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1.1 Percolation

ZDWRILTIL, 7T 7 # AT (fractal lattices) I281F B/3—2 L —3 3 » (percolation) DRIE% & 2 5.

NR—ab—a VTR I FEORERET VL LT, 1957 £ Broadbent-Hammerslay [2] & & - TEHR{L
&N, G=(V,E) 2 EELRERS S 745, 22TV BRESAES, ERV 0200 %S 00%E
ETHD. V,EIdmAWE, FEERPOHILOFRBIIERE TS, [0,1]) RMEICEERS/3FA—F p
RO, E OLBMILIZENENFERE p Topen, #E 1 —p Tclosed THD L T5. open THBHRIEOZ
BoTBYVERIZEDZENAIETH Y, closed RLIFISRB->TELTEDZEBARAETHH LT5.
%30 open-closed MWEEH &, THR v €V 76 open 220 %x B> TEZEFRELRRDOES Cv) BEE 5.
pMREWVIZY, C(v) ZIRELL BRBEMIHHLEBEIOND. HHR v ZEEL, TI0LBETE HHAN
\REHD L V) BEROERE

8(p) = Pp(IC(v)| = o0)

ERT. T T P, 350D open-closed % LIEDERITED DHERETH 5. 0 13 p 2B LU THFEHEM
VTHD. BRIESR De (= pc(G)) %
pc = inf{p | 6(p) > 0}

TEDSD. p>p. TIIHER]1 TERKDZ TRF—PEN, p < p. THHHR 1 TTRITDI 7RY—i3H
BRTHD. CHDBRT, p=p. THREBNEZALEILNS. ZOXHI/3—alb— a3 VITHEAFIC
BIAHEBRLZSOMBERETT AL LTREBACHEIRTWVWS.

IO LEMEBEREZREARDLOORYOMEL LT, p. <1, TROLEHTRWVWHEBSEZ 571
I, BHD. ZEBFITBOTIE, d>2 Tp(29) <1 THHZ LRHMON TV, (Grimmett [7] IZFL
W) BT Z4 2filice 5. 0= (0,0,...,0) £ T 5. p. DiE T § REDOMOBE, #HlZE

x(p) = Ep(|C(0)];1C(0)] < 00),

Elp) = nlergo{—% log P,(0 + (n,0,... ,0))}

(€(p) 1% correlation length & MREN TS, ) BEDL I RBHENZLTNDIH, &V DOBBEREARD
METHD. 5 LB p. i< T

e(p) ~ (p_pc)ﬁ as pipca

X(p) ~ |p_pcl_7 as P — P,
£&p)=Ipc—pI™" as ptp, (1.1)

~|p.—p|™® as p—p

E,(IC(0)[**1;]C(0)] < 00)
Ep(IC(0)}*;|C(0)] < o0)



DEITRKEIRBEEND L FHRENTVWS, 22T frgld FLOMKER 72 1 IZINKT S
TLERT. ZOXSRBREK S, v, v, A OFEIX d B+HKRO L & (Hara-Slade [9)) #BRVTELE
BHEANTWARY., ZhAbOREKIZBWTIZEER

dv = 2A — (1.2)

BRSO LFHLN TS, T % hyperscaling relation &5 5.

RILd /PSS NEE 25 LIMBEOKRERKBRTHD. LEOCEKRILREEZEX DX, /S T7DE
TRHARERL VG ECHUENEETHD. T TRAI 7 I 7 INVNLEELH S/ S5 7 TD/—a
L—val®ZE2HZLL L. 2O LTI 7TONR—al— 3 VOFRIIAFRURNCIZIE E A EFF
DTV, ZOHFLWEBALLOMEICE - T, N—aLb—a VEBOMEHA, BLUT75 720
MEOHEDHA~DEREEEL L. ZhoDBBBIUVBONIRBIZOVTUTIZELLLR~S.

1.2 Finite-ramified fractals

T INEFLEDNR—a L —a VOFYIOHFEE LT, pre-Sierpinski gasket & I3 75 7 TD
NR—alb—vavr&ZExfz. 0=(0,0),a = (1/2,v3/2), bo = (1,0) £ T 5. Fy & AOagby ® 3 THAR
SV ENLER/ESENORDE T T LT 5. {Fn}n=g,1'27... %

Fn+1=FnU(Fn+an)U(Fn+bn)

THEAOGNDT77DFL 4D, ZZT A+a={z+a|z€ A}, kA = {kz | z € A}, a,, = 2"ay, b, = 2"
Thd. F=Up oFn &35, 2D F % pre-Sierpinski gasket £ E5. 2D 7 F 7%, 25 an, by ZEWY
BRS ERERE L 2D, ZD XS 2ME % finite-ramified £ 5 9. ZOFDOEE 1 O@ABEFNFNIMLICHER
p T open, #%F 1 —p T closed &9 3 bond percolation %% x 5. 0(p), p. 1% Z¢ L ERRICER TS &,
finite-ramified THLZ EMNOLI DT T 7 Tl p. =1 &7 5. £ T, correlation length

€(p) = lim {—%logPp(O o an)} '

EEZEL,pT1 TORBOKRTFT LA
Theorem 1.1 (= Theorem 2.1)

logé(p) _ ” (1.3)

b

po1 log(l—p)

. log(log&(p)) _
;L»ml log(1 — p) 2 (14)
Z? (1.3), (1.4) »Xid Gefen-Aharony-Shapir-Mandelbrot [6] 12 & > TR LEFHEIZL » Erh T
S0, ZTOMIXTIEIINEZERA LK. (1.3) % 22 OFAEDOTFH (1.1) &t~3 L, pre-Sierpinski gasket T
T BEOERDEREEIL 0o L78BH L EX 5. L7zh o T hyperscaling relation (1.2) bZ D F F T3 E
KRERZRVOT, KOF

Ey|CP

{x(p)}? Pl (1.5

{eP} ~

CEEIMATEZDZLIZTS.



Theorem 1.2 (= Theorem 2.2) D =log3/log2 &35, ZDLEFT_TD k>1 XL
E)|CI* ~ {£(p)}P* as pt1.

ZOEEND, (1.5) BKRTE D LARTIETRILILTWEZ ERbhd. T T, D i Sierpinski
gasket D777 ZNKRTLE—H LTS,

I B DRERITONTI, site percolation (%3 T2 < £ THAIZ open-closed #EHBHEFT L) THAY
MO EDBENDLND.

SHIZ, €(p) TOWVWTIZE W FHEMREBROA—F —MHETE 5 Z L23bh o 7. pre-Sierpinski gasket
#—f&{b L, d KT pre-Sierpinski gasket # & x 5. Z#ix LFED pre-Sierpinski gasket DHMRIZFBIT 5
AOagby DDV I d KEBEEEZAVDHLDTHD. Z0OT7F7BVWT ((p) ZRRICEHETD L, /5
7DECHRUMB LI OERDEDY D local REEDEBRNORD L I RBREBDENTE L.
Theorem 1.3 (= Theorem 3.2, d-dimensional pre-Sierpinski gasket)

6 ~exp{ o1 -p) "0} as it (16)

DA —F—DHEFEIMO finite ramified fractal DT 7IZHLEATE 5. £DOHl L LT snowflake
lattice (Figure 3.3), pentakun lattice (Figure 3.4) IR W THE L=

Theorem 1.4 (= Theorem 3.11, the pentakun lattice)

log(1 + v/3) 2
60 mexp{ 22 (1-p) ) as pTL
Theorem 1.5 (= Theorem 3.12, the snowflake lattice)
log 3 —4
£(p)~exp{-2—5g(1—p) } as ptl

EROAFICE L T, AR TIIE 2 EIZIV T pre-Sierpinski gasket (2351} 5 correlation length @
1E, B R85 O R #, hyperscaling relation DAL % recursion formula AW TIEAL, F 3 EIZB\T
correlation length ODRED X LITHMARA—F — %3 ET 5 HiE%#B~, d IRTT pre-Sierpinski gasket <°
fiL® finite ramified fractal NDHFE TOEBEOHEZIT-> TV 3.

1.3 Infinite-ramified fractals

WIZ, BRRME D K720 TIEEIM S 72 (infinite ramified) 77 7 2 A TFIZOWTERX D, ZDT 57
TIIATE I TR H/BE L RR Y, LT LY p. =1 LI1EA2 5720, infinite ramified THE 7T 7 FAL L LT
BLHELTHDHDD—2IZ Sierpinski carpet 23% 2. 1997 412 Kumagai [10] iZ & - T, pre-Sierpinski
carpet (CBWTik p. <1 THDZLBIEAINT. ZD%, RARDHHET Li [12) KE>THEBROER
PIRENTWS. £/, Murai [13] T2 d RETITHLR S 72 carpet ETD d —» 00 & LT L&D p. DOH
EEEARRLN TS,

—#%{b S 7= Sierpinski carpet T % Z2 OEy /77 L LTEKTSH. L>2,TCc{0,1,...,L-1)?
LFB. EL (0,00 €T 2EETS. 757 Gp = (Vi Br) 28 TFOL > iclmT 5.

