

付録2 タービン静翼出口の三次元流れの測定データ

付図 2.18 レイノルズ数 *Re_{out.NZ}*=13.8×10⁴,主流乱れ度 *Tu_{in}*=1.3%,チップクリア ランス *k*/*H*=0.00% における静翼出口流れの半径方向分布

付録2 タービン静翼出口の三次元流れの測定データ

付図 2.20 レイノルズ数 *Re_{out,NZ}*=18.1×10⁴,主流乱れ度 *Tu_{in}*=1.4%,チップクリア ランス *k*/*H*=0.00% における静翼出口流れの半径方向分布

ランス k/H=0.00% における静翼出口流れの測定結果(Z_{NZ}/C_{ax.NZ}=1.156)

付録2 タービン静翼出口の三次元流れの測定データ

付図 2.22 レイノルズ数 *Re_{out.NZ}*=4.5×10⁴, 主流乱れ度 *Tu_{in}*=2.8%, チップクリア ランス *k*/*H*=0.00% における静翼出口流れの半径方向分布

付録2 タービン静翼出口の三次元流れの測定データ

付図 2.24 レイノルズ数 *Re_{out.NZ}*=9.1×10⁴, 主流乱れ度 *Tu_{in}*=3.6%, チップクリア ランス *k*/*H*=0.00% における静翼出口流れの半径方向分布

付図 2.26 レイノルズ数 *Re_{out.NZ}*=13.7×10⁴,主流乱れ度 *Tu_{in}*=4.1%,チップクリア ランス *k*/*H*=0.00% における静翼出口流れの半径方向分布

付図 2.28 レイノルズ数 *Re_{out.NZ}*=18.0×10⁴,主流乱れ度 *Tu_{in}*=3.9%,チップクリア ランス *k*/*H*=0.00% における静翼出口流れの半径方向分布

付録2 タービン静翼出口の三次元流れの測定データ

付図 2.30 レイノルズ数 *Re_{out,NZ}*=4.3×10⁴,主流乱れ度 *Tu_{in}*=6.0%,チップクリア ランス *k*/*H*=0.00% における静翼出口流れの半径方向分布

付録2 タービン静翼出口の三次元流れの測定データ

付図 2.32 レイノルズ数 *Re_{out.NZ}*=8.8×10⁴, 主流乱れ度 *Tu_{in}*=6.1%, チップクリア ランス *k*/*H*=0.00% における静翼出口流れの半径方向分布