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Abstract

Stochastic resonance in a coupled FitzHugh-Nagumo equation with a propaga-

tional time delay is investigated. With an appropriate set of parameter values, i.e.,
the frequency of the periodic input, the propagational time delay, and the coupling
strength, a deterministic firing induced by additive noise is observed, and its de-

pendence on the number of neurons is examined. It is also found that a network
composed of two assemblies shows a competitive behavior under control of the noise

intensity.
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1 Introduction

Recently, Stochastic Resonance (SR) has attracted considerable attention.
This is a phenomenon where a weak input signal is enhanced by its back-
ground noise (for reviews, see Dykman et al., 1995; Gammaitoni et al., 1998;
Wiesenfeld and Jaramillo, 1998).

Particularly, SR in neural systems has been widely investigated by numerous
authors. Theoretically, SR in a single neuron model, e.g., the leaky integrate-
and-fire model (Bulsara et al., 1996; Shimokawa et al., 1999), or the FitzHugh-
Nagumo model (Longtin, 1993; Wiesenfeld et al., 1994), has been often an-
alyzed, and it has been proposed that the biological sensory systems utilize
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their background noise to improve their sensitivity to external inputs. Experi-
mentally, it is observed that mechanoreceptor cells of a crayfish with additive
noise (Douglass et al., 1993) and caudal photoreceptor interneurons of a cray-
fish with intrinsic noise (Pei et al., 1996) show the property of SR. In these
works, the background noise is implicitly regarded as due to thermal fluctu-
ations, but there may be more origins of fluctuation in neural systems, e.g.,
internal chaos, or numerous synaptic inputs (Mato, (1998, 1999); Sakumura
and Aihara, 1998). With such noise sources, SR may play more functional roles
in neural systems, e.g., the information processing in the brain. To treat such
dynamics, SR in coupled systems must be considered, and some new features
have been reported. Collins et al. (1995) investigated the dynamics of the en-
semble of FitzHugh-Nagumo equations and showed that controlling the noise
intensity is not required. Kanamaru et al. (1999) considered SR in a diffusively
coupled FitzHugh-Nagumo equation, and investigated the dependence of the
system on the coupling strength and the number of neurons.

In the present paper, we investigate a coupled FitzHugh-Nagumo equation
with propagational time delay, which models the time for a pulse to propa-
gate on the axon from the pre-synaptic neuron to the post-synaptic neuron. In
Sec. 2, a coupled FitzHugh-Nagumo equation and the correlation coefficient
which measures the correlation between two pulse trains are defined. In Sec. 3,
the behavior of the system without the propagational time delay (Kanamaru
et al., 1999) is briefly summarized. In Sec. 4, the system with a propagational
time delay is considered. With an appropriate set of system parameters, a
deterministic firing induced by additive noise is observed, and its dependence
on the number of neurons is investigated. In Sec. 5, we construct a network
composed of two assemblies and examine a competitive behavior in the net-
work by controlling the noise intensity. Conclusions and discussions are given
in the last section.

2 Coupled FitzHugh-Nagumo equation and correlation coefficient

In the present paper, we treat a coupled FitzHugh-Nagumo (FN) equation
with a propagational time delay, written as

τ u̇i =−vi + ui − u3
i /3 + wgi(t) + S(f ; t) + ξi(t) (1)

v̇i = ui − bvi + a, (2)

gi(t)=















∑

j 6=i

1

N − 1
(uj(t− dp) − ui(t)) if N ≥ 2

0 if N = 1

, (3)
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S(f ; t)=











I if t ≤ h mod f−1

0 otherwise
, (4)

〈ξi(t)ξj(t
′)〉= Dδijδ(t− t′), (5)

for i, j = 1, 2, · · ·N , where τ = 0.1, a = 0.7, b = 0.8, u i is the fast variable
which denotes the internal state of the i-th neuron, vi is the slow variable
which represents the refractory period, w is the coupling strength, g i(t) is the
coupling term, S(f ; t) is the periodic pulse train with height I, width h, and
frequency f , ξi(t) is Gaussian white noise with intensity D, δij is Kronecker’s
delta, and dp is the propagational time delay from the j-th neuron to the i-th
neuron. Note that the noises for different neurons are statistically independent,
the coupling strengths and the propagational time delays are uniform in the
network, and the coupling is diffusive, i.e., for a large enough w and dp = 0 the
neurons synchronize each other. With the above configurations, a single FN
model shows a characteristic of an excitable system, namely, it has a stable
rest state, and with an appropriate amount of disturbance it generates a pulse
with a characteristic magnitude of height and width. The parameters of the
periodic pulse train S(f ; t) are set as f = 0.1, I = 0.15, and h = 0.3. Note
that the height I is so small that no neuron generates a pulse without noise.