Vi = Zn{@y)|0<ey<1), VPt = | (VR +GLNELY) (n20),
(i,4)€ET
Vr = UVT", ET:{(U,U)|U,U€VT,“u—v||1:1}‘
n=0
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Figure 1.1: the Sierpinski carpet lattice

L =3 T={G)0<4j <2335 # 1,1)} OLxd Gr &b b Sierpinski carpet
BFTHD (Figure 1.1). ¥£7 L =2, T = {(,5)]0 < 4,5 < 1,(3,5) # (1,1)} » & %% Sierpin-
ski gasket BFIZHIET DI LICHLEBLTHL. 2D Gr BV T bond percolation #Ex 5. =
DEE, TITEDEI REMNHIIE p(Gr) < 1 E25h, 2E25. ML TWS [10] DFERIX
{6,5)|i€{0,L-1}orj€{0,L-1}} CT 2B p(Gr) <1 VD bDThHB. ZORBEILEL,
SOI—RREREB/L D LT 20RO EDEHE THS. 728, bond percolation & site percolation,
Ising model DREBOHFESFETH 2 = &1 Haggstrom [8] (Lo TREINTEY, DX 57 TD
Ising model & X 5RHICH 25, b5 —>OMBEEBIC OV TR TH <. Benjamini-Schramm (1]
BOWT, ROBBERRE ST

Problem. G D% EAKRT%

Dim(G) = sup{D > 0:inf ;af__ll > 0}

IS|™>

TEETSH. ZIT S FHBR»OHEML E OMHEAE, 8S 13 S ® outer boundary &£ +5%. ZDLx
DIim(G) > 1 72 51F p.(G) <1 L H2 5.

Z DFRRANS Sierpinski carpet BT TR Y SLOMFLRRZ VD, LWV H DY (10] Z9LET D7D DB
Lo T3,

TIZBT 2+ a&MHE LT UTFObOR/LRE. ZZTT = {j|(0,5) € T}, T, = {|(L - 1,5) € T},
Ty ={i|(i,0) € T}, T, = {i|(, L— 1) € T} &M< Z &I T 5.

Theorem 1.6 (= Theorem 4.2)
EEOteT Tl T\ {t} i, (1.7)
BLW
ITiNT,| >2 5> |TynTa| > 2. (1.8)
ZRETS. 20L& p.(Gr) <1 TH5B.
ZDFERIT [10] DEDOIEIFEL 2> TS, FEAND p(Gr) KOV TOLL FOFMERAINE SIS,
Corollary 1.7 (= Corollary 4.5) fr(z) = z!Tl +|T|z/TI=Y(1 —2) £33 Theorem 4.2 DRED FT,

p.(GT) < \/a



ThHd. ZZTadHFEX friz)=z D (0,1) RENICHIBRLRKEWVWETH 5.
P(Gr) <1 L RDTODUBERHIZONTIE, UTOZ Labnb.

Theorem 1.8 (Corollary of Proposition 4.6) LAT® (i), (ii) DWW ii@iz S TWnWa &1 5.
(i) &2 jo IR L [{i | (4,50) € TH < 1.

@) [T NT,| < 1.

0L p(Gr) =1

AEBAIX Proposition 4.6 DFE LEMRTHD. ZOFKRLY, BHTRWEGEBREETIZ LONLEL
SERBEBDDITIT (L) 2 ETHDII L BHELIPLIBEL LS. EBELHIDLBEOBE - L
AETHBH, (17), (18) LS T KBT5F zv 7 LT VEEEBIT S &5 BRHOEHER T
DX 5% & ol<. Sierpinski carpet #&FDEEKIT L HEBOFEE L OBRICOVWTL, 4DL 5
Dim(Gr) > 1 232 P.(Gr) =1 THHHNIR WA, TX_TO T 120 L THREZIERT BT OWH DL
HOBENR, BLOERRIN 1 IVKEVWILE T OEETHIELRBTHILENDHY, SORBHBEL
72> TW%. 723, Sierpinski carpet #FDHETH Dim(Gr) > 1 2 p(Gr) < 1 DI=DITHLEE VI b
TRV, Zo—flE LT T ={0,1,2,3,4}2\ {(1,3),(1,4),(2,1),(2,3),(3,0),(3,1)} ®HBA (Example
4.11) 2 5.

#&R1Z, Sierpinski carpet #F T oriented percolation #&x 3. LEEER LS 77 Gr 2BV T, bond
DERTE B HENCHIRE DT, AEEF/T EAZICULMEDRVED LTS, 2D oriented percolation
b Z¢ ETBRAKRBIERIZENTWS (3L < iX Durrett [5], [7] 22 &). % contact process & o 8 s
#E\>. oriented percolation TOAMEB A p? BEIZ 1 IV /NEVMEIMEFANS. B(Z) <1 Th
B LIRELMBATV S, BT pH(Z?) < 2/3 (Liggett [11]) &\ 5 FEABBATS. = 2T
i Sierpinski carpet #FD 5 b, FiZ T BAHMEEFOREGICOVWTE X, L = 2a+b (a,b > 0),
Tap ={0,1,... ,L—-1}?\{a,a+1,...,a+b—1}2 15,

Theorem 1.9 (= Theorem 5.6) a <b %2 bi¥ p2(G2,) = 1.

IR, HEIBREARDKEITHIE oriented percolation (2R W TITB A TRVHEERSEZ S22
LERLTWVWD., ZOKIZEWT Sierpinski carpet F & Z¢ ITIXIKRE BV RHD Z L Bb2I5b. 2B,
Z 9 L7 oriented percolation TOMRIBDIERIL [0,1)2 T fractal percolation IRV THREI LT
% ([3], [4]) 23, @& © percolation IZRBWTIFHLNTWARD o, RBEBERN L, BEM TIIRANE
WIBEIZBATRWHEEBRDH D0 E I hidbho TR,

CORMBETE d REZEMIZBNWTHEZXLND. 2KRTDHEDILERE L THI X1 d IRTT pre-Sierpinski
carpet, 7205 TL ={0,1,2}4\ {(L,1,... , D} DL &%EXHLINIT 24 28777 L LTED
DT pl(Gra) < PHZ) <1 IHALNTHSB. £ZT

a

T{bz{(il,iz,... Jig) € {0,1,... ,L—l}d‘ |{jla<ij<a+b-1}|< 1}

Z%R 5. Zivid Menger Sponge LIHEN DT 57 S MIHIET 26D THS. ZO T, 15 Gra, &1
% L oriented percolation 2% x5 &, U TOERENE LN,

Theorem 1.10 (= Theorem 5.7) 2<d<b ¢ ¥%. ZDL& pG],) =1.

TORRIT, EARCBRIENDOETF TH> THHARBRETAEREI VRGBS ERLTLEI Z &
27T, BREOHEL, 5DLZAT#{0,1,... ,L-1}* TR(Gr) <1 25 LBHDNE I MiT
Do THL,



LEOARIZE L T, X TIZEE 4 T percolation DA TR VEBIZMET 2 T OLELME L+
GEREIZOVWTOERLIA L, VE+S&E42ED THODER BLUOS T 7OEBKRT E OBRIZEIZ OV
T~/ 38 5 F T oriented percolation DPFA DIREBDWEHKIZ SOV TOEE S IEH L1-.
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8 2E Percolation on the pre-Sierpinski
gasket

2.1 Introduction and statements of results

In this paper, we regard percolation as a model of phase transitions. We are especially interested
in problems near the critical point, where the phase transition occurs. We call these problems critical
behaviors. OQur purpose in this paper is to clarify the critical behaviors of percolation on the pre-Sierpinski
gasket which has self-similarity.

Until now, studies of percolation are restricted on periodic graphs, such as Z%. (An exact definition of
periodic graph is mentioned in Kesten[1].) There are lots of conjectures and hypotheses about critical
behaviors, but many of them are still unsolved rigorously (see Grimmett[2] and references therein). In
high dimension lattices Z¢, rigorous results for critical behaviors were obtained by Hara-Slade[3]. But
in low dimensions, except a work on Z2? by Kesten[4], few rigorous results have been proved about the
existence of critical ezponents and justification of the scaling, hyperscaling relations.

For critical behaviors, self-similarity of the graph plays more important role than periodicity. This is
a motivation to consider percolation problems on the pre-Sierpinski gasket.

We now define the pre-Sierpinski gasket. Let O = (0,0),a0 = (1/2,v/3/2),
bo = (1,0). Let Fy be the graph which consists of the vertices and edges of the triangle AQOagby. Let
{Fn}n=0,12,.. be the sequence of graphs given by

Fn+1=FnU(Fn+an)U(Fn+bn)

where At a={z+a|z€ A}, kA= {kz |z € A}, an = 2"ap and b, = 2"by. Let F = ;o F,,. We
call F the pre-Sierpinski gasket. (Fig. 2.1) Note that F = Un2 ;27" F become the Sierpinski gasket. Let
V be the set of all vertices in F, and E the set of all edges with length 1.

