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Application of Stable Parameter Identification and Control

Scheme for the Classical Lur'e Problem

(PART II)
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Summary

We have previously reported the stable parameter
identification and control scheme for the classical
Lur'e problem, in which we dealt with the case
such that control inputs are additive to the nonli -
near feedback signals, and the system is treated as
the single input -single output system. We also
showed the proposed identification and control
scheme are stable via the Lyapunov method and
dealt with those problems within the framework of
the Model Reference Adaptive System ( MRAS).

In this report we consider the case such that
control inputs are additive to the nonlinear feedback
signals but the system is treated as the multiple
input-single output system. And so there should
increase the number of parameters to be identified,
either coefficients of inputs or coefficients of nonli-

near feedback signals.
1. Introduction

We consider the case such that inputs are addi-
tive to the nonlinear feedback signals and the system
can be treated as the system of the multiple input-
single output, based on the previous report in
which inputs are also additive to nonlinear feed-
back signals, but the system is treated as the sin-
gle input-single output system. This report has
wider applications when total linearization is not
possible, But partial linearization is often profi-

table, such as nuclear reactor systemsl)'Z).
2. Representation of the system

Fig. 1 shows the previously reported case, while
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Fig. 2 A multiple input-single output system

Fig.2 does the case dealt with in this report .
The n dimensional system shown .in Fig. 1 is
described by the following differential equations as
was reported in the part I:
X=AX+bu+t) , oo=h"X
r=—g(ay, t) (2.1)
while the system shown in Fig. 2 can be described
by the followings :
X=AX+bw +bst , 0o =h"X
T =—g(ge,1t) (2.2)
Then eq. (2.2) can be transformed to the equiv-

alent system from the input-output relationship as

follows :
T= @ —a b u b obit b b x50 o
2= A7 +T 1
= AP+ (2.3)

2t = A x*+t
— T —T T
y =100 x, £"=Cxn, 2", 2%, 22%)
Initial conditions can be chosen as :

xl(O):x,o , ;l(o)=;5 , 1.;2(0)= 6 , 2}2(0): 6

12 0 .
and A= 0‘13-., LA 0, 4,44 i i

IT=(11-+1)
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Fig. 3 Representation of the plant

The block diagram of the dynamical system de-
scribed by eq. (2.3) can be depicted as is shown
in Fig. 3.

From now on, we can assume that the linear
part of the system is both completely controllable
and completely observable and that the plant can be
described by eq. (2.3).

3. Formulation and results

We deal with the problems of parameter identifi -
cation and control separately in the following sec-
tions. In both cases, the nonlinearity of the plant
can be assumed a priori known.

3.1 Identification
The model for identification can be set up, asso-

ciated with eg. (2.3) as follows ;

P N - AT AT S - YA Y
n=—mx—a X byt b6 b 22t

- A (g\f\x —xl)
A o~
=4 £+l xn (3.1)

N N
wi=A,x5+Tu

D

b4 LT __
w=A i+l t=—g(y.t)

where 2, >0 and initial conditions are

[ Ay [N [AN _

B0 =T00; 2(0)=2), ,%(0)=,2(0)=0
N

X ) - Ao 2 S
Define errors: ¢, =x1—% , € =X —%,18°=12°— 1%,

N
26> =»x°—,x°  Then substruction from eq.(3.1)
to eq. (2.3) leads to the following error differ-
ential equations :

. — T— =T — — T —
er1= —llel —-a 81+1b11€2+zb1 282+@TV

cede! (3.2)
1?.2:/‘ e’ .
2é2=A 2;2
where
T.__(_/\ (oo ™
() at+a, —(@—a' )", 1bi—1by, 201 — b1,

~ — — —
(1[71 - xbl)Ta (2(7l - 2[71 )T)

AT BT AT
VT:(xl,xl, u,r,;?,zxz)

and initial conditions are
e (0)=ey, ' (0)=cy, 1€7(0)=22(0)=0
From the initial conditions, note that
1elt) =.e%t) =0
for all t. Then eq.(3.2) can be written in a
vector-matrix form ;
{é =Ae+d 0"V
er=h"e
where
e*=(er, '), AT=(10--0),

A= [_ll e } ,dT=(10-0)

(3.3)

0 4
Note also that the transfer function of eq.(3.3) is
1
T ANVl
hT(s[-A)'d Py (3.4)

which is a strictly positive real function and is es-
sential for the proof of stability later on.