By the symmetry of the system, the behaviors of all the neurons are statisti-
cally identical, and we regard the internal state u1 of the first neuron as the
output of the network. Let us define the correlation coefficient C between the
input and output pulse trains (Palm et al., 1988). Firstly, to incorporate the
effect of the firing delay df of the FN model, which is the time lag of firing
since an input pulse is injected, the shift t → t − d f is applied to the time
series of the output pulse train. Then the time series are divided into n bins
of the width ∆, and the number of pulses in the i-th bin is denoted as Xi

and Yi for the input and output pulses, respectively. Note that the width ∆
is sufficiently small so that Xi and Yi take the value 0 or 1. Then X =

∑

Xi

and Y =
∑

Yi are the numbers of input and output pulses respectively, and
Z =

∑

XiYi is the number of coincident firings. The correlation coefficient C
between the input and output pulse train is defined as

C =
Z − (XY )/n

√

X(1 − X/n)Y (1 − Y/n)
∈ [−1, 1]. (6)

Consider the periodic input with the frequency f such that

Xi =











1 if i∆ mod f−1 < ∆

0 otherwise
. (7)

If the output series Yi is identical with Xi, namely, if the relation Xi = Yi is
satisfied for all i, the correlation coefficient C takes the value 1. If the output
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series Yi has no correlation with Xi, the correlation coefficient C takes the
value 0 in the large n limit.

3 The case of dp = 0: Stochastic resonance in the coupled system

In this section, we briefly describe the results for dp = 0 (Kanamaru et al.,
1999). As previously mentioned, the frequency of the input pulse train is fixed
at f = 0.1. Firstly, the system with N = 2 is examined for simplicity.

The dependence of the correlation coefficient C on the noise intensity D is
shown in Fig. 1, for the coupling strength w = 0, 0.1, and 0.5. For w = 0, the
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Fig. 1. The dependence of the correlation C on the noise intensity D for the prop-
agational time delay dp = 0.

system reduces to a single neuron, and the correlation coefficient C shows the
characteristic of Stochastic Resonance, namely, the existence of an optimal
noise intensity D0 which maximizes C. For w = 0.1 and 0.5, it is observed
that D0 increases with the increase of w.

In Fig. 2, the dependence of D0 on the coupling strength w is investigated nu-
merically. It is observed that the optimal noise intensity D 0 increases mono-
tonically with the increase of w, and it converges to about 0.0028. In the
following, this limit value is denoted by D0(∞).

To consider the dependence of D0(∞) on the number N of neurons, we in-
troduce x(i) = (ui, vi)

t, ξ(i) = (ξi, 0)t, and a two dimensional diagonal matrix
A with diagonal components A11 = 1 and A22 = 0, we rewrite the coupled
FitzHugh-Nagumo equation as

ẋ(i) = F (x(i)) + wGi(t) + ξ(i), (8)
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Fig. 2. The dependence of the optimal noise intensity D0 on the coupling strength
w for the propagational time delay dp = 0.