We consider the Bernoulli bond percolation on the pre-Sierpinski gasket; each edges in E are open with
probability p and closed with probability 1 — p independently. Let P, denote its distribution. We think
of open bonds as permitting to go along the bond. We write z « y if there is an open path from z to
y. Let C(z) ={y € V:z & y}. C(z) is called the open cluster containing . We denote by C the open
cluster containing the origin.

We define two functions in a similar way as percolations on Z¢.
8(p) = Po(IC| = 00), x(p) = Ep(|C[;|C| < o),

where |C| denotes the number of vertices contained in C, and E, denotes the expectation with respect
to Pp. O(p) is called the percolation probability, and x(p) is called the mean cluster size.
Let p. denote the critical point p.; that is

pe = inf{p : 8(p) > 0}.



Figure 2.1: the pre-Sierpinski gasket

Then p. = 1 for the pre-Sierpinski gasket because it is finitely ramified. We note that x(p) = Ep|C]| for
p<l
The correlation length is defined by

Ep) = r}i_’ngo{—zinlog P,(0 & a,,)}_l. (2.1)

The existence of the limit in (2.1) will be proved in Section 2.

We write f(p) =~ g(p) as p = po if log f(p)/logg(p) = 1 as p = po.
We now state our main theorems:

Theorem 2.1 lim _—1og £(p) _

=00, and lim M = -2.
p—1  log(l —p)

r—+1 log(l—p)

Theorem 2.2. Let D =log3/log2. Then

E,|C|* ~ {¢()}P* as p—1 forallk>1.

Remark. Our results are quite different from the results on Z? (see below). In physical literture,
Theorem 2.1 was known by Gefen et al.[5] by using formal renormalization arguments. Our contribution
is that we prove Theorem 2.1 rigorously.

We collect results and conjectures of the percolation on Z?. It is conjectured (see [2])

£) = |pe —p| @ as p—pe. (2.2)

The value v(d) is called the critical ezponent. It is proved that v(d) = 1/2 for sufficiently large d
(Hara-Slade[3]), and conjectured v(2) = 4/3 (see [4]).
Other critical exponents considered in Z¢ are as follows:

Ey(ICI**1C] < o0)

x|p.-p|™® as p—p..
Ep(IC1%;[C| < ) ¢

x(p) = |pc —p|™",

[t is conjectured for Z¢ that dv = 2A — «. This relation is one of hyperscaling relations. We note
Yy = A = oo on the pre-Sierpinski gasket. So the relation dv = 2A — v does not make sense on the
pre-Sierpinski gasket. Accordingly we modify the hyperscaling relation as follows:

Ey|C®
{x(»)}?

{ep)} ~ as p— p.. (2.3)

10



If finite critical exponents v,v, A exist, then (2.3) is equivalent to dv = 2A — 7.
Remark. By Theorem 1.2, we have E,|C|* ~ {£(p)}*P and x(p) ~ {£(p)}P. Hence the above hyper-
scaling relation (2.3) holds when we regard D as the dimension of the pre-Sierpinski gasket. The value
D =log 3/ log 2 coincides with the fractal dimension of the Sierpinski gasket.

In addition, we mention site percolation on the pre-Sierpinski gasket: each vertices in V are determined
to be open or closed independently. (Details will be given in Section 5.) We define the correlation length
£(p) in the same manner as (2.1). We have the result below;

log £(p) and  lim log(log £(p)) _

Theorem 2.3. lim = 00, = -1.
r—=1 log(1l - p)

p—1 log(l — p)

The critical exponent in a usual sense is also infinite in this case. But £ (p) =~ log(1 — p)~!, which is
different from Theorem 2.1. We cannot see the universality of this exponent on the pre-Sierpinski gasket.

We refer to the self-avoiding walks on the Sierpinski gasket, as related works of phase transitions;
Hattori-Hattori[6] and Hattori-Hattori-Kusuoka[7] construct the self-avoiding paths on two- and three-
dimensional Sierpinski gasket. Before [6], Hattori-Hattori-Kusuoka[8] constructed them on the pre-
Sierpinski gasket. These works also gave us a motivation to study percolation on the Sierpinski gasket.

The organization of this paper is as follows: In Section 2 we prepare for the proof of our main theorems;
we construct recursion formulas of relations between events in F,, and ones in F,4;. In the reminder
of Section 2, we prove the existence of the correlation length. We prove Theorem 2.1 in Section 3 and
Theorem 2.2 in Section 4. In Section 5 we study site percolation and prove Theorem 2.3.

2.2 Recursion formulas and the existence of £(p)

We introduce two connectivity functions as follows.

®,(p) = P,(O & a,in AOayb,),
O.(p) = P,(0 & a, and O & b, in AOa,b,).

We write O © a,, in AQOa,b,, if there is an open path from O to a,, in AOa,b, (contains its perimeter).
We easily calculate ®o(p) = p + p* — p°, Qo(p) = 3p? — 2p*. Note that (i) ®.(p) > ©.(p) by definition,
(i) if O ¢ a,, and O © b,, then we have a, < b, automatically.

Proposition 2.4. For eachn>0 and 0<p<1,

Boa(p) = {2.(0)} + (2.} - B (p){On (P}’ (2.4)
Oni1(p) = 3{2.()}?On(p) - 2{0n(P)}*. (2.5)

Proof. Recall AOanb, = F,. Let F'y, = Fy + @n, F"yy = Fr + by, and ¢, = (3-2771,v/3-2771). Let
AL and A? be events given by
Al

{0 © a,in F} N {an € @nyy in F'r},

{0 ©b,in F,} N {b, & cpin F',} N{cn © any1 in F'.}.

11



Gn41,
Al
e, "

o
Gn+t Gn4l
Cn Gn Cn
] b o bn
Figure 2.2:
Qnty
ﬁ
aﬂ n
o b bams
Figure 2.3:
Then we have
Bnt1(p) = Pp(Ay) + Pp(AL) = Pp(Ar N AD). (2.6)

Here we used the fact that a path from O to a,+1 goes through a, or b,. Since the events in F,
, F'n , F", are mutually independent, P,(AL) = {®.(p)}?, Pp(42) = {2.(p)}?, Po(ALN A2) =
{6.(p)}?*®.(p) (Fig. 2.2). Combining these with (2.6) yields (2.4).

We proceed to the proof of (2.5). Let B, B2, B3 be events given by

Bl = {O¢a,and O & b, in F}N{a, ¢ any1 in F',}
A (b ¢ boys in F'),
B2 = {0 & a,in F,}N{a, ¢ any1 and ap, ¢ ¢, in F'}
N{cn ¢ bpy1 in F' .},
B2 = {0 byin Fa}N {by ¢ buyy and by ¢ co in F'n)

N{cn € apy41 in F',}
(see Fig. 2.3). Then we have

©nt1(p) = Pp(By) + Pp(B}) + Pp(B3) — Pp(B, N BY) — F,(BAN BY)
= Bp(BaN Br) + Pp(B, N B N BY).

We see easily
Py(By) = Pp(BY) = Pp(B3) = {2x(p)}* 00 (p),



P,(B, N B}) = P,(B,N B}) = P,(B N By) = P,(B) N BiN BY) = {Oa(n)}°.
(2.5) follows from this immediately. O

From now on, we assume 0 < p < 1. We prove the existence of the limit (2.1), correlation length £(p),
by using these recursions.

Proposition 2.5. There ezxists £(p) >0 such that
: ®n(p)

lim —————

n—oo exp{—2"/£(p)}

Remark. The convergence as n = oo in Proposition 2.2 is stronger than the convergence in (1).

Proof. By (2.4) and ©,(p) < 9,.(p), we have

{2:(0)}? < @nt1(p) < {2a(P)}* + {2n ()}’

Hence

D1 (p)
LS @app ST

Let hy(p) = ®,,41(p)/{®n(p)}?. Then 1 < hy,(p) < 2 and lim,, o0 hn(p) = 1 because lim,,_,o, ®.(p) = 0.
Now

2%, log ®,.(p)

{3 @) {220 2.0 )
{2o(}*" {21} {®n-1(p)}?

1 1 1
= log ®o(p) + 5 log ho(p) + 2 loghy(p) +--- + on log hn—1(p)
< log ®¢(p) + log 2.

= 108 ({200}

Hence {log ®,(p)/2"}n=0,12, is increasing and lim,_, log ®,(p)/2" exists. Let
—{&()}! = limp_y00 log ®n(p)/2". Then

1 1 1 1 )
_@ > on log ®.(p) = "@ - (Wloghn(p) + ontz log hnt+1(p) + - )
1 1
—@ o log H,.(p),
where Hy,(p) = Sup,,>, hm(p). Therefore
2" 1 gn
exp{_@} 2 ®a(p) 2 5os e"p{“{(p‘)}' (2.7)

Since lim,, o, H,(p) = 1, we complete the proof. O

Remark. Note that the function £(p) is continuous and increasing on (0,1) from the proof above.

