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Some Consideration on the Variational
Basis of Finite Element Models
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Summary
_ Hybrid property of the linearized displacement field in
deformable continuum is pointed out first. Using the dis-
placement field in hybrid form and employing the hybrid
potential energy principle attempt is made to establish
mathematical basis of the rigid body-spring elements previ-

ously proposed by the present author.

1. Introduction

It is well known that the linearized displacement field in
deformable continuum has hybrid properties. It consists of
two displacement fields:
the displacement field due to rigid body motion and the
displacement field due to constant strain distribution.

This is the very basis for derivation of the CST element in
plane stress problem and also it gives the theoretical basis
for rigid body-spring elements which were recently proposed
by the present author if the latter can be neglected to
compare with the former.

Attempt is made to establish variational basis of the
rigid body-spring elements and also to develop modified
elements of the better convergency by using the displace-
ment field in hybrid form and hybrid potential energy
principle.

2. Hybrid Property of Infinitesimal Displacement Field

Consider two neighboring particles P and @ in a three
dimensional continuous medium. Suppose that the medium
is displaced and deformed such that they occupy new
positions P” and Q" as shown Fig. 1. In case of three
dimentional Cartesian space the relative displacement of @
relative to P, i.e., du =up—uq canbe given in the following
tensor form:

du;=%§_dr;=w.~;d:¢;+s,~,~dri (1)
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Fig. 1 Relative Displacement Vector 5 in 3D Cartesian Space

where
1 /0u; i
&=y <6i:v, + g%f) : straintensor  (2)

,,=L(a“i_a_uz)
wiiT dx; 0x;

The integral form of eq. (1) can be given by the following

: rotation tensor (3)

equations:

u.‘(X/;)=u,'(ka) +(U{j(Xk_ka)

+e i (X=X (4)
or in matrix form:
u(X)=H,(X)d+H.(X)e (5)

where d is the rigid body displacement vector at P and €
the strain vector defined at P.
Eq. (5) implies that the infinitesimal displacement field
consists of two types of displacement fields, i.e. displacement
field due to rigid body movement d and the displacement
field due to strains e. In case of in-plane displacement field,
eq. (5) can be given by the following equation:
1 1 u
{U(I, y>}7[1 ) |—(y_yp)] atd
—mm ==y — | T tmmA- T v
Viz, y) 011! (x—xp) -
X
i (S}
(x—’l'p) : 0 : 7(y—yp) i_l
--------- e )
(y—yp) E 7(:0—1») J

Tzy
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3. The Variational Basis of the Finite Element Method

In this section variational formulation of conventional
finite element method will be reviewed by using the linear
displacement field expressed by eq. (5) and also by employ-
ing the hybrid potential energy principle.

For simplicity in-plane deformation field as shown in Fig.
2 is considered.

The principle of minimum potential energy requires
minimization of the following functional expressed by a trial
displacement field u satisfying the prescribed geometrical
boundary condition: u =u on C,.

@) =IA%eTDst - Lufﬁds— _[ u'Tds
(1)

Let’s devide a given domain into a number of subdomains
(finite elements) as shown in Fig. 2 and for each element the
infinitesial displacement field given by eq. (6) is assumed
without ensuring the inter-element compatibility.

In such a case the functional /1() given by eq. (7) should
be modified by adding some line integrals defined on the
inter-element boundaries involving Lagrangian multipliers
as follows:

Opp(u)=51°4)—31T,(u) (8)
where IT °(u ) is the functional eq. (7) for a specific element.
I7,%(u )is line integral involving Lagrange multiplier and they
are given as follows:

(i) hybrid displacement model (1)

mw={  aw—uds (9)

c8
(ii) hybrid displacement model (II)
M@=[_ (o) =) + () (wr—gn)}ds

10)

where 2 is Lagrangian multiplier which represents the surface

A or u: Lagrangian

7
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traction on the inter-element boundaries, while gt is Lagrange
multiplier which represents the boundary displacement on
the inter-element surfaces.

n is normal drawn outward to the boundary curve of a
given element. 1 and 2 stand for any adjoining elements.
Cp implies the inter-element boundary between two adjoin-
ing elements.

