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of Solid Mechanics Problems
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Summary u=u; +0X(r—rg) (1)
where uc is displacement vector of the centroid,
A new discrete model for analysis of various O is the rotation vector and r, rg are position
problems in solid mechanics is proposed in this vebtors of arbitrary point and centroid before
note. This model consists of three dimensional deformation respectively, i.e.
rigid bodies with connection springs distributed ucz(ug, vg» wg) 0=(6, ¢, x) (@
over the contact area of two neighbouring bodies. Denoting the displacement vectors of arbitrary
It is generalization of the rigid bars or plates- point P (%, y, z) in body (1) and (1) by u’,
spring models previously proposed by the present u’, they are given by the following equations:
author, © w =m0 on) ©
1. Theoretical Basis u’ =t 0, X (r—r;)
More precisely,
Consider a set of three dimensional rigid bodies w=wm+(z—2)¢—(y—ydn
of arbitrary shape as shown in Fig.1. They are v' =9, +(x—x2)pn—(z2—2,)0, t 4-2)
assumed in equilibrium with external loads, and w=w-+y—y)6,—(x—x) ¢
reaction forces are distributed over the spring w =us+(z—2;)d:—(y—y2) 12
system on the contact surface of two adjacent v =v:+(x— 1) 22— (2—22)8, ¢ (4-b)
bodies. Taking such two rigid bodies under w=w,t+ (y - yz)ez_(x_r2)¢2
contact, deformation of the spring system is Therefore denoting the point P after displace -
considered. (Fig. 2) ment in bodies (1) and (1) by P’ and P”, the
Displacement u of an arbitrary point in a rigid relative displacement vector of the point P can be
body can be given by the following vectorial defined as follows :
equation : PP =u—u’ (5)
Defining the unit normal drawn outward to
Pn
P 0.P° (rO—r)—lr=r"+u
t\\ u=uc+ OX (FO—r¥) = us+ OxX{r—r¢)
P: = S : contact surface
z superscript (0)
implies
\ the state before
0 y P2 deformation
* x
Fig.1 Many discrete rigid bodies under contact Fig.2 Definition of rigid bodies-spring system
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the contact surface at the point P by n, (See
Fig.3) the normal displacement 8y to the surface
S can be given as follows :
Bd = (W, n)
=/ (u'—w)+mv"—v)+n(w—uw)
(6 —a)

(6 —b)

(after deformation)

tangential plane

Fig.3 Relative displacements of P on the
contact surface in bodies{I) and (II)
Similarly the displacement component 8s; in the
tangential plane to the surface can be given by
the following equation:
8,2 = |n X mz
= {mw™w)—n(v'—v")}?
+ {nCu"—u) = (w'—w)}?
+ {1 (v —v) —m(u—u)}? ™
Basing on the above preliminaries, strain energy
due to the relative displacements (84, &) to be
stored in the spring system which is distributed
over the contact surface S can be given by the

following equation :
V= [ (kadd+ k8.2 dS ®

In view of egs. (6)and(7), the strain energy V is
a quadratic function of the displacement vector

u of the centroids in bodies (1) and (1) as

follows : |
Vu) =g uTku (9-2)
u'=Lu, v, wi, 01, Py Xis
Uz, V2y» W3, 02, b2, ZzJ (9—-b)

Applying Castigliano's theorem, the following

stiffness equation can be derived
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_0oV _
R= au—Ku

where K is a (12 x 12)symmetric matrix given by

(10—a)

the following equation:
K=[k;] (i, j=12--12) (10—b)
and R is nodal reaction vector defined by the

following equation :
RT:LXU Yl, Zly Ll, Ml. Nl:
XZy Yzy Zz, Lz, Mz, Ng_, (10_C)

2. Derivation of the Stiffness Matrix

For illustration the first low matrix is derived

as follows:

_oV _ 984 99
Xl—ﬁu—l— f(kdsd 6u,+k‘d‘ 2us )ds

=kuw t koot ksw kel RksétRien
FRutsthisvitkiowe Rl +Rimde
+khiuey
e (11— a)
where

b = [LhalP+ k(1= 19)1dS =—hyr
kio= [ (ko —ks) ImdS=—tus

ks = [ Cha—ks) IndS =—huo
ki = [ Cha—k) 1{n(y—y.) —~m(z—2))} dS
ks = [[katll (z—2) —n(z—x, )}
+h A= (z2—20) +in (x —2,)}1dS
ks = [ Lkal {m (z—2)— 1 (y —y 1)}
k{115 Cy—y) +im(z —2,)}1dS
ko= [[kal {m(z—2)—n(y —y:)}
+hl{-m(z—z)+n(y—y)}1dS
ki =I[kdl{n(x —x,)— [ (2—2,)}
+hA(—(1—=1)(z—2:) +in(x—2,)}1dS
ke = [ [kat {1 Cy—ye) —m(z—15))

+h A=)y —y) +im(x—1x,)}1dS

1= b)

It should be mentioned here that spring c(c}nstants
ks and k; can be determined systematically by
using the finite difference expressions for strain
components (), and consideration of material
nonlinearity can be made easily by introducing
pertinent constitutive law of the materials under

consideration.  The stiffness equation defined by
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eq. (1) must be obtained for each contact surface
if a given rigid body (I)has a number of contact
surfaces with other rigid bodies including the body
(1), and for equilibrium of a given total system
of rigid bodies, they should be summed up and
the final form of the stiffness equation can be
given as in the standard form of the finite element
method

KU=F a3
where

Care must be exercised in constructing eq. (13),
because in this method the centroid of each rigid
body is selected as the node and therefore super-
position of stiffness matrices are somewhat dif-
ferent from that of the standard finite element
method.

In case where the body (1) is supported by
other bodies through its whole boundary surface
S, i.e.

S =8, 8, eeeeeees +S,

this model is idealization of three dimensional
’l
I
i
1
1
1

(a) general form (b) standard form

Fig.4 Tetrahedron elements in three
dimensional analysis
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elastic continuum as shown in Fig.4 in which the
shape of each element can be chosen arbitrary.

The method outlined so far will be called
hereafter as the Rigid Bodies—Spring Method
(RBSM), or stiffness Lumping Method (SLM).
Method ) . Using this method stress analysis of
deformable bodies under contact will be possible
in iterative way typical application of which is
analysis of the rockfilldam. A series of element
matrices are now under development for practical
application of the RBS Method to analysis of
various problems in solid mechanics. In any
element total number of degrees of freedom never
exceeds 6 because it is assumed rigid. In
case of a beam, deformation consists of axial,
bending (about two principal axes) and tor-
sional deformation, and in bending problem
effect of shear deformation can be easily taken
into account. In case of plate and shell problems,
memberane stiffness as well as bending stiffness
can be defined again by this (6x6) stiffness
matrix.

Furthermore effect of shear deformation on the
bending problem and effect of in-plane rotation
on the membrane problem can be easily consider-
ed. Analysis of three dimensional stress

problems including crack problems is now under
way. (Manuscript received Janwary 6,1977)
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