. P,(O « a,)
Lemma 2.6. lim —2— ™ _ —1,
n—oo exp{—2"/¢(p)}

Proof. Recall that ®,(p) = Pp(O ¢ a, in F3,). Then
Py(O & an) — P(O 9 a, in F)

IA

Py(O ¢ by, in Fy,b, ¢ cpin F'5 cn  ap in F'y)
+P,(0 ¢ by in Fy,bp ¢ boyy in F'5yan € Gnqy in F'y)  (Fig. 2.4)
= 2{®.(p)}%.
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So P,(O )
“a
1< 22—~ B <14+2{®, 2,
< 2o <14 2(20()
which implies
. Pp(o © ap) _
R W

Combining this with Proposition 2.5 completes the proof. O

2.3 Proof of Theorem 2.1

The next lemma is a key of the proof.

Lemma 2.7. There exists € > 0 such that

£(p+3(1—p)°)
&(p)

2< <4 for l-e<p<l

Proof. We introduce

¥..(p) 1— Py(O # 45,0 $ bn,an ¥ by in Fy)

3%n(p) — 26 (p). (2.8)

It

Here O # a, in F, means that there exists no open path from O to a, in F,,. By (2.4) and (2.5),

9n+1(p) = S(Oﬂ(p)aq’n(p))a
nt1(p) = T(Oa(p), ¥a(p)),
where S,T: R? = R are functions defined by
_ 23,4, 1 5
S(@y) = -3z +3zy+ 3y,
_ 23 42 T, 4 13, 1,
T(z,y) = 9% +3z 31: y+3xy+9y +3y .

14



Let D be a subset of R? defined by D = {(z,y) : 0 < z < y < 1}. We see 8S/dz,85/8y,8T/0z,8T [0y >
0 for (z,y) € D. Indeed,

88 8 1 2 1
= _22 e a2 = _ £ =22
% z +3xy+3y 2z(y z)+3xy+3y >0,
05 _ tniZys0
oy ~ 3 35
_6_71_ — .2.x2+§x_1_4.z +é > gz2+§.z_1_4.z .*.gz.l..g
5z~ 30 T3TTFWTRY = T U TTIRY TyY
2 , 8 2
= g(y—x) +32(1-9) + 391 -2) >0,
O _ Tpydiilpy?
Gy ~ 3T T3zTTg¥ T3y

= é - l 2 _ 2 E _ 2
= 3a:(1 a:)+3(y z )+3(y z4) > 0.
Therefore if (z1,41), (z2,y2) € D and z; < z2 and y; < y2, then
S(z1,11) < S(x2,¥2), T(21,1) < T(x2,92)- (2.9)

Note that ¥,(p) = O.(p) + 3{®n(p) — On(p)} > O,(p) for all n by (2.8). Hence (O.(p), ¥n(p)) € D.
Calculating ©,(p) and ¥,(p) directly from the recursions, we have

On(p) = 1-3(1-p)®>—(12n—-6)(1 - p)* +6(1 —p)°
+(—48n2 +120n — 15)(1 —p)S + -+, (2.10)
U.(p) = 1-3(1-p)*-24n(1-p)%+--- (2.11)

forn>2 For1-1/v3<p<1,let =p+3(1~—p)? Then we have
03(p) —02(p) = 6(1—-p)*+213(1~p)°+---,
¥3(p) — T2(p) 1201-p)S+---.

Note that ©2(p), ¥2(p), ©3(p), and ¥3(p) are polynomials of finite degree. Hence we can take £y > 0 in
such a way that ©2(p) < ©3(p) and ¥2(p) < ¥3(p) for 1 —e; < p < 1. By (2.9), We have

O3(p) = S(©2(p), ¥2(p)) < S(Os3(F), ¥3(p)) = O4(h),
¥3(p) = T(02(p), ¥2(p)) < T(O3(p), ¥3(P)) = Ya(p)-

Estimating repeatedly as above, we have ©,(p) < On41(5), ¥n(p) < ¥nti1(p) for n > 2. Combining this
with (2.8) yields ®,(p) < ®n+1(p). So

log ®,(p) log ®,.4.1(p)
) g B D)

This implies £(p)~! > 2- £(p) !, that is £(p)/€(p) > 2for1—e; <p< 1.
We now proceed to the estimate from the opposite side. By using (2.10) and (2.11) again, we see
04(B) — ©2(p) = —6(1-p)*+141(1-p)°+---
¥y(p) - T2(p) = -12(1-p)° -

Hence we can take €5 > 0 such that ©4(5) < O2(p) and ¥4(p) < ¥2(p) for 1 —e2 < 1. So we have
On42(P) < On(p) and ¥y 2(5) < ¥, (p). Therefore £(5)/€(p) < 4 for 1 —e; < p < 1, which completes
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the proof. O

Proof of Theorem 2.1. Let g(p) = log&(p). Since £(p) is an increasing function, g(p) is also increasing.
Suppose that p is sufficiently large to satisfy g(p) > 0. Let

1
m:liminf__mzo, M=limsup— logg(p) )
po1 log(l - p) p—1 log(l—p)
First, we prove m > 2. Suppose m < 2, and pick § > 0 with m +J < 2. Let

1
(z — 3g3)m+é  gmts’

h(z) =
Applying the L'Hospital’s theorem, we see lim,_,¢ h{z) = 0. So we take pp such that
1
h(l——p)<§log2 for 0<1l-p<l-—po (2.12)

and 1 — po < €. (¢ is given in Lemma 2.7.)
Let

f) =p+3(1-p)° (2.13)

We define {pn}n=1,2,.. by f(po) = p1,f(Pn) = Pn+1 inductively. Then py < p; < --+ < p, < 1, and
lim, 00 pn = 1. By (2.13) and Lemma, 2.7, we have

log 2 < g(Pn+1) — 9(pn),

and hence

9(po) + nlog2 < g(pn). (2.14)
Take N = N(pg) € N. By assumption, there exists ¢ such that py <t < 1 and

—% <m+4é. (2.15)

For this ¢, there exists unique N’ = N'(t) such that pyr <t < pnr41- By (2.15) and 1 —pyiyy < 11t

we have

(t) < _1—
I (A= pr1)™ 3
B { 1 _ 1 }
(1=pNny)™ (1 —pyi)mHe
Y S W S WU
(1 =pn)™+e (1 - pnr—1)™d (1 - po)™+?
1
= h(l—pN’)+h(1~PN’—1)+"'+h(l-p0)+m
1 1
< §(NI + 1) 10g2 + W (216)

The last inequality follows from (2.12). On the other hand, g(po) + N'log2 < g(pn') < g(t) by (2.14).
Combining this with (2.16) yields

1
%(N -1)log2 < 5(N’ —-1)log2 < (2.17)

1
W - 9(po)-
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Here we used N < N’ for the first inequality. We can pick N(po) so large that (2.17) does not hold. This
yields a contradiction. Hence we have m > 2.
We proceed to prove M < 2. Suppose M > 2. Pick § > 0 such that M —§ > 2. Let
1 _ 1
(z — 3g3)M—3 ~ M3
Note that limg_,0 h(z) = co. Then by a similar argument as above, we lead a contradiction. Hence
M < 2, Which concludesm =M =2. O

h(z) =

2.4 Proof of Theorem 2.2.

First, we estimate the probability P,(3 -3" < |C| < 2-3"). Let M = sup{m : O ¢ a,, or b,,}. We
define two conditional probabilities

Un(p) = Po(O & a,,0 # b, in F|M =n),
Vap) = Po(O © a,,0 6 b, in Fr|M =n).
Clearly
2UA(p) + Va(p) = 1, (2.18)
and

Va(p) = P,(O ¢ as,0 & b, in F,,,O%)a,,H,O%)b,,H)
" P,(M =n)

We consider the event of the numerator of (2.19), {O ¢ 64,0 ¢ b, in F,,0 $ ant1,0  bny1}. We
divide the case into seven parts as Fig. 2.5. Since the events in F,,, F',,, F",, are independent, we have
n(l =~ 28, — 82 + 48,0, — 202
Va(p) = O.(1-2 5 ,,-i; nOn 2@,,).
»(M =mn)

Here we denoted ®,, = 9,,(p), 0, = 0,.(p) briefly. Note that

(2.19)

(2.20)

Pp(M =n)
= P(M>n)-P(M>n+1)
= 20, -0, - (2%, — Opy1)
= 20, -0, -292 - 283 +29,0% + 3020, - 203 (2.21)
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by (2.4). Hence by (2.18),

Un(p)

S (1= Vo))
(®n — O,)(1— &, — 32 + 9,0,)

Py(M =n)

Let

no = nofp) = sup{n : ©n(p) > 2}.

Lemma 2.8. V,(p) > if n<mng.

Ned i V]

Proof. From (2.18), it is enough to show

Va(p)
2Un(p)

2

N

Let
y(1 - 2z — 22 + 4zy — 2y?)

20z —y)(1 -z —22+7zy)
By (2.20) and (2.22), (2.24) follows from the following:

k(z,y) =

N —

2 2
n(z,y)z? for §§z<1, Bz-1)<y<uz.

The second condition in (2.25) comes from the fact that

3®,(p) —20,(p) = ¥nu(p) < 1.