As nodal parameters are only defined within a single
element, ‘the following equation can be derived by taking
variation with respect to & of a typical element :

(i) In case of hybrid displacement model (1)

ADe—f*—I2;=0 .. c=‘g-(123+ff) an
(ii) In case of hybrid displacement model (II)
A*De+f+DHd —DJ y1,=0
¢ =7 (Jus—Hd—CF.) (12)
where
A5 =1X54, Xss5, Xs6: Y0, Vs, Y (13

ﬂBT= Litsay Bps, Mpe, Hps, s, Las )
23, pp are nodal parameters defined on the inter-element
boundary.

A = area of a given element

A1=§”n

fe =j HPds+ §SCBHJTds

TH.ds, A*=2A4,—A

H= § nTHyids, C =D~ : material compliance

1= [j Hods |

2[.[,“; n’ds EIBC”5TdS éj‘“nerds:l
(14

Eliminating & from eq. (8) by using eq. (11) or eq. (12),

L HIds ) H,’ds]
N CA

element (@

Aor A : domain to be analysed
A P : body force vector
T . surface traction
y element @) vector

o

< boundary curve
C=Cs+C,

7

C, . boundary curve where
B surface traction is
bounda . c prescribed
oun .
ry element C. . boundary curve where

displacement is

multipliers introduced prescribed

Fig. 2 Finite Element Analysis of Two Dimensional Displacement Field
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the functional J7 (1) can be written in the following form:

(i) in case of hybrid displacement models (I)
Hey(w)=MHpy(d, ) (15
(i) in case of hybrid displacement model (II)

Hpyu)=Hpu(d, us) (16)
I,4(d,25) is the functional of mixed type, while I7,,
(d, po) is the functional of pure displacement type, and in
case of in-plane deformation problems they are illustrated in
the following Fig. 3.

For calculation of eqs. (11) and (12) the following
equations are used:

1 1 0 = yo)]
- S, i 124 an
Ha(z.g) [ 0 L1 G@-x)
x—xoi 0 i%(y—yo)
H.(z,y)=|------ 3— ------ r-i ------- 18
(U y—onT(r—xo)
W RN I
0 1 m ! A
(:1=4,5,6)

(o, yo): the centroid of a given element
Various terms in eqs. (11) and (12) are now given by

the following equations:

_ T _ T T
Al—isn H.ds LBm H.ds +Lcns H.ds
3
+[ niHds =304 (20)
CA

3
where 3[7,] is the (3 x 3) unit matrix, and

| 1 T Y
A =3 1 x y : area of AABC @n
1 x3 ys
Therefore A¥=A 22)
Similarly

H=§ nTHdds=I n.THddsﬁ—J‘ nsHuds
CcB AB BC

£ B B R 119
xO#H R’
where L ap, Lsc,Lca are length of three sides of AABC
respectively.
From the results of calculation, the following equations
can be obtained:
(i) hybrid displacement model (1)

except £.°

where L=CI (26-a)
(ii) hybrid displacement model (II)

except £.¢ (26-b)

e=—y,

A
where Un =Lus, 04, s, 05 ts, Vs ]
in which u,, consists of displacement vectors at 3 midside
nodes of a given triangle. (Fig. 3)
Substituting eq. (26-a) and (26-b) into eq. (7) it can be
concluded that
(@) Incase of hybrid displacement model (I)

”PH(")=”PH(d.18) (27-2)
(b) In case of hybrid displacement model (II)
”pH(u):”PH(um) (27-b)

Minimization of /7,y with respect tod, Az or u ,, yields the
following matrix equations:
(i) Hybrid displacement model (I).
0 | K:)[d fa
e - @
(i) Hybrid displacement model (II).
Kiapp=f£, (279

