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Summary

In the field of structural engineering, it is a common
practice to idealize real structures as composed of beam and
plate elements. Ships, tall buildings, bridges, aircrafts etc.
are typical examples of such structures. In these cases, the
effects of shear deformation can not be neglected. In this
note a new beam elements is proposed which consists of two
rigid bars connected by a rotational spring and a shear
spring. By simple numerical examples it will be illustrated
that the effects of shear deformation on a beam bending

problems can be easily handled.

1. Theoretical Basis
1. 1 Stiffness matrix
Recently one of the present authors proposed a new
discrete model for analysis of solid mechanics problems.
The general stiffness matrix of this model is a (12 x 12)
symmetric matrix expressed by the displacement of the
centroids in two rigid bodies under contact. The new beam

bending element is shown in the following Fig. 1-a and the
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Fig. 1 A new beam element
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Table 1. The bending stiffness matrix of a beam element including
effect of shear deformation
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corresponding stiffness matrix which includes the effect
of shear deformations is given by the Table 1.
For calculation of the spring constants 2, and k;, the

following formula can be used:

_ _2E 26
k= 737, k= 57 (D

’

For convenience of further analysis the nodal displacement
vector {Ug )= _UiG, @1 Usc, (ﬁzf
will be transformed by the following matrix to

{ul= o Uiz Urr, Uz JT
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or

{ug}=(m{u}

Now K  can be transformed into K by the following
equation:
(K)=(IM"(K) (M (3)

and finally (K} is given by the following equation:
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1. 2 Initial stress matrix and mass matrix
A pair of buckled beam elements under axial com-

pression P is shown in Fig. 1-b.
Potential Wof this compressive force P is obtained in the

following form:

P(ulL—u0)2+ P(”z‘um)z

W==—""17, Iy

(5)
+ P(ulk‘_uu)(uz ‘uo)
I+,

Then, it is not difficult to derive the following initial stress

by applying Castigliano’s Theorem.

matrix Kg

(K:)=P (6)

In the same way the consistent mass matrix of a given beam

bending element is obtained in the following form:

2h L 0 0
! 21 0 0
![M]:r_A 1 1
6g| 0 0 20, I
0 0 la 20
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1.3 Yielding function and constitutive equation
In elastic range the incremental form of the stress-
strain relation is given as follows:

{ds}=(D*){dE}

where IR
A N 0
N\
(D) = ki (8)
o .
N I3 \
Let plastic potential and plastic strain increment be
Sf(si)=1

taen=i{ZL} iy (9
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Then the constitutive equation in the plastic range can be
expressed as follows:

{ds}= (D) {dE}
where

(D)= (ki )=[D*)— (D*Y{af/ 8s) 0/ 3s. (D)

of/ ds,(D){af/os}
10

Also, the unloading condition occurs when

Of /s 1 (D*I{dE}
WOf/as, (DY {af/ds}

1D

Observing, that the denominator of eq. (11) is always posi-
tive and using eq. (8), (9), eq. (10) and eq. (11) can be
rewritten as

1
kif=kidii— sy filikik

12)
fi=0f/3s;
Sfikidei <0 (13
In the present problem,
(14)

FM, F)= ( TA;;)@( F":)Z

where M, is the full plastic moment and F, is the yield
shearing force. And egs. (12) and (13) can be given as

follows:
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1. 4 Dynamic response analysis of a cantilever subjected
to a prescribed ground motion

For simplicity, effects of large deflection, rotatary

inertia are not considered in this analysis. Furthermore,

effects of damping was neglected for the time being. Then,

the equations of motion for this analysis are expressed in

the incremental form as follows:

(a) (dit+ (K du}=(aF @)} (D
M M- dits+diig ) [Ku K2 dus+dia
Mz M. dils ! Kz Koo dus
dr(t)
= 18
- lare))
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where, #s : the quasi-static displacement

uq : the displacement due to the inertia force
us: the support displacement

It will be noticed that Newmark’s # method is employed
for integration of eq. (18).

2. Numerical Examples

For verification of effectiveness of the new element
introduced, a series of numerical analysis have been
conducted.  Fig. 2 is theresult of bending analysis of a
cantilever beam under a concentrated load at the tip.

As will be seen in Fig. 2, the present solution is in good
agreement with Timoshenko’s and Kawai & Fujitani’s so-
lutions for static displacement analysis.

Fig. 3 shows the effects of shear deformation on the natural
frequency of beam bending vibration, from which con-
vergency of numerical solutions can be seen. Fig. 4 shows
the schematic drawing of calculated natural modes from
which effects of shear deformation can be clearly seen.
Fig. 5 show comparison of the natural modes of beam
bending vibration with and without effects of shear deforma-
tion.

The effect of shear deformation on the natural frequencies
of a simply supported beam is shown in Fig. 6.

Fig. 7 shows buckling load analysis of a compressed column
in comparison with tv.vo solutions given by S. P. Timoshenko.
Lastly, Dynamic collapse of a cantilever column subjected
to a prescribed sine wave ground motion is analyzed.

Fig. 8,9, and 10 show the result of this analysis, from which
it can be seen that the shearing force plays a significant
role in dynamic collapse analysis. Generalization of this
dynamic collapse analysis under arbitrary seismic motion of
the ground is now under way,
3. Conclusion

In this note it was shown that the effects of shear
deformation on the beam bending problems can be easily
taken into account in the new discrete element analysis
which was proposed by one of the authors. Extension of
the present theory to the bending problems of plates and
shells will be straightforward. Finally the authors would
like to express their sincere appreciation to Mr. Yutaka Toi
for his kind assistance and valuable discussions in preparation
of this manuscript. (Manuscript received, February 21, 1978)
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Fig. 2 The effects of shear deformations on static
displacement at free end of a cantilever beam

Fig.3  Convergency characteristics of natural frequency of beam
bending vibration
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Fig. 4. The natural modes of beam bending vibration of a
simply supported beam including shear deformation
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Fig. 5 Effect of shear deformation on the natural modes of beam
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Fig. 6 The effects of shear deformations on bending Fig. 7 The effect of shearing deformation on the critical load of a
vibration of a simply supported beam compressed cantilever column
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Fig. 8 Elastic response analysis of a cantilever

beam under ground motion

shear effect

Fig. 9 Dynamic collapse analysis of a cantilever
beam under ground motion

Fig. 10 Deflection shapes of a cantilever
beam under ground motion
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