

(a) 全圧損失の半径方向分布

(b) Tuin=0.5%における全圧損失との差

図 4.71 各主流乱れ度での全圧損失の半径方向分布 (レイノルズ数 Re_{out.NZ}=13.6×10⁴)

 図 4.72 静翼出口の各半径方向位置における損失への主流乱れ度の影響 (その1)
 各半径方向位置でのピッチ方向平均損失(*Re_{out.NZ}*=13.6×10⁴)

図 4.72 静翼出口の各半径方向位置における損失への主流乱れ度の影響 (その2)

各半径方向位置でのピッチ方向平均損失(Reout,NZ=13.6×10⁴)

図 4.72 静翼出口の各半径方向位置における損失への主流乱れ度の影響 (その3)

各半径方向位置でのピッチ方向平均損失(Re_{out,NZ}=13.6×10⁴)

図4.72 静翼出口の各半径方向位置における損失への主流乱れ度の影響 (その4)

各半径方向位置でのピッチ方向平均損失(Reout,NZ=13.6×10⁴)

 図 4.72 静翼出口の各半径方向位置における損失への主流乱れ度の影響 (その5)
 各半径方向位置でのピッチ方向平均損失(*Re_{out.NZ}*=13.6×10⁴)

- (u) Spanwise Distance y/H = 0.033
- 図 4.72 静翼出口の各半径方向位置における損失への主流乱れ度の影響 (その6)
 各半径方向位置でのピッチ方向平均損失(*Re_{out.NZ}*=13.6×10⁴)

図 4.73 主流乱れ度が損失に与える影響 (レイノルズ数 *Re_{out,NZ}*=13.6×10⁴)

表 4.16 $Tu_{in} = 0.5\%$ と $Tu_{in} = 8.7\%$ における損失値 ($Re_{out,NZ} = 13.6 \times 10^4$)

Losses	<i>Tu_{in}</i> = 0.5%		<i>Tu_{in}</i> = 8.7%		
Exit Loss	CPt _{out,g}	0.0577		0.0592	
Inlet Loss	CPt _{in}	0.0035		0.0038	
Тір	CPt _{in,tip}	0.0016		0.0018	
Hub	CPt _{in,hub}	0.0019		0.0020	
Net Overall Loss	CPt _{out,n}	0.0542	100%	0.0554	100%
Profile Loss	CPt _p	0.0351	64.8%	0.0416	75.0%
Net Secondary Loss	CPt _{s,n}	0.0191	35.2%	0.0138	25.0%
Tip	CPt _{s,n,tip}	0.0112	20.7%	0.0071	12.8%
Hub	CPt _{s,n,hub}	0.0084	15.5%	0.0067	12.2%

図 4.74 静翼出口の流れに与える主流乱れ度の影響(その2) Re_{out.NZ}=13.6×10⁴での周方向速度,半径方向速度,軸方向速度の分布

図 4.74 静翼出口の流れに与える主流乱れ度の影響(その4) Re_{out,NZ}=13.6×10⁴での二次流れの可視化,軸方向渦度,乱れ度の分布

 図4.75 静翼出口流れの半径方向分布に与える主流乱れ度の影響(その1)
 Re_{out,NZ}=13.6×10⁴での全圧損失,絶対速度,周方向速度,半径方向速度, 軸方向速度

図 4.75 静翼出口流れの半径方向分布に与える主流乱れ度の影響(その2) *Re_{out.NZ}*=13.6×10⁴での静圧,周方向流れ角,半径方向流れ角, 軸方向渦度,乱れ度

図 4.76 静翼出口での速度と乱れ度のピッチ方向分布および瞬時速度波形 (半径方向位置 y/H=0.59, Re_{out,NZ}=13.6×10⁴)

図 4.77 $Tu_{in}=0.5\%$ と $Tu_{in}=8.7\%$ における静翼出口直後での乱れ度分布 (軸方向位置 $Z_{NZ}/C_{ax}=1.074$, $Re_{out,NZ}=13.6\times10^4$)

(a) $Tu_{in} = 0.5\%$

(b) $Tu_{in} = 8.7\%$

図 4.78 $Tu_{in} = 0.5\%$ と $Tu_{in} = 8.7\%$ における静翼負圧面側の剥離域 (軸方向位置 $Z_{NZ}/C_{ax} = 1.074$, $Re_{out,NZ} = 13.6 \times 10^4$)

図 4.80 各主流乱れ度での静翼ミッドスパンの後流(翼2枚の平均値) Z_{NZ}/C_{ax,NZ}=1.156 での速度と乱れ度のピッチ方向分布(Re_{out,NZ}=13.6×10⁴)

X 4.81

静翼ミッドスパンの後流の境界層パラメータへの主流乱れ度の影響 (その1) 排除厚さ,運動量厚さ,エネルギ消散厚さ,半値幅 (軸方向位置 Z_{NZ}/C_{ax.NZ}=1.156,レイノルズ数 Re_{out.NZ}=13.6×10⁴)

低レイノルズ数域における環状タービン静翼の三次元流れに与えるレイノルズ数の影響

 図 4.81 静翼ミッドスパンの後流の境界層パラメータへの主流乱れ度の影響 (その2) 形状係数 H₁₂,形状係数 H₃₂,速度欠損,最大乱れ度 (軸方向位置 Z_{NZ}/C_{ax,NZ}=1.156,レイノルズ数 Re_{out,NZ}=13.6×10⁴)

第4章

図4.82 静翼ミッドスパンの後流の境界層パラメータへの主流乱れ度の影響
 (正圧面側の境界層,その1) 排除厚さ,運動量厚さ,エネルギ消散
 厚さ,半値幅(軸方向位置 Z_{NZ}/C_{ax,NZ}=1.156, Re_{out,NZ}=13.6×10⁴)

