

第4章 低レイノルズ数域における環状タービン静翼の三次元流れに与えるレイノルズ数の影響

静翼ミッドスパンの後流の境界層パラメータへのレイノルズ数の影響 図 4.41 (その1) 排除厚さ,運動量厚さ,エネルギ消散厚さ,半値幅 (軸方向位置 Z_{NZ}/C_{ax.NZ}=1.074, 主流乱れ度 Tu_{in}=0.5%)

図 4.41

静翼ミッドスパンの後流の境界層パラメータへのレイノルズ数の影響 (その2) 形状係数 *H*₁₂,形状係数 *H*₃₂,速度欠損,最大乱れ度 (軸方向位置 *Z_{NZ}/C_{ax,NZ}*=1.074,主流乱れ度 *Tu_{in}*=0.5%)

図 4.42 静翼ミッドスパンの後流の境界層パラメータへのレイノルズ数の影響
(正圧面側の境界層,その1) 排除厚さ,運動量厚さ,エネルギ消散
厚さ,半値幅(軸方向位置 Z_{NZ}/C_{ax,NZ}=1.074, 主流乱れ度 Tu_{in}=0.5%)

2 静翼ミッドスパンの後流の境界層パラメータへのレイノルズ数の影響
(正圧面側の境界層,その2) 形状係数 H₁₂,形状係数 H₃₂
(軸方向位置 Z_{NZ}/C_{ax,NZ}=1.074,主流乱れ度 Tu_{in}=0.5%)

 図 4.43 静翼ミッドスパンの後流の境界層パラメータへのレイノルズ数の影響 (負圧面側の境界層,その1) 排除厚さ,運動量厚さ,エネルギ消散
厚さ,半値幅(軸方向位置 Z_{NZ}/C_{ax.NZ}=1.074,主流乱れ度 Tu_{in}=0.5%)

 図 4.43 静翼ミッドスパンの後流の境界層パラメータへのレイノルズ数の影響 (負圧面側の境界層,その2) 形状係数 H₁₂,形状係数 H₃₂
(軸方向位置 Z_{NZ}/C_{ax.NZ}=1.074,主流乱れ度 Tu_{in}=0.5%)

図 4.44 静翼ミッドスパン後流の境界層排除厚さ δ_l とレイノルズ数の関係 (軸方向位置 $Z_{NZ}/C_{ax,NZ}$ =1.074, 主流乱れ度 Tu_{in} =0.5%)

図 4.45 静翼ミッドスパン後流の境界層運動量厚さ δ₂ とレイノルズ数の関係 (軸方向位置 Z_{NZ}/C_{ax.NZ}=1.074, 主流乱れ度 Tu_{in}=0.5%)

 図 4.46 静翼ミッドスパン後流の境界層エネルギ消散厚さδ₃とレイノルズ数の関係 (軸方向位置 Z_{NZ}/C_{ax,NZ}=1.074, 主流乱れ度 Tu_{in}=0.5%)

図 4.47 熱線流速計による静翼後流の詳細計測(軸方向位置 Z_{NZ}/C_{ax,NZ}=1.156) Re_{out,NZ}=4.5×10⁴ での速度分布と乱れ度分布(主流乱れ度 Tu_{in}=0.5%)

 $Re_{out,NZ} = 4.5 \times 10^4$ での速度と乱れ度のピッチ方向分布 ($Tu_{in} = 0.5\%$)

図 4.49 $Z_{NZ}/C_{ax,NZ}$ =1.156 における各半径位置での境界層パラメータ(その1) $Re_{out,NZ}$ =4.5×10⁴ での排除厚さ、運動量厚さ、エネルギ消散厚さ、 半値幅(主流乱れ度 Tu_{in} =0.5%)

図4.49 Z_{NZ}/C_{ax,NZ}=1.156 における各半径位置での境界層パラメータ(その2) Re_{out,NZ}=4.5×10⁴ での形状係数 H₁₂,形状係数 H₃₂,速度欠損(最大値), 最大乱れ度(主流乱れ度 Tu_{in}=0.5%)

図 4.50 各レイノルズ数における静翼ミッドスパンの後流の詳細計測 Z_{NZ}/C_{ax,NZ}=1.156 での速度と乱れ度のピッチ方向分布(Tu_{in}=0.5%)

図 4.51 各レイノルズ数での静翼ミッドスパンの後流(翼2枚の平均値)
Z_{NZ}/C_{ax.NZ}=1.156 での速度と乱れ度のピッチ方向分布(Tu_{in}=0.5%)

図 4.52 静翼ミッドスパンの後流の境界層パラメータへのレイノルズ数の影響
(その1) 排除厚さ,運動量厚さ,エネルギ消散厚さ,半値幅
(軸方向位置 Z_{NZ}/C_{ax,NZ}=1.156,主流乱れ度 Tu_{in}=0.5%)

静翼ミッドスパンの後流の境界層パラメータへのレイノルズ数の影響 (その2) 形状係数 H₁₂,形状係数 H₃₂,速度欠損,最大乱れ度 (軸方向位置 Z_{NZ}/C_{ax,NZ}=1.156,主流乱れ度 Tu_{in}=0.5%)