Let y/z = t. Then the domain of (2.25) is 2/3<z < 1/(3-2t),2/3 <t <y <1 And

t T + (=3t + 2t2)z?
(l—t){ T 1-z-(1-t)2? b

k(z,tx) = 5

Now let 3¢ + 96222
Az) = T+ (-3t+2t%)x

T 1-s-(1-ta?

From a direct calculation,

N(z) = (1+ 2t — 2t*)a® + 2(=3t + 2t%)z + 1
= -z- -0z}

We see that if 2/3 <t < 1,\(z) > 0 for 2/3 < z < 1/(3 — 2t). Therefore

1 t t 2

, ) = > o
3-2t3-2t) 5-4t 7

k(z,tz) > K(

Next, we estimate the expectation of |C| on condition that M =n (n < no).

Lemma 2.9. E,(|C||M =n)> --3" if n<ng.

Nl )

To prove the above Lemma, we use the following inequality:

18
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Lemma 2.10. Forall a € F,,
P,(O ¢ ain F,) > &,(p). (2.27)
Proof. Besides (2.27), we introduce a similar inequality:
Pyae a,ora ¢ by) > P(0O e a,or O6b,) foralla€ F,. (2.28)

We prove (2.27) and (2.28) by induction at the same time. If n = 0, clearly both of them hold. Suppose
(2.27) and (2.28) for n = k.

We prove (2.27) for n = k + 1 at first. By symmetry, it is sufficient to prove the cases (i) a € F} and
(ii) a € Fy.
(i) Suppose a € Fi. By using (2.4), we see ®¢(p) > Pr+1(p). Indeed, suppose ®x(p) > 1/3, then

i ]
T = &+ {2} - {0k}
7
3%, -1
< {8 - (—5 ) (2.29)
< —Z(l—%)“l
< 1.

Here we used (2.26). Combining this with assumption, we see (2.27) for n = k + 1 in this case.
(ii) Suppose a € F}. Let C,C2,C2 be events given by

C! = {Oea,andO ¢, in F,UF",},
c: = {O # an, and O > ¢, in F, UF",},
C} = {Ooa,and O c,in F,UF",}.

We see

P,(O & ain Fiy,)
= Po(Cl)Pp(ar ¢ ain Fy) + Pp(C?)Pp(ck ¢ a in Fy})
+ P,(CY)Py(ax, > a or cx > a in F})
> (Pr — PrOk) - Pi + (D — Ok) s - B + P10y - (204 — Ok)
= ®} + &} — 8,02 = Biy1.
Here we used assumption for the inequality. We thus obtain (2.27) forn = k + 1.

We proceed to prove (2.28) for n = k+ 1.
(i) Suppose a € Fy. Let DX, D2%,... , D3 be events given by

Dl
D2

{@n © @ny1 OF ap 6 byyy in Fy U F}'}

{bn < Qpy) OF b, & bn+l in F,: UF,L’},
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D3 = D! n(D2), D4 = (DL)*ND2,D8 = DL N D2. We see

Py(a > ak4y or a ¢ beyy)
= P,(D})Py(a © ai in Fi) + P,(D{)Py(a ¢ by in F)
+ P,(D})P,(a ¢ a), or a ¢ by in Fy)
P,(D3)P,(O ¢ ay in F}) + P,(D})P,(O ¢ by in Fy)
+ P,(D})P,(O ¢ ai, or O & by in Fy)

v

= Pp(O > Qg4 OT (O bk+1)

by assumption.
(ii) Suppose a € F;. We see

Pp(a ¢ aky1 Oor a ¢ bry)
> Py(a e art in FY)

+ Pp(a # akt1 and a ¢ ¢ in F)Pp(ck ¢ bryy in FY).
Here we note that

Py(a # ar+1 and a ¢ ¢ in FY)
= Py(a© arq10ras ¢ in Fy) — Py(a © agy1 in Fy)

(2‘I>k - @k) — Pp(a © Ag+1 in F,:)

v

by assumption. Using this and (2.30), we have

Pp(a ¢ akt1 0r a 6 bey)

v

Pp(a © Qr41 in F,i)
+ {(Q‘Pk — @k) — Pp(a © Q41 in F,:)}Pp(ck « bk+l in F,g)
= Pp(a © Q41 in Fé)(l - ‘I)k) + (2‘I>k - ek)q)k
> Bp(l— Bi) + 287 — DO = By + B2 — 3, 0.
Here we used assumption again. Now it is enough to show
by + ‘bi — 3,0, — Pp(O & apyy or O © byp) > 0.
The left-hand side of (2.31) equals
P, + ‘I’Z — .0, — (2‘I)k+1 - @k+1)
= (Bk + BL — BiOk) — 22} + &} — 2,07) + (38704 — 205)
= (1l - 0Ok)(1— 3%k +20%) + 2(®r — O4)%(1 — &y)

+ 20, (9 — @k)(l - 2%, + @k)

By (26), we see all terms above are nonnegative. Hence the proof is completed. O

20
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Proof of Lemma 2.9.

E(CIIM=n) = Y B0 alM=n)
[13%
> Z P,(0 ¢ ain F|M =n)
a€F,
S Z P,(0O +a,0 4 a,,0 &by, in F,,,M=n).
- &£ P,(M =n)

Let D8 = (DL)° N (D2)°. Note that if M =n and O + a,, O © by, then (DS)° occurs. For a € F,, we

see

P,(O ¢ a,0 ¢ a,,0 & b, in F;,M =n)
= P, (0O 4,04 0,0 b,in F,, D8 occurs )

(
(
= P,(0 ¢ 4a,0 6 a,,0 o6 b, in F,)P,(Df)
(
(

b

> P,(0 ¢ ain F,)P,(0 ¢ an,0 ¢ b, in F,)P,(DY)
= Po(O e ain F,)P,(0 ¢ an, O ¢ by in Fry, M = n).

Here we used FKG inequality for the forth line. Therefore

E(IClIM=n) > Y PB(O ¢ ainF)Py (O ¢ an,0 ¢ b, in Fo|M =n)
a€F,
> g > P(O¢ainF,)
a€F,

by Lemma 2.8. Note that [{a € V : a € F,}| = 3(3" + 1). By virtue of Lemma 2.10, we see

Ey(|C|IM =mn)

v

3 n

N2l L RVa] | ]

> -3" for n < nyg.

We used (2.23) and the fact that ®,(p) > O,(p) for the last inequality. O
We proceed to the estimate of Pp(g - 3" < |C| < 2.3m).

2
Lemma 2.11 Pp(% 3 <0 < g -3") > 7§PP(M =n) if n<ng.

Proof. Note that |C| < & -3 if M =n. Then we see the following.

E,(ICIIM = n)
1 n 1 n
= Bp(ICLIC| 2 5 -3"IM = n) + E(|C};|C| < 5 - 3"IM =n)
9 1

1 1
< 3-8°B(C2 58" M =n)+ 5 - 3"B(IC| < 5-3"|M =n).

2’ 9
By Lemma 2.9, we have

. 1
>_-.3" =n)> —
Py(Cl > §-3"1M =n) 2 5,

thus the proof is completed. O

Lemma 2.12. P,(M =n)> ®,(p){1 - ®.(p)}* if n <ne.
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Proof. Recall (2.21), that is
Py(M =n) =28, - 0, — 202 — 282 + 29,02 + 3820, — 203,

Let (y) = 2z—y—22%—223+22y?+3z2y—2y3. It is enough to show that 7(y) > z(1-z)? if 2/3<
z<1,(3z —1)/2 < y < z. Note that

m'(y) = —6y® + 4zy + 3% - 1,

and that
3T —1 1
) =3
Hence 7(y) > min{7((3z — 1)/2),7(z)}. n((3z ~ 1)/2) = (1 — z)*(z + 3)/4 and =(z) = z(1 — 2)2, so
m((3z — 1)/2) > m(z) for 2/3 < z < 1. This completes the proof. O

(1-2)9z-5)>0,7'(z) =2*> -1<0.

