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Stress-Strain Behavior by a Simple Elasto-Plastic Theory
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BB Ic L3R 0d 3 RIREOE T —E4HM T USH)

by Fumio TATSUOKA*
A X R

3. Analyses of the Data of Triaxial Compression and Plane
Strain Compression Tests.

Green and Readers®"™ performed vertical and
horizontal triaxial compression tests on cuboidal samples
3.3 in. high, 3.0 in. long and 2.3 in. wide. They also per-
formed vertical and horizontal plane strain tests on the

samples of the same dimensions (Fig. 4). In the vertical
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Fig. 4 A rectangular sample and the definitions of stresses
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Fig. 5 Stess-dilatancy relations from triaxial compression tests by
Green and Reades (1975)
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** References are listed in the previous paper (Tatsuoka, F.
(1978), “Stress-strain behavior by a simple elasto-plastic
theory for anisotropic granular materials 1 (theory),”
Seisan Kenkyu, Vol. 30, No. 7).

triaxial compression tests the direction of the major principal
stress is vertical (z-direction in Fig. 4) and in the horizontal
tests that is horizontal (x or y-direction in Fig. 4). It is
reported that both loose and tamped dense sampes were
essentially isotropic with respect to strength, but were more
compressible in the horizontal direction (Fig. 7).

From the theory, the stress-dilatancy equation both for
the vertical triaxial compression tests (VTC) and for the
horizontal compression tests (HTC) can be derived as?

01/03=—K(de;+des)/de, 15)
Note that generally in the horizontal triaxial compression
tests, de,xdes. Fig. 5 shows that K=3.0 is appropriate
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Fig. 6 Hyperbolic stress-strain relationships from the data by Green
and Reades (1975)
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Fig.7 Effects of inherent anisotropy on the stress-strain relation-
ships by Green and Reades (1975) and theoretical curves
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both for VTC and HTC. Fig. 6 shows that the hyperbolic
functions can be applicable to both VTC and HTC. These
01/03=1+¢,/(0.540.35¢,) for VTC
01/63=1+¢,/(0.98+0.35¢,) for HTC

The solid curves in Fig. 7 represent Equation (16). Note that

are

ae

the parameter &i; is different between two equations. From
Equations (5) and (16), for VIC in which ¢.>0:=0y
€2, =6, = /(1o o~ 1D—f,,)
=dzy/((o:/oy—=1)—F.,)=¢./2
=61/2=0.5/2/((1 /61 /3,—1)—0.35) (1)
Therefore, .. =d,y=
and for HTC in which 0:>0,=a,
exy, oy, = /((1/0z/0:—=1)—= B =)

+dzy/((02/0y—1)—B )
=e,=¢,=0.98/((1/0,/5,—1)—0.35)
a8
When f::=8:y=F0 =0.35 isassumed,
Aaz +dzy=0. 98 19

Here the parameters representing inherent anisotropy a
and a’ can be defined as
A=ez/Ayr=Aay/Ary, & =yr/d g = zy/ sz
Q0)
Note that @ ..=d.y, dyr=dzy, Lyz=ULzyand Lyz=Uxz.
If a = a’ is assumed, the values of a and a’ can be obtained
from Equations (17), (19) and (20) as
a=a =0.65 @n
The measured values of b for the vertical plane strain
test (VPS) and for the horizontal plane strain test (HPS) by

@ =0.25and f.;=f:y=B0 =035
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curves for the b-values in Fig. 8 were obtained as follows.

7%

The intermediate principal strain increment de, is derived

by the theory as
déz :dEzlz "w‘déz23 (22)
From Equations (6), (7), (8), (9), (10), (11) and (22),
de;=—1/K06,/0, 'dnz/(l_ﬂxz(m/ﬂz —1))

—1))?*-d(a,/02)
a2y /(1 —F23(02/05—1))% - d (02 /05 )=0

(23)
On the other hand,
d(01/02>:1/(02/03)‘d(al/ﬂa)
—(01/03)/(a2/03)* -d(a;/05)  (24)
From Equations (23), (24),
_ 0./0
4020 =6 1) o 3, )T ‘darfos)
+K(d23/dlz)‘((1_‘/912
° ’(Gx/ﬂz—l))/(l‘ﬂzs
° (02/03_1)))2
(25

For VPS, au/a;,
Bzy=Ho.

And for HPS, 23/ n=d g/, =a @ and F12=Fz:=fs
=B2y=po.

By the numerical integration using Equation (25), the

=dzy/dy=1/a and Pe=B0a=pfn=

relationship between  g,/0, and
obtained. With the step of d( 09,/05 ) =0.2 and with the
),=C 02/03 )0= 1.0, which
correspond to the test conditions employed by Green and

g,/og can be
01/03

initial values of (

Readers, several theoretical curves of the relationships

Green and Reades® are shown in Fig. 8. It can be noted 6 T T T
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Fig.8 Effects inherent anisotropy on the intermediate principal
stress in the plane strain tests by Green and Reades and

theoretical curves

Fig. 9 Stressdilatancy relationships of the
plane strain tests by Green and
Reades (1975) and theoretical curves
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Bo% &
between b= ( g,—0; ) /( 01—0ds)and 0, / g5 were
calculated for the several combinations of @, @, foand K.
These theoretical curves are presented in Fig. 8. For K=30,
a=a =0.65 and f, = 0.35, the curve 3 should be compared
with the b-value for HPS and the curve 9 should be compared
with the b-value for VPS. Note that for the isotropic material
of @ =a’ =10, both curves 3'and 9 become the same one
(the curve 6). It may be seen that the difference of the b-
value between VPS and HPS can be seen between the two
theoretical curves 3 and 9. The theoretical curves for K =
3.75,a=d =0.65 and 8, = 0.30 and 0.35 for VPS are the
curves 7 and 8. It may be seen that-the effects of 7, on
the theoretical value are relatively small and that even for
K =3.75,a=a"=0.65 and f, = 0.30 or 0.35 the theoretical
values of b can be compared well with the measured values

both for VPS and HPS.