Us

s dT=|u,, o, ¥] : rigid body displacement
at the centroid 0
A= I.Xn Y, X5, Y5, X, YOJ

T
Hy= I.“o Uy, Us, Us, Us, '«'tJ

(a) hybrid displacement model (I') (b) hybrid displacement model (II)

+j nsTHddS =3 [2)] (23) Fig. 3 Two types of Hybrid Displacement Models for In-plane
€4 Deformation Problems.
Lc(xy—x,) E 0 E Lpc(xs—x,) E i LeaCxe—z4) ! 0
0 E Lu(y4_yo)i 0 :' Lac(ys_yu) E 0 ' Lu(ye*yo) (24)

Las(ye—yo) | Las(xe—20) | LacCys—yo) | Loc(ys—yo) | Lealys—yo) | Leal@s—2o)

llLAB i 0 i ISLBC E O ; IGLCA 1' 0
AR D _pfsmEC a D L8 A,
J= 0 : m‘L,qg= 0 : mSLBC! 0 ] mGLCA (25)
T TTTT T T T bttty inihabebti shaleie et B
myLag 1 [4Lap | MmsLsc "IsLse | msLca! lsLca
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4. Derivation of New Discrete Elements
Through Simple Matrix Transformation

In this section a method of derivation of new discrete
elements through simple matrix transformation will be
described.

Eq. (26) was derived by using the so-called hybrid
potential energy principle. This equation can be easily
derived by a simple matrix transformation follows:

First displacements at the midside nodes can be obtained by
using eq. (6) in the following form:

(wn =166, 1{ %} @8

Then solving eq. (28) with respect to e, the following

matrix equation can be obtained:
¢ =Eu, (29)

It is not difficult to show that eq. (29) is mathematically
identical to eq. (26) except f°although physical meaning of
both equations are different each other.

Once eq. (29) is obtained, the stiffness matrix of an in-
plane triangular element % ,, can be derived in term of nodal

parameters & as follows:

V‘=Lumrkmum

2

where
[ Lpr
km—f“ 5 E'DEds 30)

This matrix was first derived by Fraeijs de Veubeke by
using the complementary energy principle [4] and it is,
however, equivalent to the well-known CST element. Now a
set of 4 standard CST elements as shown in Fig. 4 is con-
sidered, and eq. (5) is assumed for the displacement field of
each element. Continuity condition of displacement on three

D

— i i i

&= I_E:, €y 7hs)

. strain vector of
i th element

di= l.ui, vy, X5J
: rigid body displacement
vector of i th element

Fig. 4 A set of four CST Elements

£ E B R

ﬁg iﬁ T e e R TGRSR

boundary edges 'AB, BC, CA requires the following relation
between strain & and rigid body displacement 4:
Ae=B4 [€3))
&’=€1,62.63,84
where 7= Le, ¢/, 7y
A"=d,, d>, d3,ds

T
d;' = u; v, xi1

(32)

The subscript 7 implies ¢ th element (=1, 2, 3, 4). Solving

eq. (31), & can be now expressed in term of 4 as follows:

e=A"Bd 33
and from which the following equation can be derived:
e1=G4 3

Therefore, the strain energy V¢ and stiffness matrix K
for the element (1) can be obtained as follows:

e 1 1
=hA ~?elDal = 4"K4 (35)

K=hA(G"DG) (36)
Kis (12 x 12) symmetﬁc square matrix and it is clearly
seen that this element is a reasonable generalization of the

rigid body-spring elements as mentioned before.

5. Conclusion
Using the infinitesmal displacement field in hybrid form,
it was shown that variational formulation of the finite
element method can be made in an unified way. It was also
discussed that a new discrete element of a lower order shape
function can be derived by applying simple matrix trans-
formation and partial approximation to a constant strain
element for a given problem.
(Manuscript received, October 24, 1978)
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