Proof of Theorem 2.2. First, we estimate E,|C|* from below. By using Lemma 2.11 and 2.12, we see

E|CI* = Y I"R(Cl=1)
=1
| 9
> ~.3" ~.3" < <--3"
> 3 (5 3R(g3 <0< 53
n=4,8,12...
1 2
> giag 2 31— Sem)).
m €N
4m < ng

Let p be sufficiently large. Note that the function «(z) = (1 — z)? is decreasing in 2/3 < z < 1, and
Q4m(p) < e=2"" /() by (2.7). We can see

Y. 3*7 2 (p){1 ~ Bam(p)}?

m € N
4m < ng

Z 34kme—2“'"/f(p)(1 _ e—24"‘/€(P))2
m€EN
4m < ng

|

/ 3ikeo=2/6(P) (1 _ ¢~ /e Y24y
1

Dk p2"07%/¢(p)
— {f(p)} ka—-le—y(l _ e—y)2dy'

410g2 24/¢(p)

v

vV

Here we set y = 27/£(p) in the last line. Note that ©n,41(p) < 2/3, hence ®,,11(p) < (14+20,,,11(p))/3 <
7/9 by (2.24). From (2.29), if ®4(p) < 7/9, then @, (p)/®i(p) < 76/81. We see

%, 7 1
51) 9 <

Pnyt12(p) < ( 5<3

lD_I -~

Combining this with (2.7), we have

1

§e_2"°+12/£(p) <o, 17

o+12(P) <3 5
Hence 2"°~*/¢(p) > 27'%10g(9/7). Since &(p) = o0 as p = 1, E,|C|* > K, {£(p)}P* holds if we take
27 % 10g(9/7)

Ki(k) = / yP*1e=¥(1 = e=¥)2dy > 0.
2= 17 log(9/7)
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Now we proceed to estimate from above. Note that P,(M > n) < 28, (p) < 2¢~2"/4()_ and we can see
easily P,(%-3" < |C| < £.3"1) < P,(M > n) < 2e2"/&(P), Hence

oo
Ecl* = Y Ikp(Cl=1)
=1
n+l 3 n 3 n+1
< 1+Z -3 13" <|C] < 537
n=0
o0
C(2\k kn _—2"/€(p)
< 142 (2) 23 e~2" /4P,
Now
/°°3kze—2”/e<p)dx _ ™ /°° T
0 log2  Jg(p)-
['(Dk) Dk

So we can take K, (k) < oo such that E,|C|F < K,{¢(p)}P*. O

2.5 Site percolation on the pre-Sierpinski gasket

We define the Bernoulli site percolation on the pre-Sierpinski gasket; each vertices in V' are open with
probability p and closed with 1 — p independently. Let 15,, denote its distribution. We write z + y if
there exists a sequence of open vertices £ = xg,Z1,... ,Zn—1,Zn = y such that there is a bond in E which
connects z; with z;4; for 0 < j < n — 1. We define another notations in the same manner as before. We

introduce connectivity functions;

EI;n(p) = 13,,(0 © an in AOayb,),
On.(p) = P,(0 & a, and O & b, in AQayb,).

We see & (p) = p? and Og(p) = p® by definition.

Proposition 2.13. For eachn>0 and 0<p<l1,

$.1(p) = P HE.} +0 HE.P} - p 2. (0){On(0)}, (2.32)
Ont1(p) = 3p72{E.(p)}?0n(p) - 2073{O.(p)}°. (2.33)

Proof. We prove (2.32). Let :4‘}’1 and ;12 be events given by

1’4\1 = {Oeapin F}N{an ¢ any; in F'},
Z?, = {Oeb,in F,,}N{b, ©c,in F'.}N{cn © anyy in F',}
Then we have
Ons1(p) = Pp(AL) + P, (42) - Bp(4L N 42). (2.34)

Remark that F, N F',, = {a,}. So we see 15,,(;1\}/,) = p~1{®,(p)}?. Similarly, we have ﬁp(;f?,) =
p2{®,(p)}%, B,(AL N A2) = p=3{0,(p)}2®,(p). Thus (2.32) follows from (2.34) immediately. (2.33)

is proved in the same way. O
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Let ®,(p) = p~19,(p) and ©,,(p) = p~20,(p). Then we have the same recursions as (2.4), (2.5):

E1(p) = {20} +{2.(0)} - 2.(0){On ()}, (2.35)
Oni1(0) = 3{3.()}6.(p) - 2{0.(} (2.36)
Hence we see that there exists £(p) > 0 such that
3.(p) F(0 6 ay)

im —————— =1, thatis lim = =1
n=o0 exp{~2"/¢(p)} n=o0 pexp{—2"/¢(p)}

Lemma 2.14 Let /p = /p+ 6(1 — \/p). Then there ezists € > 0 such that

1< 0
£(p)
Proof. We use the same method as in Section 3 again. Let

<4 for l—-e<p<l

Un(p) = 32n(p) — 200 (p)- (2.37)
To apply (2.9), first we prove (@n(p),@n(p)) € D. (Recall D = {(z,y) : 0 < £ < y < 1}.) Since
Un(p) = On(p) + 3{Bn(p) — On(p)}, it is enough to prove &, (p) > On(p). Now

3.(p) = p'xP, (0 a,inF,)

= P,(O ¢ a, in F,|a, is open)

13,,(0 © an in F,l|a,,b, are open),
p~3 x P,(O & a, and O & b, in F,)
p~% x 13,,(0 ¢ a, and O & b, in F,)

On(p)

IN

= f’p(O & a, and O & b, in F,|a,,b, are open).

Hence we have &,,(p) > ©,(p), which implies (6, (p), ¥n(p)) € D.
A direct calculation from (2.35) and (2.36) shows

6:(p) — 61 (p) 6(1 - /)2 +204(1 - p)* + -+,

i

0 -0(p) = 120-vp)P+---,
83(5) - O1(p) = —6(1—p)?2+204(1— p)*+---,
T35) - Tip) = -120-vp)P+---.

We can take £ > 0 such that

~

03(5) < 61(p) < 02(5), T3(h) < T1(p) < ¥a(p)

forl-e<p<]1.
Now we apply (2.9). Wehaveforn>land1—-e<p<]1,

On+2(5) < On(p) < Bnta () and ¥ni2(p) < ¥n(p) < Tnia(H)-
We see $n+2(ﬁ) < ®,.(p) < ®py1(P) by (2.37), so we have the conclusion. O

Proof of Theorem 2.3. Note that p = {\/p+6(1 — /p)*}> =p+3(1—p)> +0o((1 —p)?) asp —+ 1. We
have Theorem 2.3 in the same way as in Section 3.
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£ 3E Asymptotic behavior of the
correlation length

3.1 Introduction

Percolation is a model of disordered media. It is very attractive because it is one of the simplest model
to observe phase transitions. In recent years percolation has been studied well, most of the studies are on
periodic graphs such as Z?. See [2], 3], [4] and references there in. The definition of the periodic graph
is mentioned in [3].

In this paper, we study percolation on fractal lattices, which are not in the class of the periodic graphs.
There are some reasons why we consider percolation on the fractal lattices. First, many objects in nature
has fractal shapes. For instance, imagine water and nourishment percolating in the roots or branches
of a tree. Second, we want to justify scaling relations of percolation. To applicate the renormalization
methods, self-similarity of the graph is more important than periodicity. Third, we have mathematical
interests on fractals. Most of all, studies of self-avoiding walk on Sierpinski gaskets ([5],[6],[7]) gave us
good motivation.

To state problems, first we mention about bond percolation on 2-dimensional pre-Sierpinski gasket as
in [1]. Set O = (0,0),a = (1,0),b = (1/2,v/3/2). Set G° be the graph which consists of the vertices and
edges of the regular triangle AOab. Let {G™}r=¢,1,2,... be the sequence of graphs given by

G™t! = G"U(G™ + 2™a) U(G™ + 2"b)

where A+a={x+a :x€ A}. Let G = U G™. We call G the pre-Sierpinski gasket. (Figure 3.1) Note

n=0
)
that G = ¢l ( U 2_"G) become the Sierpinski gasket. Let V be the set of the vertices in G, and E the
set of the edgzgoin G with length 1.

Let us define the Bernoulli bond percolation on the pre-Sierpinski gasket. Each edge in E is open
with probability p and closed with probability 1 — p independently. Let P, denote its distribution. More
precise definition of the probability space will be mentioned in Section 2. We think of open bonds as
permitting to go along the bond. We write v & v’ if there is an open path from v to v'. We define open
cluster C ={veV:0 e v}

We define the percolation probability

8(p) = Pp(|C] = o) 3.1)
where |C| denotes the number of vertices contained in C. Let p, denote the critical point; that is

p. = inf{p : 6(p) > 0}. (3.2)

27



O a 2a 92, 2%a
Figure 3.1: 2-dimensional pre-Sierpinski gasket
p. = 1 for the pre-Sierpinski gasket because it is finitely ramified.
Remark. All graphs we treat in this paper are finitely ramified and p. = 1.

The correlation length is defined by

¢p) = lim {-51; log P,(O 2"a)}—l. (3-3)

The existence of the limit is proved in [1]. Note that the definition above is equivalent to

-1
&(p) = lim {-2in log P,(O ¢ 2™a in G")} (34)
or
. 1 n " 3 n -t
g(p)znleréo{—z—nlogPp(OH2 aorO+2"Min F )} . (3.5)

It is clear that £(p) — oo as p — 1. We observe the asymptotic behavior of £(p), how fast it diverges to
infinity. We write f(p) ~ g(p) as p = po if log f(p)/log g(p) = 1 as p = po.

Theorem 3.1 (2-dimensional pre-Sierpinski gasket)

{(p)zexp{l—oil(l—p)ﬂ} as p— 1 (3.6)

This result is not contained in [1).

We mention about results and conjectures of percolation on Z¢. It is conjectured (see [2])

E(p) = lpc _pl—y(d) as p—rpe.

The value v(d) is called the critical ezponent. It is proved that v(d) = 1/2 for sufficiently large d ([8]), and
conjectured v(2) = 4/3 (see [9]). Our result is quite different from results on Z¢. In physical literature
([10]), this remarkable difference between on Z? and on Sierpinski gaskets was suggested by using formal
renormalization arguments. Our contribution is that we prove Theorem 3.1 rigorously. And we apply our
method to another fractal lattices. We obtain similar results, Theorem 3.2, Theorem 3.11 and Theorem
3.12.

