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Stability Analysis of Time Integration Operator

in Problems of Visco-elastic Wave Propagation
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1. Introduction

A scheme to incorporate rate-dependent consti-
tutive equation into wave propagation problems
is proposed. This scheme is based on the appli-
cation of the Newmark’s relation to the derivation
of incremental stress-strain relation, and enables
us to get the incremental stiffness matrix .used in the
finite element method. The analysis method is
exemplified with wave propagationr in Voigt solid,
and the result is verified in comparison with the
relevant analytical solution. Direct time integration
operator should be examined in the case of elastic
system with damping, since the Newmark‘s'operator
gives rise to instability in certain circumstances.
The stable limit of the time increment is given
herein as the result of the stability analysis, in
which both the properties of visco - elastic ma-
terial and the time integration operator are taken
into account.

2. Solution procedure of visco- elastic

wave propagation

Visco-elastic wave propagation is treated with
the aid of conventional procedure of the in-
cremental finite element ahalysis by means of incor -
porating the rate'-dependent constitutive equation
into the equation of motion and the direct time
integration. Newmark gave the following formulae®
for the relation between variable increment 4f and

its time derivatives of 4f and 4f,

Af=21ﬂ Af—f)+(1—ﬂ)dtf iy
1 Af _F o L
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where () means the differentiation with time.
When f is taken as stress and Bc as 1/4, the
relation of Eq. (1) coincides with the case of the
linear change of stress within time increment 4¢,
which was used successfully in the visco- elastic
stress analysis by use of the compliance expression
of the material propertyz). In the cases other than
1/4, the derivative to the second order is taken
into the computation.

The constitutive equation of linear visco-elastic
materials is expressed in a general form as
o+ pra+pad + -
and,

=qoe +q1é + g€+ 3
in a particular case of Voigt solid, as
og=Ee¢ +ye (4)
where ¢ and ¢ are stress and strain, E the Young’s
modulus and 7 the coefficient of viscosity. Substi-
tuting Eq. (1) applied to 4 'e into the incremental
form of Eq. (4) and expressing the rate increment
by the stress and strain increments, we have
4d9=Dde~F
D =E (1+¢/28:4¢) (5)
F=pn{é/28c— (1 -1/48c)4¢t%}
where r =7/E is the characteristic retardation
time of the material. Based upon the stress-strain
relation in form of Eq. (5), the equation of motion
is given below, for example, when one - dimensional
constant strain element of £ in length and con-

sistent mass matrix [m] are applied,

LT S}~ {arhee

where p is the material mass density, and {4f}
the incremental external force vector per cross -
sectional area of the bar element. Differently from
usual stiffness equation, D of the stiffness matrix
[k] and F are not material variable, but involve
the strain rate and acceleration in the particulr

case of Voigt solid and of the stress rate and
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Fig. 1 Stress wave propagation in Voigt
solid from impacted end
acceleration in cases of Maxwell body and so on.
Merging the above Eq. (6) into the overall system — Elastic A\f=g-5r/nm
. . =om/s
and solving the resultant equation by means of ---- Viscoelastic T =5x10-%
timewise step-by -step integration, we analyse the Bu=fc=1/6
p- by -step nteg . v - 20 4t = 4L NETB
one - dimensional wave propagation in the boundary E
and impact conditions under interest. In doing so, =
4
we. use again the Newmark’s integration operator 3 0
1
and transform Eq. (6) into the following form,
(] gl e = (o} + {7} e)
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Fig. 2 Wave front decay due to viscous
in which the acceleration increment is taken as damping in steel compared with elastic

the principal unkown variable. The parameter £
of the operator is distinguished by ¢ in Egs. (1)
and (2), and fy in Eq. (7).

Figure 1 shows the good agreement between the
analytical solution? of the stress propagation in
Voigt solid caused by the stepwise impact of con-
stant velocity V and the present analysis. Use is
made of Ac=Fy=1/6 so as to assume the linear
change of stress and strain rates within 4¢, and
T=At/r and L=4£/tVE/p are taken equal to 1/10
in the numerical solution. The broken line in the
figure is the stress rate that was not given in the
analytical solution. The computer program is so
advantageous that the arbitrary velocity profile
of the impact can be dealt with. The profile up
to V is given in approximate form of the error
function for T,=0.47 in the above example.

The decay of the elastic stress wave front is
shown in Fig.2 in the case that the viscousdamp -

ing of steel is represented by Voigt model of E=

stress wave
215 x 10* kg/mm? and t=5x 10"8sec?.  The
solid line in the figure corresponds to the elastic
wave front without damping, caused by low impact
velocity of V=5 m/sec attained after a short rise

time also in profile of the error function‘”.

3. Stability analysis of time integration

As seen in the preceding section, the present
scheme succeeds to trace.numerically the wave propa-
gation in Voigt solid when the parameters and
time increment are chosen appropriately. If fc is
taken larger than 1/6, the scheme is rendered
instable as shown in Fig. 3. This figure depicts
that the computation diverges sharply in the cases
of larger fc even when the same time increment
is used. The instability appears early with the

means that
5), 6)

increasing value of fc to1/4. It
this simple scheme requires stability analysis

with respect to the property of the element, through
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Fig. 3 Instability caused by inadequate choice
of parameter fA¢ and time increment

which the visco-elastic wave propagates.