図 4.53 静翼ミッドスパンの後流の境界層パラメータへのレイノルズ数の影響(正圧面側の境界層,その1) 排除厚さ,運動量厚さ,エネルギ消散

厚さ,半値幅(軸方向位置 Z_{NZ}/C_{ax.NZ}=1.156,主流乱れ度 Tu_{in}=0.5%)

X 4.53

静翼ミッドスパンの後流の境界層パラメータへのレイノルズ数の影響 (正圧面側の境界層,その2) 形状係数 H₁₂,形状係数 H₃₂ (軸方向位置 Z_{NZ}/C_{ax.NZ}=1.156,主流乱れ度 Tu_{in}=0.5%)

第4章 低レイノルズ数域における環状タービン静翼の三次元流れに与えるレイノルズ数の影響

 図 4.54 静翼ミッドスパンの後流の境界層パラメータへのレイノルズ数の影響 (負圧面側の境界層,その1) 排除厚さ,運動量厚さ,エネルギ消散
厚さ,半値幅(軸方向位置 Z_{NZ}/C_{ax,NZ}=1.156,主流乱れ度 Tu_{in}=0.5%)

 図 4.54 静翼ミッドスパンの後流の境界層パラメータへのレイノルズ数の影響 (負圧面側の境界層,その2) 形状係数 H₁₂,形状係数 H₃₂
(軸方向位置 Z_{NZ}/C_{ax,NZ}=1.156,主流乱れ度 Tu_{in}=0.5%)

図 4.55 静翼ミッドスパン後流の境界層排除厚さ *δ*₁ とレイノルズ数の関係 (軸方向位置 *Z_{NZ}/C_{ax NZ}*=1.156, 主流乱れ度 *Tu_{in}*=0.5%)

X 4.56

静翼ミッドスパン後流の境界層運動量厚さ δ_2 とレイノルズ数の関係 (軸方向位置 $Z_{NZ}/C_{ax,NZ}$ =1.156,主流乱れ度 Tu_{in} =0.5%)

 図 4.57 静翼ミッドスパン後流の境界層エネルギ消散厚さδ₃とレイノルズ数の関係 (軸方向位置 Z_{NZ}/C_{ax,NZ}=1.156, 主流乱れ度 Tu_{in}=0.5%)

図 4.59 熱線流速計による壁面近傍流れの詳細計測(その2) $Re_{out,NZ} = 13.6 \times 10^4$ での速度分布と乱れ度分布 ($Z_{NZ}/C_{ax,NZ} = 1.156$, $Tu_{in} = 0.5\%$)

 $Re_{out,NZ} = 27.1 \times 10^4$ での速度分布と乱れ度分布 ($Z_{NZ}/C_{ax,NZ} = 1.156$, $Tu_{in} = 0.5\%$)

図 4.61 各レイノルズ数での壁面近傍流れ(翼2ピッチを平均化した分布) [図中の直線は、次図のスパン方向分布の測定位置を示す。]

図4.62 各レイノルズ数での速度・乱れ度のスパン方向分布(その1) ピッチ方向位置 X_{NZ}/S=0.053 での壁面近傍流れ(Z_{NZ}/C_{ax,NZ}=1.156, Tu_{in}=0.5%)

図 4.62 各レイノルズ数での速度・乱れ度のスパン方向分布(その2) ピッチ方向位置 X_{NZ}/S=0.158 での壁面近傍流れ (Z_{NZ}/C_{ax,NZ}=1.156, Tu_{in}=0.5%)

図 4.62 各レイノルズ数での速度・乱れ度のスパン方向分布(その3) ピッチ方向位置 $X_{NZ}/S=0.263$ での壁面近傍流れ ($Z_{NZ}/C_{ax,NZ}=1.156$, $Tu_{in}=0.5\%$)

図 4.62 各レイノルズ数での速度・乱れ度のスパン方向分布(その4) ピッチ方向位置 X_{NZ}/S=0.368 での壁面近傍流れ (Z_{NZ}/C_{ax,NZ}=1.156, Tu_m=0.5%)

図4.62 各レイノルズ数での速度・乱れ度のスパン方向分布(その5) ピッチ方向位置 X_{NZ}/S=0.474 での壁面近傍流れ (Z_{NZ}/C_{ax,NZ}=1.156, Tu_{in}=0.5%)

図 4.62 各レイノルズ数での速度・乱れ度のスパン方向分布(その6) ピッチ方向位置 X_{NZ}/S=0.579 での壁面近傍流れ (Z_{NZ}/C_{axNZ}=1.156, Tu_{in}=0.5%)

図4.62 各レイノルズ数での速度・乱れ度のスパン方向分布(その7) ピッチ方向位置 X_{NZ}/S=0.684 での壁面近傍流れ(Z_{NZ}/C_{ax,NZ}=1.156, Tu_{in}=0.5%)

209

図 4.62 各レイノルズ数での速度・乱れ度のスパン方向分布(その8) ピッチ方向位置 X_{NZ}/S=0.789 での壁面近傍流れ(Z_{NZ}/C_{ax,NZ}=1.156, Tu_m=0.5%)