28



The organization of this paper is as follows: we state the precise definition of bond percolation on
d-dimensional pre-Sierpinski gasket in Section 2 and observe the asymptotic behavior in Section 3. In
Section 4 we study percolation on the pentakun lattice and the snowflake lattice, which are also in the
class of fractal lattices.

3.2 Definition of bond percolation on d-dimensional pre-Sierpinski
gasket
3.2.1 Precise definition and the main theorem

In this section we state the definition of percolation on d-dimensional pre-Sierpinski gasket for d > 2.
It is well-known that there is a compact set K of R? such that

N
K = fi(K) (3.7
=1
where f1, fa,..., fn : R = R? are contraction mappings. K is called self-similar set.

Sierpinski gasket is an example of the self-similar sets. Let ag = O be the origin of R?, and let a;
(i = 0,1,...,d) be vertices of the d-dimensional simplex with |a; — a;j| = 1 for i # j. Set contraction
mappings

1
fi(x) = 5(3( —a;) +a; (3.8)

for i =0,1,...,d. The solution of equation (3.7) for (3.8) is d-dimensional Sierpinski gasket.

d+1

Remark. U ( fi(K)N f;(K )) consists of ( ; ) points. In this sense, Sierpinski gasket is classified
i#j

into finitely ramified fractal. Notions of finitely ramification are defined rigorously in [11], [12].

Let V° = {0, a;,as,... ,aq4}, and let E® = {&@;@; : 0 <i < j < d}. Set

14 {(filofizo---of,-")v:veVO,(il,iz,...,in)e{O,l,...,d}"}, (3.9)

Bt o= {(uofuoofi)ere€ B (iiz,. . yin) € {01, ayn}. (3.10)

Let V™ = {2"v : v € V"} and E™ = {2"e : e € E"}. Here we write 2"e = 2"v2"v’ where e = vV’

We define the vertex set V = U V™ and the edge set E = U E™. We call the graph G = (V,E) d-
n=0

dimensional pre-Sierpinski gasket. Note that (i) all edges ig—l% have length 1, (ii) all vertices except
O have four adjacent edges and vertices. We denote a? = 2"((f; 0 fio--- o f;)a;) = 2"a;, and we see
|al*| = 2™. (See Figure 3.2.)

Now we define the probability space with density parameter 0 < p < 1. We take configuration space
Q = {0,1}F. For w = {w(e) : e € E} € Q, we call the edge e is open if w(e) = 1 and e is closed if
w(e) = 0. Let 4 = p be marginal distribution on e such that

pwe)=1)=p, pwEe)=0=1-p
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Figure 3.2: G? of 3-dimensional pre-Sierpinski gasket

independently of any other edges and identically distributed. We take the product probability mea-
sure on {2 such that P, = HE te. We call v is connected to v' if there is a sequence of vertices vo =
e€

V,V1,...,Va_1,V, = V' and sequence of open edges e;,es,... ,e, such that e; = V;—;v; for 1 < i < n.
We denote this event by v «» v’ and the complement by v ¢ v. We call C(v) = {v' € V : v & v/}
the open cluster containing v. Especially we denote the open cluster containing O by C. Percolation
probability and critical point are defined as (3.1), (3.2). We easily see p. = 1 for all d.

The correlation length is defined, equivalent to (3.3), as follows:

E(p) = Ji’rr;o{—zinlog P(0 & a;‘)}_l. (3.11)

We state the main theorem.

Theorem 3.2 (d-dimensional pre-Sierpinski gasket)

£(p) ~ exp{%(l - p)—(d’-d)} as p— 1. (3.12)

This theorem contains (3.6).

3.2.2 Existence of the correlation length

To simplify notations, we often denote O by af. Let A = {A\} be a partition of {0,1,2,... ,d} and A
the set of all partitions. We define

Q4 ={a] & af forie Ay,j € Ay and A = X, a ¢ af otherwise }. (3.13)

Q7 tn G™ denotes the event that Q7 occurs in G™, where G™ = (V™, E™) is the subgraph of G. We write
Q% in G™ + af for the event shifted to G™ + al for short. We define the connectivity function

4(p) = Pp(Q} in G™)
and

50) =Y 25(p)

BeB
for B C A. It is clear that these probabilities are not changed by the shift of a.
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For the family of {®7%(p)}aec.a, we give a numbering 7 (p), ®3(p), ... , ®]'(p) where [ is the cardinality
1

l

of A. Note that Y &} (p) = ®%(p) = 1. Set D = {(p1,p2,---,m) € [0, 1] : > pe =1} Ttis clear
k=1 k=1

p" =p"(p) = (7 (p), ®3(p), ... , ®['(p)) € D for all n, p by the remark above.

Proposition 3.3 There ezist functions {Fy}1<k<i: D — D such that
Fe(p™) = 2;" (p)
for1 <k <L
This proposition says that the probability 7+*(p) is given as a function of ®7(p), ®3(p),..., 2} (p).
Note that we know whether an event QZ‘“ in G™*! occurs or not whenever we know for all 0 < i < d

which event of {Q7%, in G™ + al*} 4rc4 occurs. This is because of the finitely ramification of Sierpinski
gaskets.

Remark. We have the concrete expression of recursion functions for d = 2 ([1]). Let 4; = {{0,1,2}},
Az = {{0,1},{2}}, A5 = {{0}, {1}, {2}}. Set &3 (p) = &7, (p). By symmetry, &7 (p)+323(p)+23(p) = 1.
We have
) = (27(0)° +6(27 ()25 (p) + 387 (p)(23 (0))7,
257 (p) (27 (p))* + 287 ()23 (p) + (23 (P)* — 4(27(P)* 23 (p)
—(27(P)° + (23 ().

We define
n={af ©a}inG" fori€ Ay,j € Ay and A= X"}
(Compare this definition with (3.13).) And the definitions of R} in G™, R in G™ + af’ follow above. Let
3(p) = P,(Rj in G).
We confirm the existence of correlation length. We write [0,1] = {{0,1},{2},{3},...,{d}}.

Lemma 3.4  Set ¥"(p) = ¥[; ,)(p), that is the probability of the event O & al in G™. The limit

&) = lim {~log"(p)} (3.14)

n—+oo

exists. We call £(p) the correlation length.

Remark. We give some remarks about definitions of £(p). (3.14) differs from (3.11), but there is no
effection of restriction in G™ because nlgr;<> {P,,(Rf{)’ll in G™) /P,,(R['(‘),I])} = 1. (See Lemma 2.6 in [1].)
Set Apmin = {{0},{1},...,{d}}. (The meaning of the minimum will be mentioned in the next section.)
Set ¥(p) =1 — $7% . (p), the probability of the event that there exist 4,7 (i # j) such that a?
a’ in G". Then
-1
&) = lim { - log#"(9)}
because ¥"(p) < ¥"(p) < c¥"(p) for some constant c. This implies the equivalence between (3.4) and
(3.5).

We prepare two propositions to prove Lemma 3.4.
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Proposition 3.5  There ezists a constant ¢ which depends only on d such that

(T™(p))? < ™ (p) < (T ())* + (2" (p))°- (3.15)

Proof. The left-hand inequality is clear because (RE},,I] in G™) N (R,,; in G™ + al) C (Rﬁ)"'ﬁ in G™*t1).
For the right-hand side, we consider the self-avoiding walks from O to a} in G 1 There is only one walk
with length 2. Another walks are with length more than 3, and the number of walks are finite. (The

number is depend on dimension d.) O
The next proposition is a generalization of proposition 2.5 in [1].

Proposition 3.6  Suppose that a strictly positive sequence {ZTn}n=0,,.. and a constant a > 1 satisfy

0 < ¢ = liminf x;; < lirrln_}solip x;; =c¢ <0 (3.16)
for all n. Then there exists B > 0 such that
cf’i—l < liminf e’ < lim sup e’ < czﬁ. (3.17)
s hmint —>— = hmsup ——— =
Proof. Set y, = Tpny1/zS. We see
L oogz, = = 1og(xg" : ‘””(1’""1 : zg:_j R ) (3.18)
am an zg zf T3,

_ 11 1 ) 1
= logx0+a ogyo+§ 0g Y1 +-'-+$logyn_1.

The right hand side of (3.18) converges as n — 0o since y, is finite. Let —3 be the limit. From (3.18) we

see —a™B —logz, = a 'logy, + @ 210gynt1 + - --. So we have
1 1
] —am" — <
a-—1 log(%%fnym) < —a”f—logan < a-1 log(iuzrzlym)

by assumption (3.16). This completes the proof. O

We see the justification of the definition (3.14) as a corollary of the above proposition. Set z, = ¥"(p)
and a = 2. By (3.15), we can take ¢; = ¢ = 1 for p > 0. (Note that ILm ¥"(p) = 0 for p < 1.) We have

I’Lm {e=2"/¢®) /g™ (p)} = 1 where £(p) = B~!. We see that £(p) is a continuous function by the proof
n— oo
above. Clearly £(p) is increasing by definition.

