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4ABC can be given by the following equation

Summary . (y_yl) 9, o

Recently one of the author has proposed a new v=v,—(z—mx) 6,
physical model for bending analysis of beam and where the rotational displacement 0#; is assumed
plate structures. The same idea is now extended to be very small. After some loading, two plates
to finite element analysis of the plane strain are displaced to positions as shown in Fig.2.

problems. This element consists of rigid plates
connected with various types of springs and size
of the stiffness matrix of this element is only 3x3
and therefore considerable reduction of computa -
tional time can be expected in nonlinear analysis

of plane strain problems.
1. A New Physical Model in Plane Strain Problem

Consider two rigid plates which are connected

by three different types of springs k4,ks, and &, as

shown in Fig. L
Fig.2 Two plates positions after deformation

y The relative displacement of the edge AC in each
plate is given by 8y, 8y, and ¢.  Coordinates of
Al3) the mid point M of the edge AC is given by
D(s) 1 1
\—2(1'3"" Zs) 7(y3+ys))~
B(4) This point will be displaced to M' in 4 ABC
and M"in 4 ACD respectively after loading.
c(s) Coordinates of these points are given as
follows:
0
: on' =4 ((za+ s )+ 2us+ Cyatya) 1)
Fig.1 A New plane strain element 1
yu'=7{(ys+ys)+201*(x31+x51) 6}
Centroidal displacements of each plate is denoted 1 r(2)
by (w1, v1, 61) and (ua, vs, 82 ) respectively. oy’ =5 (2t 2s)+2us+(ysrtys) 02}
The displacements of an arbitrary point in .
Y Uwm :%{(y3+ys)+202—(xaz+xsz) 0:}
* Dept. of Mechanical Engineering and Naval where Tij =XTi— X, Yij =Yi— Y;
Architecture Institute of Industrial Science, —_—

Universtity of Tokyo. Therefore a vector M’M” is given by the
** Graduate Student, University of Tokyo following equations:
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(M'M’)x:—zl‘{ 2unt (y32+y52)02
_(y31+y51)01}

(M/M’)y:%{ 200 (xat ys2)0

+(x31+x51)01}

3

again the following notations are employed.

Uij— Ui —Uj»

Vij=—UV; —0Uj

Denoting an unit vector along the edge AC by

t before deformation as shown in Fig.1 displace-

ment component 3y of the vector )f'M” along the

edge AC can can be given as follows:

Sy=(MM", t)= #’ [2s3{2uan

35

+ (y32+ ysa) 0,— (y31+ ysn) 01}
+y53{2021‘ (l’32+ xsz) 0.
+(xatxa)6,}]

()

Similarly the displacement component 8y of the
vector M’M” perpendicular to the edge XC_ can be

given by the following equation:

8V2=| tXM'M’IZZ 4715‘2[1'53{22)21

— (2t xs52) 02+ (zatx)6,})

Relative angle change ¢ of the edges AC and

A’C’ is also obtained from following equation:
2

cosp = (t, t’)zl—%

where ¢/ is the unit vector along the edge A’ C-’

after deformation

1

2
135

2
% [Cusstuds) xsat+ (vsstvds) Ys3

+ Ussttds + v 53085 ] (6)

Now strain energy V to be stored in the spring
kg4, ks and k, after deformation will be given as

follows:
1 1 1
V:Ekdaa+7k,az+§k,go2 (@)

In view of (5),(6),(7) and (8)it is clearly seen that
the strain energy V is a quadratic function of u,,
vy, 8,1) and Cug, v, 62) and therefore applying
Castigliano's theorem, the following reaction force
vector R can be derived.

R = a = Ku (8)
where K is the stiffness matrix to be obtained

and u is the displacement vector given as follows:

—ysa{2u21+(y32+ysz) 02 u" =y, 0,0, u,0:0,) Q)
2
_(y31+ y51) 6.}] (5)
Table 1.
u, U 0, Uz ¥ I 0.
24y =25 (zat za) + ysa(ya + ys)
X, |k 2y p 2 1 53\ Za s1 3l Ya
1| R Yss s s 241,= 255 (Yt yse) — ysa( Tzt Ts2)
240 = — x5 (,ya.+y51) + yss(l’ax"" Zs1)
Yo | — Cka—kdxaayss kaxss ks ys 24n= — 2 (et 2a) ~yulynt ya)
_ — (k4 2s3du ka d1*+ ks 45"
M, kd!/ssdu ks xs3da + ks y534121) +k,1352 SYM.
Xa _(kdy532+ks1‘532) (kd*ks)l‘fﬂyss _(kdys_sdn kdy532+ks 1532
ks Ts3 4 )

Yo | Cka—ks)zsiyss

- (kdrsaz+ ks !/532)

ka xsadun+ ks yssdzl

- (kd—ks>xsay53 kq $532+ksy532

M.