Now set up a Lyapunov function candidate as
follows :

L= "Pet 0G0 (3.5

where P=P"™>0 and G=G™>0
Eq. (3.5) clearly satisfies all conditions as a Ly-
apunov function candidate. With differentiation of
eq.(3.5) with respect to time t, we obtain the

followings :
. 1 .
= 7eT(ATP+PA de+(e"PAVAGT'O) @

(3.6)
We now invoke the Kalman-Yakubovich lemma,
that is to say, there exist a positive difinite sym-
metric matrix P and a vector ¢ for a sufficiently
small number &,>0 and a given positive definite
symmetric matrix L,, which satisfy the following
algebraic equations :
{ ATP+PA=—q"qg—¢oLo
Pd="h
Then eq. (3.6) turns out to be
L=- % eTqqu—eo%eTLoe <0
if we choose
O=-Ge\V (3.7)
Eq. (3.7) is the identification scheme and can

be written in terms of parameters :
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o —gien a4 = Gle‘ e generated by
A > ~ A o
1b1:-1gzelu.1[ﬁ:—1G2e1,x2 (3.8) =A%+ u (3.11)
A 2 2, D : o L D
20y =—agreit b = —2G%e, ,x with the initial condition, ,x°(0)= 0 .

where the adaptation gain matrix is chosen in a di-

agonal form :

0 282 G

L :G*
The identification rule,eq. (3.8),is stable and ifu
can be modulated so that each component of V
should be linearly independent, then @ =0 can be
brought about from ® =0 and @'V = 0. This
concludes that the identification rule eq. (3. 7) or eq.
(3.8) is asymptotically stable in the large.
3.2 Control

1/ # 0 is assumed in this section and then the
adaptive controller model can be' set up analogously

as the case of the identification problem : R

p=—d yl_&lTEﬁﬂl”"‘zﬂl T+ 1BIT172+2F§§2
= (y —x)

V-4 g T (3.9)

= Ayt

2!?2 = Ayt +it
where the initial conditions are
(0 =yo, g 0)=7}, 172(0)=,y%(0)= 0
and 7 is a reference input to the model, while «
is a control input to the plant.
Substructing eq. (2.3) from eq. (3.9), we obtain

the error equations :
. — T— - T — — T —
e1=—lie;—a' e+ 5 et +,p" st

+ 14 (r—uw)+@™y

o'=4 2 (3.10)
et= A0t [Gr—w)
20°= A 20°

where

O =(—(a1~a), (@' —a")7, 1/i—101,
zﬂx_zbl , (131_151)1‘;\(2?1_251)1‘)
VT:( X1 ,l-/l, u, v, 1?, 2&2)

From the initial condition, ,e’=0 and so,.7*=;

b

x

for all time. The auxiliary signal 1/? can be

Then l;—\zzl;z for all time.
The error differential equation becomes
er=—lei—a el HG/GpY(r—u)+ 07
Lot = g

where G; and (), are the numerator and the de-

(3.12)

nominator of the following transfer function,

L
1+% (sI-M T (3.13)

1M1
respectively.
Choose a control input as follows :
u=r=G,[KGr' s+ K [G:' ) y'+ Ko Gt
_ ey —
+o Ko Gl e H KE LGP ) # KT (314)
[Gr'lay?)
and the control gain adjustment rules are given by

a set of differential equations :

K- — L
.1 1ﬂ1 817, %1
K} — 4__1_ Gl P
1,31 Yy
1
1Ko = ——=-1827,
lfl ‘ (3.15)
1Ko A 2827, T
2 = —_1 ;2
IK 1ﬂ1 1G N1X
K2 = __1_2627]121/2
1ﬂ1
where
n=e +&

and ¢ is given by k . .
E‘lz _1151 _1ﬂ1f (KI ,kl, 1k2,2[‘{2y1k2.2}_<2)
where f(+) is a function of the derivatives of K in
eq. (3.12) after substitution of eq. (3.14) into eq.
(3.12) .
Therefore at the end of the adaptation all deriv-
atives go to zero and so do f(¢) and &, , too.
The proof of eq. (3.14) is as same as the pre-

vious case and so is omitted here.
4. Conclusions

In the previous section, the stable adaptive
schemes have been derived in the framework of
the model reference adaptive scheme in case there

are some memoryless nonlinear elements in a feed-
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back loop.
The proposed schemes can be ready to be ap-
plied for some nonlinear systems. Among them,
the conventional neutron dynamics in a reactor core
can be described by nonlinear differential equations
when there exist two temperature feedbacks, due
to fuel and coolant flow temperatures D The feed-
back of fuel temperature has much  shorter time
constant than that of coolant flow. Then stability
problems arise when the sign of feedback coeffi-
That is to

nonlinear

cients becomes positive or negative.
say, it is well known that there exist
oscillations or limit cycles in a reactor core with

fast and slow mode feedbacks!’ %

It is imperative
both to stabilize and control a reactor, and to assess
stability margins for the safe operation of a nuclear
reactor. This kind of problem can be successfully

tackled as a special case of this report 3
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