For the purpose of the stability analysis, we
convert the nodal displacement vector { #} into
the eigen displacement vector {» } with the aid of
the transformation of {9 }={R]™'{u}, where [R]
is the orthonormal eigenvector matrix determined
from [m]™'[k]. After such a conversion , we have
the following individual equation for the ¢ -th

component of {v},

(wf ﬂAtZ)Av’— [(2 AT

+(1+£L A-gp N @
where w; is the pertinent j -th natural circular
frequency determined from the eigenvalues of [m]™*
[%]. Furthermore use is made of the strain - dis-
placement relation below in order to rewrite the
Li{u} 19)
vector term of F in Eq.{7) into the consistent form

to the stiffness matrix. Thus we have the funda-

6=é7|_—1

mental relation between the acceleration increment
and the current values of the rate and acceleration.
The amplification matrix of the displacement and
its time derivatives for a time step is derived on
the basis of Eq. (8) and the relation of Egs. (1)
and(2). Then equation () can be obtained, where
o =wfdt*/(1+fywPdt®). If any error is involved

1

1
logw L
Fig. 4 Stable domain for various values of
fc in case of fy=1/6
in»;, ;and P;, the error is magnified accordingly

to the amplification matrix of Eq. (1l. The von

Neumann condition” states that the integration

scheme is stable, if the absolute value of every
eigenvalue of the amplification matrix is equal to
or less than unity. As seen in Eq. (00 the three
eigenvalues 1 are a function of the parameter Ac used
in the approximation of the incremental constitutive
equation and' Ay in the direct time integration,
in addition to the time increment and material
constants, as follows,

A= 1 and A+=VAZ-(1 —9a/D4t) a
where  A=1-(a/2){1+(/D4t) (1-1/28:) }.
Figures 4 and 5

shaow the stable domain of 4¢
calculated so that the condition of |1|< 1, corre-
sponding to the largest w;, is kept for fu=1/6
and 1/8, respectively. It is seen that, for a certain
value of L=¢/7VE/p decided by the element length
in choice and the material constants, larger. value
of T=4¢/t than that on the limit line indicated
by the parameter fc results in the instability of
the time integration, because A is. larger than
unity in the domain above the limit lines, The

stable domain for fy=1/8 is narrower compared

py T At{l—%—ﬂu(2—ﬂ—%m)} AL E-Lp 1+ 2T U‘F)}] vi)"
bit= |0 1-2-Q- zﬂomt At[l—i{HDM(l—Zﬂ—)}] i 10
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with that of fy=1/6. In case of elastic material
of D=Eand F=0, it is well known that the time
integration is stable unconditionally when gy is
taken equal to or larger than 1/4. Similar stable
domain is obtained in case of Ffy=1/4 with these
figures, and the integration is also stable uncon-
ditionally when fc=<1/4, but is stable conditionally
when fc>1/4 in the case of visco —elastic
wave propagation analysis by use of fu=1/4.
This is different from the case of elastic wave
propagation. The numerical examples illustrated in
Figs.1l and 3 are carried out correspondingly to
the time increment shown by the solid circle ‘in
Fig. 4, giving rise to stable integration for fc=
1/6 and instability for Bc=1/5 and Pc=1/4
because that the point lies above. the limit lines
for the larger fc.

1 T : T

instable

logwL
Fig. 5 Stable domain for various values of fc
in case of fy=1/8
4. Concluding remarks
The stability of the time integration related with
the wave propagation in Voigt solid can be analysed
as described in the preceding section. As for the
other visco- elastic materials represented by Maxwell
body and three- parameter models, the present
scheme is applicable to the wave propagation
analysis , since all the time derivatives of stress
and strain are bounded to the second order, and
Egs. (1) and (2) are satisfactory for the treatment.
When we proceed to deal with four - parameter
models and so on, it is desirable to devise the

similar incremental relation with Egq. (2) to the

higher'order , The stability analysis with respect to
Voigt solid is rather simple, because that the
additional term F , which appears in the incremental
stress- strain relation, is expressed by strain rate
and acceleration only. On the other hand, when
Maxwell body and three- parameter models are.
concerned, the existence of stress rate and accel-
eration in the term F necessitates further con-
sideration in the derivation of the amplification
matrix from the viewpoint of the stability analysis.
It should be noted that error, that creeps in from
the external force vector {4f},.is omitted in Egq.
(0, but the contribution is included implicitly
in form of the error in the displacement terms.

Voigt solid lacks spontaneous elastic resilience.
This means that any stepwise wave front is not
formed in the solid as shown in Fig.1, and that
the apparent propagation velocity is infinite. [n the
sequel, there is difficulty in the treatment of the
wave front in Voigt solid, when Laplace transform
is applied to the analysis, on the contrary to the
case of the other visco-elastic materials having the
spontaneous elasticity. The simple scheme presented
herein overcomes the difficulty and results in unified
treatment of the wave reflection and transmission
on the boundary between adjacent different ma-
terials, together with the ability to take into account
various profiles of the impulsive forces and impact
velocities.

The author wishes to express his sincere thanks
to Mr. H. Shimooka for his eager assistance in
carrying out the numerical analysis of the wave

propagation.(Manuscript received November 28, 1977)
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