The theoretical relationship between 01/ 03 and des [
de; for the plane strain tests can also be derived and com-
pared with the data in Fig. 9. For the vertical plane strain
tests (VPS), s /ct12 =2y /@2z= 1.0 and 1z =P 22 =Pra= Bzy
=P and for the horizontal plane test (Hps), @13/@iz =dzy
Jtze=d and Pr2=fze=F1=Pz=Fo
(Generally, fr.%fzxfo can be possible).
As it was found that the effects of the values of 2" and S,

in this case

on the theoretical relationship are negligible for the range of
a=d = 065~10 and f=0.30~035, only the curves for a=
a’=1.0and f,=0.35 and for K =3.0 and 3.75 are presented
and compared with the measured values as in Fig. 9. It is
oBvious that K = 3.75 is more appropriate than K = 3.0.
This means that, following the theory presented, K should be
considered to be affected by the b-value, with K being larger
for0<5<1 thanfor b=0or 1.
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Fig. 10 Effects of inherent anisotropy on the stress-strain relation-
ships of the plane strain tests by Green and Reades (1975)
and theoretical curves
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The theoretical relationships among 6,/063,6  and
v both for VPS and HPS were derived and compare with the
measured values as in Fig. 10, In this procedure, it was
found that 8, = 0.30 is too small for fitting the theoretical
curve to the measured values and 4, = 0.318 was employed.
The difference between two theoretical curves is due to
the difference of @ij . For VPS,a.,=d,y=a,=0.25,but
for HPS
be seen from Fig. 10 that the difference of the stress-strain
relationships between VPS and HPS can be duplicated
by the theory adopting the proper anisotropic parameters

oz =do/a-d  and  dz=d./a .ltcan

aand @’
4. Induced Anisotropy by the Theory
To simply describe the induced anisotropy by the theory,
an idealized inherently isotropic material was assumed. This
maerialhas  K=3.5, F;;=10,a;;=03 £,;=0.3
with these values being not affected by the b value and the
direction of 0:. And each yield function f;; is assumed to
be independent of the others. Thus, the yielding and harde-
ning properties of each idealized two dimensional slipping
are assumed to be independent of the others. The yield
loci on the g ,+0, +0 ;=constant plane are shown in Fig. 11
forg;/o;= 2, 4and 6. The angle 0 is defined as the value
from the o0: -axis as shown in Fig. 11. Assume that this
material is firstly sheared at § = 0° wheres, =g and g, =03=
orup to R = 61/03 =30,then reloaded to R = 0.0. The
stress-strain relationships during this procedure are shown in
Fig. 12. Note that at the stress point C after loading and
reloading of A — B — C, f.z=/:y= 3.0 and the other yield

functions fij are 0.0. Then assume that this material
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Fig. 11 The yield loci on the 0y + 0y + 0, = constant plane of the
theory in the case of Fy; = 1.0
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Fig. 12 Stress-strain relationships at first load’ing at 6=0°
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Fig. 13 Stress-strain relationship at reloading at § = 0°
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Fig. 14 Stress-strain relationship at reloading at 6 = 30°
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Fig. 15 Stress-strain relationship at reloadiné at 0 = 60°

isreloaded as C — D —FE at the various values of ;0°,
30°, 60°, 90°, 120°, 150° and 180°. The calculated stress-
strain relationships for various values of 6 are presented in
Figs. 13 through 19. It can be seen from these figures that
the response at reloading is considerably affected by the
value of §. Note that the deformability increases with in-
creasing §. And it was found that the effects of the first
loading at § = 0° remain by 6 = 90° but the stress-strain
relationships at ¢ = 120°, 150° and 180° are same with that
of the virgin sample which does not have the stress history of
A—B—C - It may be seen from the above that the
‘anisotropy induced by the stress system can be modeled
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Fig. 16 Stress-strain relationship at reloading at 8 = 90°
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Fig. 17 Stress-strain relationship at reloading at 6 = 120°
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Fig. 18 Stress-strain relationship at reloading at § = 150°
:%; 5{
E =, ¢ 4 E e =ey=g, E

6=180" (TE)

Ial:?.u,fo,,o,:a,‘ \{C

-10-8 -6 -4 -2 ‘0 2 1 6 8 10
-5, €(%) (%)

Fig. 19 Stress-strain relationship at reloading at 8 = 180°

by this theory. But it is necessary to modify this theory
based on the experimental data.
5. Conclusions

An elasto-plastic theory incorporating the anisotropic
yield functions, the plastic poter{tial functions and the
empirical hardening functions which involve the parameters
expressing inherent anisotropy has been presented. This
theory is based on the postulate where actual principél
strains are results of linear summation of two strain
components in the idealized two dimensional slippings
proposed by Matsuoka®). It was found that the inherent
anisotropy and the stress-system induced anisotropy can be
modeled by this theory. (Manuscript received, Apri 13,1978)
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