.2982	16.1522
14	248.6936	-12.3497	23.4772	174.7173	-9.9439	18.0428
15	248.7301	-11.5901	24.5861	174.6982	-10.2728	19.9882
16	248.7682	-10.7407	25.6757	174.6969	-10.2956	21.9412
17	248.8068	-9.8063	26.7465	174.7119	-10.0370	23.8623
18	248.8448	-8.7908	27.7989	174.7404	-9.5294	25.7257
19	248.8810	-7.6972	28.8338	174.7783	-8.8062	27.5202
20	248.9144	-6.5278	29.8522	174.8217	-7.8968	29.2450
21	248.9439	-5.2843	30.8552	174.8669	-6.8252	30.9053
22	248.9684	-3.9682	31.8437	174.9100	-5.6101	32.5088
23	248.9866	-2.5805	32.8189	174.9480	-4.2667	34.0634
24	248.9975	-1.1220	33.7817	174.9775	-2.8073	35.5768
25	248.9997	0.4068	34.7331	174.9956	-1.2425	37.0554
26	248.9919	2.0054	35.6739	174.9995	0.4183	38.5045
27	248.9729	3.6737	36.6050	174.9866	2.1664	39.9287
28	248.9412	5.4115	37.5271	174.9544	3.9937	41.3315
29	248.8953	7.2188	38.4408	174.9008	5.8923	42.7160
30	248.8338	9.0957	39.3468	174.8236	7.8547	44.0847
31	248.7550	11.0422	40.2454	174.7213	9.8735	45.4394
32	248.6573	13.0587	41.1371	174.5921	11.9416	46.7817
33	248.5390	15.1454	42.0222	174.4349	14.0524	48.1130
34	248.3981	17.3025	42.9009	174.2486	16.1991	49.4344
35	248.2329	19.5305	43.7735	174.0326	18.3756	50.7465
36	248.0413	21.8297	44.6400	173.7862	20.5760	52.0502
37	247.8211	24.2008	45.5004	173.5091	22.7947	53.3458
38	247.5703	26.6445	46.3548	173.2012	25.0268	54.6337
39	247.2865	29.1618	47.2030	172.8626	27.2676	55.9143
40	246.9669	31.7542	48.0449	172.4934	29.5132	57.1875
41	246.6088	34.4252	48.8803	172.0938	31.7606	58.4534
42	246.5969	34.5104	48.9366	172.0812	31.8285	58.4912
43	246.5809	34.6243	48.9150	172.0599	31.9435	58.4861
44	246.5673	34.7213	48.8510	172.0405	32.0478	58.4367
45	246.5581	34.7868	48.7544	172.0260	32.1256	58.3504

		Radial Positions		
		Tip	Midspan	Hub
Flow Coefficient	Φ	0.426	0.500	0.607
Blade Loading Coefficient	Ψ	0.872	1.203	1.773
Reaction	Λ	0.564	0.399	0.113

表 2.7 タービン設計の無次元パラメータ値

[Definition]

<u>Flow Coefficient</u> *Φ* (流量係数)

$$\Phi = \frac{Vz}{V_{RT}}$$

 V_Z : Axial flow velocity V_{RT} : Rotor Speed

Blade Loading Coefficient Ψ (翼負荷係数)

 $\Psi = \frac{c_{\rho} \Delta T_{\theta s}}{V_{RT}^{2}} = \frac{V_{Z}}{V_{RT}} (\tan \beta_{2} + \tan \beta_{3}) = \Phi (\tan \beta_{2} + \tan \beta_{3})$

 β_2 : relative flow angle at rotor inlet β_3 : relative flow angle at rotor outlet

• The blade loading coefficient expresses the work capacity of a stage.

<u>Reaction / (反動度)</u>

$$\Lambda = \frac{T_2 - T_3}{T_1 - T_3} = \frac{V_Z}{2V_{RT}} (\tan \beta_3 - \tan \beta_2) = \frac{\Phi}{2} (\tan \beta_3 - \tan \beta_2)$$

 The reaction expresses the fraction of the stage expansion which occurs in the rotor.

(a) Setting No.2 (*Tu_{in}* = 1.2%)
(b) Setting No.3 (*Tu_{in}* = 3.6%)
図 2.10 主流乱れ発生用の閉塞板

Setting No.	Sheet Position	Hole Diameter mm	Hole Distance mm	Mean Turbulence Intensity <i>Tu_{in}</i> and Integral Length Scale <i>L_x</i>		
				Tu _{in} %	L _x mm	
1				0.5	xxx	
2	Screen 1	22	66	1.2	12.1	
3	Screen 1	40	120	3.6	9.1	
4	Screen 3	25	75	5.9	10.0	
5	Screen 3	40	120	8.9	12.5	

表 2.8 乱れ発生用の閉塞板の仕様

図 2.11 静翼入口ミッドスパンの乱れ度

表 2.9 各レイノルズ数における静翼入口ミッドスパンの乱れ度

Reynolds	Turbulence Intensity Tu _{in}					
Number Re _{out,NZ}	Setting No. 1	Setting No. 2	Setting No. 3	Setting No. 4	Setting No. 5	
4.4×10^{4}	0.5 %	0.9 %	2.8 %	6.0 %	9.4 %	
9.0×10^4	0.5 %	1.1 %	3.6 %	6.1%	8.7 %	
13.6×10^{4}	0.5 %	1.3 %	4.1 %	5.8 %	8.7 %	
18.1 × 10 ⁴	0.5 %	1.4 %	3.9%	5.6 %	8.6 %	
22.8×10^{4}	0.5 %					
27.1×10^{4}	0.5 %					
Average	0.5 %	1.2 %	3.6 %	5.9 %	8.9%	

図 2.12 静翼入口ミッドスパンの乱れの積分スケール

表 2.10 各レイノルズ数における静翼入口ミッドスパンの乱れの積分スケール

Revnolds	Integral Length Scale of Turbulence Λ_x mm					
Number Re _{out,NZ}	Setting No. 1 (<i>Tu_{in}</i> = 0.5%)	Setting No. 2 (<i>Tu_{in}</i> = 1.2 %)	Setting No. 3 (<i>Tu_{in}</i> = 3.6 %)	Setting No. 4 (<i>Tu_{in}</i> = 5.9 %)	Setting No. 5 (<i>Tu_{in}</i> = 8.9 %)	
4.4×10^4	XXX	16.9 mm	10.9 mm	9.4 mm	11.4 mm	
$9.0 imes 10^4$	ххх	12.1 mm	8.4 mm	9.5 mm	12.0 mm	
13.6×10^4	XXX	10.2 mm	8.4 mm	10.3 mm	13.2 mm	
18.1×10^4	XXX	9.4 mm	8.6 mm	10.6 mm	13.5 mm	
22.8×10^4	XXX					
$27.1\times\mathbf{10^{4}}$	27.1×10^4 xxx					
Average	XXX	12.1 mm	9.1 mm	10.0 mm	12.5 mm	