図4.62 各レイノルズ数での速度・乱れ度のスパン方向分布(その9) ピッチ方向位置 *X_{NZ}/S*=0.895 での壁面近傍流れ(*Z_{NZ}/C_{ax,NZ}*=1.156, *Tu_{in}*=0.5%)

図 4.62 各レイノルズ数での速度・乱れ度のスパン方向分布(その10) ピッチ方向位置 X_{NZ}/S=1.000 での壁面近傍流れ (Z_{NZ}/C_{ax,NZ}=1.156, Tu_m=0.5%)

X 4.63

各レイノルズ数における静翼出口のハブ側壁面の境界層パラメータの ピッチ方向分布(その1) 境界層厚さ,排除厚さ,運動量厚さ,エネ ルギ消散厚さ(軸方向位置 Z_{NZ}/C_{ax,NZ}=1.156,主流乱れ度 Tu_{in}=0.5%)

 図 4.63 各レイノルズ数における静翼出口のハブ側壁面の境界層パラメータの ピッチ方向分布(その2) 形状係数 H₁₂,形状係数 H₃₂ (軸方向位置 Z_{NZ}/C_{ax.NZ}=1.156,主流乱れ度 Tu_{in}=0.5%)

各レイノルズ数における静翼出口のチップ側壁面の境界層パラメータ のピッチ方向分布(その1) 境界層厚さ,排除厚さ,運動量厚さ, エネルギ消散厚さ(軸方向位置 Z_{NZ}/C_{ax,NZ}=1.156,主流乱れ度 Tu_{in}=0.5%)

図 4.64 各レイノルズ数における静翼出口のチップ側壁面の境界層パラメータのピッチ方向分布(その2) 形状係数 H₁₂,形状係数 H₃₂
(軸方向位置 Z_{NZ}/C_{ax,NZ}=1.156,主流乱れ度 Tu_{in}=0.5%)

静翼出口のハブ側壁面の境界層パラメータへのレイノルズ数の影響 (その1)境界層厚さ,排除厚さ,運動量厚さ,エネルギ消散厚さの ピッチ方向平均値(軸方向位置*Z_{NZ}/C_{ax,NZ}=1.156*,主流乱れ度*Tu_{in}=0.5%*)

図 4.65 静翼出口のハブ側壁面の境界層パラメータへのレイノルズ数の影響 (その2) 形状係数 H₁₂,形状係数 H₃₂のピッチ方向平均値 (軸方向位置 Z_{NZ}/C_{ax.NZ}=1.156,主流乱れ度 Tu_{in}=0.5%)

静翼出口のチップ側壁面の境界層パラメータへのレイノルズ数の影響 (その1)境界層厚さ,排除厚さ,運動量厚さ,エネルギ消散厚さの ピッチ方向平均値(軸方向位置Z_{NZ}/C_{ax.NZ}=1.156,主流乱れ度Tu_{in}=0.5%)

 図 4.66 静翼出口のチップ側壁面の境界層パラメータへのレイノルズ数の影響 (その2) 形状係数 H₁₂,形状係数 H₃₂のピッチ方向平均値 (軸方向位置 Z_{NZ}/C_{ax.NZ}=1.156,主流乱れ度 Tu_{in}=0.5%)

表 4.15 各主流乱れ度での静翼入口の境界層厚さと形状係数 (レイノルズ数 *Re_{out,NZ}*=13.6×10⁴)

Turbulence Intensity	Boundary Layer Displacement Thickness		Boundary Layer Momentum Thickness		Shape Factor
Tu _{in} %	δ_1 mm	$\delta_1/H\%$	$\delta_2 {\sf mm}$	δ_2/H %	H ₁₂
0.5%	1.05	1.41	0.536	0.715	1.97
1.3%	0.991	1.32	0.557	0.743	1.78
3.4%	1.19	1.58	0.749	0.998	1.59
6.0%	1.30	1.73	0.833	1.11	1.56
8.7%	1.43	1.91	0.967	1.29	1.48

(a) チップ側境界層

(b) ハブ側境界層

Turbulence	Boundary Layer		Boundary Layer		Shape
Intensity	Displacement Thickness		Momentum Thickness		Factor
Tu _{in} %	δ₁ mm	$\delta_1/H\%$	$\delta_2 mm$	$\delta_2/H\%$	H ₁₂
0.5%	1.25	1.67	0.735	0.980	1.71
1.3%	1.31	1.75	0.786	1.05	1.67
3.4%	1.44	1.93	0.931	1.24	1.55
6.0%	1.42	1.89	0.913	1.22	1.55
8.7%	1.21	1.61	0.760	1.01	1.59

図 4.69 各主流乱れ度における静翼出口での全圧損失分布 (軸方向位置 Z_{NZ}/C_{az,NZ}=1.156, レイノルズ数 Re_{out,NZ}=13.6×10⁴)

第4章 低レイノルズ数域における環状タービン静翼の三次元流れに与えるレイノルズ数の影響