<

k4 Ysa doo— ksxs3die

- (kd 53 daz
ks ysaAnz)

kydindnt ks dndiz
— ke L5’

kad+ ke 407
+kylas

- (kdysadzz

k, Ayt ks ys3d
—ks 253 d12) d Ls3dzz Ysadiz

The final form of the stiffness matrix is given

in the Table 1.

Spring constant k4, ks and k, are determined

in the following way.

Considering two plates

shown in Fig.3 the normal strains ¢; and shearing
strain y in these springs may be given by the

following formulae.
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3 This problem is a standard plane strain problem
6 in plasticity and it was studied by many investi—
gators for various cases of h/b ratios using the
s % so -called 'slip line theory".

5
Fig.3 Determination of the spring constant

Sy _ (14+v)(1-2v) gy,

4T Fd, T E(—w)
=(1+u)(1—2u)kd3,,
E(I—V)135
_ 8y w14k Sy
" “di+d: 2G E l3
or
by = E(l—V)las
T+ (-2 (di+dy)
k Els w0

TR ditdy)

And k, can be determined as follows:
The rotational moment M, of the spring & is

given by the following equation:

035
M¢=f2 ka(sp)sds =kr o

435

2
= Rl @

2. Some numerical examples on the elasto-
plastic plane strain problems
To show validty of this new element, elasto-
plastic analysis of the punch problem and a slit
notch specimen under tensile load are made.
(1) Punch problem
Punch problem of an elasto-plastic slab as

shown in Fig.4 is considered.

Pyvievy

Rigid Punch

e 24 —]

—
¥
[ - )
! *
2h
t 2b
e
phr At

Fig.4 Plane Strain Punch Problem

In present analysis a given material is ideal
plastic and the maximum shearing stress theory is
used as the yield criterion. Since the material is
assumed incompressible after yielding, the plastic
strain increment is purely shearing deformation.
Analysis was made for three different cases of h/b
ratios as follows:

(1) b= (2) h/b=2 (3 h/b=1

The load deformation curves obtained. assumed
mesh division and slip lines as well as computing
time (w. r.t. "HITAC 8700—8800 approximately
comparable to IBM360—195) are shown in Fig. 5,
6, and 7 .

It should be mentioned here that the rotational
component was neglected in this analysis so that
the size of stiffness matrices used were only 2x2

and yet the ultimate loads and slip lines obtained

p/2k
1.0F-—-
Ppn/2k=1.00
K
05k [ (1.00)
* exact solution N
slip lines
R S SR N
0.1 0.2 0.3 9/b
X102
Fig.5 Punch Problem (1) h/b=1
p/2
1.5+
1.0
pn/2k=1.23
0.5 (1.22)
1 1 1 1
0.1 0.2 0.3 0.4 0/b d.o.f. =66
X 1072 c.p.u.=6.0sec

Fig.6 Punch Problem (2) h/b=2
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p/2k ' |
d.o.f. =92 g
c.p.u.=23.7sec p/2k=0.844
3.0+
|
1.588
2.0r
. /2k= 2.66 (2.57)
P ( 2.402
[ D
1.0+
i / 2.584
‘ / /
\ /
/
2.657
0 1 1 1 1
0.1 0.2 0.3 0.4x10" /b
Fig.7 Punch Problem (3) h/b>=8.74
were in good agreement with the results obtained was made under the assumption of no rotational
by previous authors. displacement and the maximum shearing stress
(2) Elasto-plastic analysis of a slit notch tensile theory. The result obtained was extremely in good
specimen agreement with the result of previous investigators.

Analysis was made for the specimen as shown
3. Conclusion

in Fig.8. Elasto—plastic incremenal analysis
A new element suitable for nonlinear analysis of
1P plane strain problems is proposed in this paper.
/\V/v Results of numerical analysis on some simple
1 problems duly justified use of this element for

elasto - plastic analysis of complex plane strain

problems. The authors would like to express their
thanks to Messrs. K. Kondou and M. Watanabe

P for their valuable discussions.
(Manuscript received January 6,1977)
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