Gi(t) =



















A





1

N − 1

∑

j 6=i

(

x(j) − x(i)
)



 if N ≥ 2

0 if N = 1

, (9)

〈ξi(t)ξj(t
′)〉 = Dδijδ(t− t′), (10)

i, j = 1, 2, · · · , N,

where F (x(i)) describes the dynamics of i-th neuron. Let us define the mean
value X and the deviation δx(i) from X as

X =
1

N

∑

i

x(i), (11)

δx(i) =x(i) − X, (12)

then, for large w, X and δx(i) obeys

Ẋ =F (X) +
N

∑

i=1

ξ(i)

N
+ O(|δx(i)|2), (13)

δ̇x
(i)

1 =− w

(1 − N−1)
δx

(i)
1 + ξ(i) −

N
∑

j=1

ξ(j)

N
, (14)

δ̇x
(i)

2 = δx
(i)
1 − bδx

(i)
2 , (15)

where b is the parameter of the FN model (2). Thus the variances of δx
(i)
1 and

δx
(i)
2 are estimated to be

〈(δx(i)
1 )2〉 ' (1 − N−1)2

2w
D, (16)

〈(δx(i)
2 )2〉 ' 〈(δx(i)

1 )2〉
b(b + (1 − N−1)−1w)

∼ 1

w2
. (17)

Eqs. (12), (13), (16), and (17) indicate that the dynamics of each neuron for
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large w approaches the dynamics of one neuron with the scaled noise intensity
D/N . So, between the optimal noise intensity D

(N)
0 (∞) for N neurons and

D
(1)
0 (∞) for one neuron, the relation

D
(N)
0 (∞) = ND

(1)
0 (∞) (18)

holds.

In Fig. 3, the numerically obtained optimal noise intensity D 0(∞) is plotted
against the number N of neurons, where D0(∞) is estimated with the coupling
strength w = 1.0, which is large enough for the saturation of D0. A good
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Fig. 3. The dependence of the optimal noise intensity D0(∞) on the number N of
neurons for the propagational time delay dp = 0.

agreement with the analytical result (18) is observed.

4 The case of dp 6= 0: Noise-induced deterministic firing

In this section, the system with dp 6= 0 is treated. Firstly, the system with
N = 2 is considered for simplicity. The frequency of the input pulse train is
fixed at f = 0.1 again.

For dp = 10, the firing at some moment may affect the firing in the next period
of S(f ; t) since 1/f = 10. The dependence of the correlation coefficient C on
the noise intensity D for w = 0, 0.12 and 0.16 with dp = 10 is shown in Fig.
4. Similar to the case of dp = 0, the correlation coefficient C has a peak at an
optimal noise intensity D0 for w = 0, and D0 increases with the increase of w.
But it is also observed that the peak value of C decreases with the increase of
w, unlike the case of dp = 0. This difference of the behavior for dp = 0 and 10
may come from the fact that the synchronized solution u1(t) = u2(t− dp) and
u2(t) = u1(t − dp) cannot lock to the input pulse train S(f ; t) for dp = 10.
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Fig. 4. The dependence of the correlation C on the noise intensity D for the prop-

agational time delay dp = 10.
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Fig. 5. The dependence of the correlation C on the noise intensity D for the prop-

agational time delay dp = 10 − df ∼ 9.7.

Next, we treat the case with dp = 1/f − df ∼ 9.7. Note that in this case an
output pulse, which fires with the delay df after an input pulse is injected,
can synchronize with the next input pulse. The correlation coefficient C for
w = 0, 0.12, and 0.16 with dp = 9.7 is plotted in Fig. 5, where each C shows the
existence of the maximum. Note that the maximum of C for w = 0.12 reaches
almost 1, which indicates that for D ∼ 0.001, noise-induced deterministic
firing (NIDF), namely, a 1:1 phase locking between the input and the output,
takes place. For w = 0.16, this locking behavior is broken and the maximum
decreases to about 0.1.

To investigate the range of w where NIDF takes place, the correlation coef-
ficient C with the fixed noise intensity D = 0.001 for dp = 0, 9.7, and 10 is
plotted against w in Fig. 6. It shows that the coupling strength w which en-
ables NIDF is around w = 0.12 for dp = 9.7. NIDF also takes place for N > 2
with dp = 9.7 and w ∼ 0.12 (data not shown), but its optimal noise intensity
D0 has a dependence on the number N of neurons. D0 is shown as a function
of N in Fig. 7. The monotonic increase of D0 with N , and the convergence of
D0 to about 0.002 is observed.
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Fig. 6. The dependence of the correlation coefficient C on the coupling strength w

for dp = 0, 9.7, and 10 with D = 0.001.
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Fig. 7. The dependence of optimal noise intensity D0 on the number N of neuron
for the noise-induced deterministic firing.