245

- (e) 形状係数 H₁₂ (=δ₁/δ₂)
 (正圧面側の境界層)
- (f) 形状係数 H₃₂ (= δ₃/δ₂)
 (正圧面側の境界層)
- 図 4.82 静翼ミッドスパンの後流の境界層パラメータへの主流乱れ度の影響 (正圧面側の境界層,その2) 形状係数 H₁₂,形状係数 H₃₂ (軸方向位置 Z_{NZ}/C_{ax,NZ}=1.156,レイノルズ数 Re_{out,NZ}=13.6×10⁴)

 図4.83 静翼ミッドスパンの後流の境界層パラメータへの主流乱れ度の影響 (負圧面側の境界層,その1) 排除厚さ,運動量厚さ,エネルギ消散
 厚さ,半値幅(軸方向位置 Z_{NZ}/C_{ax,NZ}=1.156, Re_{out,NZ}=13.6×10⁴)

(軸方向位置 $Z_{NZ}/C_{ax,NZ}$ =1.156, レイノルズ数 $Re_{out,NZ}$ =13.6×10⁴)

表 4.17 各レイノルズ数および各主流乱れ度における総全圧損失

Reynolds		Net Ov	verall Loss (CPt _{out,n}	
Number	Turbulence Intensity Tu _{in}				
Re _{out,NZ}	0.5%	1.2%	3.6%	5.9%	8.9%
4.4×10^{4}	0.0771	0.0775	0.0783	0.0778	0.0765
9.0 × 10 ⁴	0.0617	0.0615	0.0610	0.0619	0.0638
13.6×10^{4}	0.0543	0.0520	0.0527	0.0532	0.0556
18.1 × 10 ⁴	0.0471	0.0477	0.0485	0.0485	0.0527
22.8×10^{4}	0.0445				
27.1×10^{4}	0.0424	*			

表 4.18 各レイノルズ数および各主流乱れ度における形状損失

Reynolds		Pro	ofile Loss Cl	Pt _p		
Number		Turbulence Intensity Tuin				
Re _{out,NZ}	0.5%	1.2%	3.6%	5.9%	8.9%	
4.4×10^4	0.0478	0.0490	0.0524	0.0538	0.0528	
$9.0 imes 10^4$	0.0397	0.0402	0.0435	0.0453	0.0470	
13.6×10^4	0.0351	0.0352	0.0375	0.0395	0.0416	
18.1×10^{4}	0.0315	0.0338	0.0361	0.0371	0.0405	
22.8×10^4	0.0306					
27.1×10^{4}	0.0298					

表 4.19 各レイノルズ数および各主流乱れ度における二次損失

Reynolds	Net Secondary Loss CPt _{s,n}						
Number	Turbulence Intensity Tuin						
Re _{out,NZ}	0.5%	0.5% 1.2% 3.6% 5.9% 8.9%					
4.4×10^{4}	0.0292	0.0284	0.0258	0.0239	0.0237		
9.0×10^4	0.0219	0.0212	0.0174	0.0165	0.0166		
13.6×10^{4}	0.0191	0.0168	0.0151	0.0137	0.0139		
18.1 × 10 ⁴	0.0156	0.0139	0.0123	0.0114	0.0119		
22.8×10^{4}	0.0139						
27.1×10^{4}	0.0126						

表 4.20 各レイノルズ数および各主流乱れ度におけるチップ側の二次損失

Reynolds		Tip-side Net	Secondary Lo	oss CPt _{s,n,tip}	
Number	Turbulence Intensity Tuin				
Re _{out,NZ}	0.5%	1.2%	3.6%	5.9%	8.9%
4.4×10^4	0.0115	0.0106	0.0097	0.0097	0.0095
9.0×10^4	0.0112	0.0106	0.0095	0.0088	0.0078
13.6×10^4	0.0107	0.0099	0.0089	0.0082	0.0071
18.1×10^{4}	0.0100	0.0084	0.0076	0.0063	0.0052
22.8×10^4	0.0094				
27.1×10^{4}	0.0087				

表 4.21 各レイノルズ数および各主流乱れ度におけるハブ側の二次損失

Reynolds		Hub-side Net	Secondary Lo	oss CPt _{s,n,hu}	ıb
Number	Turbulence Intensity Tuin				
Re _{out,NZ}	0.5%	1.2%	3.6%	5.9%	8.9%
4.4×10^4	0.0177	0.0178	0.0161	0.0142	0.0142
$9.0 imes 10^4$	0.0108	0.0107	0.0079	0.0077	0.0088
13.6×10^4	0.0084	0.0069	0.0063	0.0055	0.0068
18.1×10^4	0.0056	0.0056	0.0047	0.0051	0.0067
22.8×10^4	0.0047				
27.1×10^4	0.0039				

表 4.22 各レイノルズ数および各主流乱れ度における周方向流れ角 (測定面の質量流量平均値)

Reynolds		Tangenti	al Flow Angle	α deg		
Number	Turbulence Intensity Tuin					
Re _{out,NZ}	0.5%	1.2%	3.6%	5.9%	8.9%	
4.4×10^4	66.394	66.385	66.507	66.545	66.675	
$9.0 imes 10^4$	66.735	66.815	66.834	66.850	66.887	
13.6×10^4	67.019	66.940	66.880	66.937	67.013	
18.1×10^{4}	67.161	67.048	66.984	67.031	67.061	
22.8×10^4	67.274					
27.1×10^{4}	67.310					