5 Competition of two assemblies under noise

Using the preceding properties of SR in a coupled FN equation with a prop-
agational time delay, we construct a network composed of two assemblies, in
which a competitive behavior takes place by controlling the noise intensity.
Firstly, let us define the superimposed periodic pulse train (SPPT) as

T (t) = max
1≤i≤m

S(fi; t), (19)

where m is the number of periodic components, and fi is the frequency of each
periodic component. In the following, we set m = 2, f1 = 0.1, f2 = f1/

√
2,

and I = 0.15. Note that the height I of T (t) is so small that it cannot make
each neuron generate a pulse without the noise. The SPPT T (t) is injected
to the network composed of two assemblies, shown in Fig. 8. The assembly
1 is composed of two neurons, namely, Eqs. (1) and (2) with N = N1 = 2,
dp = d1 ≡ 1/f1−df and T (t) instead of S(f ; t), and assembly 2 is composed of
eight neurons, namely, Eqs. (1) and (2) with N = N2 = 8, dp = d2 ≡ 1/f2−df
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Fig. 8. A network composed of two assemblies.
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Fig. 9. The dependence of the correlations C1 and C2 on the noise intensity D.

and T (t) instead of S(f ; t). Note that there is a neuron which belongs to
both assemblies simultaneously, and we regard its output as the output of the
network. The coupling strength w is set at w = 0.12 so that NIDF takes place
with a suitable noise intensity. By the definition of the delay d 1 and d2, it is
expected that NIDFs with frequency f1 and f2 take place in the assembly 1
and 2, respectively. Then two correlation coefficients C1 and C2 are defined
as the correlations between the output pulse train of the network and the
periodic pulse train S(f1; t) and S(f2; t), respectively. A large C 1 indicates
that the observed neuron is dominated by the synchronized oscillation in the
assembly 1, and a large C2 indicates the domination of the assembly 2.

The dependence of C1 and C2 on the noise intensity D are shown in Fig. 9,
which indicates that the optimal noise intensity D0 is D0 ∼ 0.001 for C1,
and D0 ∼ 0.002 for C2. Note that C1 is suppressed when C2 is around the
maximum value. The difference between optimal noise intensities for C 1 and
C2, is caused by the fact that the optimal noise intensity D0 depends on the
number N of neurons (see Fig. 7).
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The above phenomenon shows some new features of noisy pulse neural net-
works. The dominant frequency of the SPPT T (t) in the network is controlled
by the noise intensity. In other words, the SPPT T (t) is separated to each
periodic component by controlling the noise intensity. This implies that the
fluctuation in a network might be used as a parameter of its dynamics. Sec-
ondly, the synchronously oscillating assembly is rearranged by controlling the
noise intensity. For example, for D ∼ 0.001, the observed neuron belongs
mainly to the assembly 1 in which each neuron fires synchronously with fre-
quency f1, and for D ∼ 0.002, it belongs to the assembly 2 in which the
periodic firing with frequency f2 is dominant. These new features suggest that
the fluctuations in the brain might have a functional role in the information
processing.

6 Conclusions and discussions

Concerning SR, new features of the noisy pulse neural network with propaga-
tional time delay are reported. When the propagational time delay dp and the
frequency f of the periodic input pulse train satisfy the relationship dp = 1/f ,
an optimal noise intensity which maximizes the correlation coefficient is in-
creased with the increase of the coupling strength, and the peak value of the
correlation coefficient decreases with the increase of the coupling strength. For
the delay of propagation dp = 1/f − df dependent on the firing delay df , a
deterministic firing is induced at the optimal noise intensity, which increases
with the increase of the number of neurons.

Using these properties, a network composed of two assemblies is constructed.
It separates a superimposed periodic pulse train, and its dynamics can be
controlled by noise, In this network, the rearrangement of the synchronously
oscillating assembly by controlling the noise intensity is observed.

If the environment in the brain where each neuron operates is highly fluctuat-
ing due to thermal noise, internal chaos, numerous synaptic inputs, or other
possible sources of noise, the above results suggest that such fluctuations might
play a similar role as a parameter of dynamical systems, and be significant for
the information processing in the brain.
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