3.3 Asymptotic behavior of the correlation length
3.3.1 Sufficient conditions to have the asymptotic behavior
We give some definitions first in this section. We introduce the partially order < on A such that
A< A" <= Aisasubpartition of A"

That is Ay C A, if AxN A, # 0. It is clear that Apme: = {{0,1,...,d}} is the maximal partition and
Apmin = {{0},{1},...,{d}} is the minimal partition of A. A subset T C A is increasing set if and only if

I<I'andlIeZl = TI'e€el
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holds. & denotes the set of all increasing sets.
An event Q C  is called increasing event if and only if

weQandw(e)<uw'(e)forallec E = w'€Q

holds. For instance, @7 is not an increasing event for A # Anes, and RY is an increasing event for any

A. Wesee QF = U Q7 is an increasing event if and only if 7 € S.

Iez
The next lemma is the key to prove the main theorem.

Lemma 3.7  Suppose
o7 (p) < 7' (p') (3.19)
for allT € 3. Then
o7 (p) < 9712 (0) (3.20)
holds for all T' € Q.

We give a proof for a modified version of Lemma 3.7.

Lemma 3.8 Let p be the Lebesque measure on [0,1] and v be a probability measure on A. Let F :
[0,1] = A be a function that F~1(A) is u-measurable for all A € A. Suppose

pF~H(I) < v(I) (3.21)
for all T € S. Then there is a function G : [0,1] = A such that
uGl=v (3.22)
and
F(z) < G(z) (3.23)
almost surely.

We prove Lemma 3.7 as a corollary of Lemma 3.8. There is a function F with uF~1(4) = &7 (p),
because ([0,1]) = ®4(p) = 1. Set v(A) = 75 (p'), and (3.19) induce (3.21).

Suppose G(x) with (3.22) and (3.23) is given. Let G, be a copy of G™*! and G, a copy of G™*2. 4.1
denotes the (d + 1)-dimensional Lebesgue measure on [0, 1]4*!. Regard u441 as the probability measure
which has the uniform distribution. Assume we pick a point x = (2, Z1,... ,Zq4) With respect to pgy1-
We determine what occur in G; and G2 by the following rule. For each 0 < i < d, we regard as

the event (QF(,,) in G" +a7’) occurs in G™ + af (3.24)
for G;, and
the event (QF{,,, in G™*! + a*!) occurs in G™t! + alt! (3.25)
for G. The events (Q7*! in G;) and (Q7*? in G,) are measurable by Proposition 2.1. We see

7+ (p) = par1(x € [0,1)4F! : Q4™ in Gy occurs by rule (3.24) )
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and
2 (p) = pat1(x € [0,1]%F! : Q32 in G occurs by rule (3.25) )

by construction. If 7' € & we have (3.20), because F(z;) < G(z;) and Q% in G™ is increasing for all n.

Proof of Lemma 3.8. We write (v—pF~1)(-) = v(-)—puF~1(:). Set At = {A € A: (v—pF~1)(A4) >0},
A" ={A€eA: (v—pF')(4) <0}. If A~ =0, then take G = F and the proof is finished.

Pick a maximal element K of A~. Set Ux = {A € A : K < A} and Uf = Ux N A*. Clearly
Ug = Uk \ {K}, which contains Amqz. For Uj;, we give a numbering Uy = Amae, Us, - - . ,Uk. Set

k
M; = max{~(v - pF ) (K) = D (v~ uF~)(U;),0}.

j=it1
Remark that M; is non-decreasing with respect to i. Set Ay, = M; and Ay, = M; — M;_; for 2 <i < k.
We see

Ay, < (v — uF~)(U5). (3.26)
For 2 <i <k, (3.26) is clear. Fori =1,
(v —pF~1)(Uy) - My (3.27)

k
(v = uF ) (Uh) + (v — uF ) (K) + D (v — uF ) (U;)

=2

v

(v = uF~)(Ux) 20

Il

since Ug € .
We construct F' : [0,1] — A as follows.
(i) F(z) = F(z) if F(z) # K.
(ii) Set F~1(K) = S. Take Sy C S such that u(Sp) = v(K), and define F(z) = K for z € S,.
(iii) Take a sequence of subsets {S;} for 1 <7 < k such that
(@) SinSy =0ifi#d,

k
®) [Jsi=5\5,

i=1 :

() n(Si) = Ay,.
k

It is possible to satisfy (a), (b) and (c) because EAU" = M, = —(v — uF~1)(K). We define F(z) = U;
i=1

ifx €S;.
Clearly this map satisfies F(z) < F(z) by construction. Moreover,
(v—pF)(I) >0
for any Z € <. To prove this inequality, we may assume K ¢ Z.
=pF D) 2 w-pFHD- Y Ay
UieUutnz

> W-pF YD)+ -uF ) K) - Y (v-uF)U)
UseUtnz

= (W= uF)(I) + (v - pF)(K) — (v - pF 1)U N T)
= (v—uF YUk NI)>0.
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We use (3.26) and (3.27) for the second line.
Replace F by F and repeat this procedure to be A~ =0. O

3.3.2 Probabilities of increasing events on Sierpinski gaskets

We apply Lemma 3.7 to see the asymptotic behavior of the correlation length. Owing to the lemma, if
we take p, p' and n which satisfy (3.19) for all Z € S, then for any m > n we have

o7 (p) < @7 (D) (3.28)
!
for all 7' € Q. By definition (3.14), we obtain EE((I;)) > 2 from (3.28). Consider the converse. If we take
p, p' and n which satisfies
27(p) > 271 (#) (3.29)
£(p') o .
for all 7 € Q, we have 0] < 2. So it is the problem how to take p, p' and n to satisfy (3.19) or (3.29).
Lemma 3.9
. E(p+ k(1= p)¥ i) . 2¢
ll:)n_&{lf ) >2 if k> R (3.30)
and ey J
. £(p+ k(1 —p)¥ ) . 2
lim su <2 if k< -—.
p—1 P &(p) N / d

Proof. We prove (3.30). It is sufficient to show (3.19) for some n. We want to have the expansion of
®72(p) with respect to (1 — p) because we observe probabilities near the critical point. First, we consider
the case Z = {Anaz }-

Proposition 3.10  There ezxists N = N(d) such that for anyn > N

®%.... (0 (3.31)

Amaz

= 1-(d+1)(1-p)*+ V(1 -p) - 2%d+ Dn(l - p)* + W(n,1-p)
where V, W are polynomials of finite degree and V (z) = o(z%), W(n,z) = o(z¥) as z — 0.

Proof. Observe when the event Q%  in G™ does not occur. If it does not occur, at least one vertex of
ag,al,...,a] is not connected to any other d vertices in G™. We say the vertex is isolated.

We consider two typical case for O = a} to be isolated. If all adjacent edges of O are closed, O cannot
be connected to any other vertices. This probability is (1 — p)¢. Consider the second case. For fixed
k(1 <k <n-1),let EF" be set of adjacent edges of a¥ contained in E*¥ and EF* set of those not
contained in E*. If edges in Ef~ or in EF* are all closed, it cannot go through a*. This probability is
approximately 2(1 — p)¢ if p is near to 1. So the probability that it cannot go through a¥, a%, ... ,ak is
approximately 2¢(1 — p)?°, which is independent of k.

We see

P,(O is isolated in G™*') — P,(O is isolated in G™) (3.32)
= 241-p)* +o((1-p)*).
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The first term of the second line corresponds to the second typical case. Except the two typical cases
mentioned above, it is necessary more than d? edges to be closed to make the event (O is isolated in
G™*1) \ (O is isolated in G™) occur when n is sufficiently large. So we obtain (3.32). Thus

P,(O is isolated in G™) = (1 —p)? + V(1 — p) + 2¢n(1 —p)d2 +o((1 - p)dz).

d
Since @3 (p) = ﬂ(a{-‘ is not isolated in G™), we have (3.31). O
=0

Next, set Z = A\ {Amin}, which is also an increasing set. Observe when the event Q4_. in G™ occur.

(Recall (3.13), the definition of Q. The event Q4. can be regarded as all aZ,al,...,a" are isolated.)
Suppose ag,al,...,a}_, are isolated. Then a7} is isolated automatically. First typical case is that all
adjacent edges of d vertices are closed. This probability is (1 — p)dz. Consider the second typical case.
That is, it cannot go through af, a§, ... ,a% from O and all adjacent edges of af,...,a%_, are closed.
This probability is approximately 2¢(1 - p)?* x (1 — p)4(¢=D_ Take note of the possibility of choice of the
vertices, we have

o7(p) = 1-@% . (p)
1-(d+1)(1-p¥ +V(1-p)—2%(d+ D)n(l — p)* 4 + W(n,1 - p)

where V(z) = o(z%") and W (n, z) = o(z?¥"~4) as z — 0.

As a conclusion for 7 € , the top terms of the expansion of $%(p) with respect to (1—p) depend on the
minimal number of isolated vertices to make the event @7 in G™ does not occur and possibility of choices
of vertices which attains the minimum. m; = m;(Z) denotes the minimal number, and my; = my(Z)
denotes the possibility of choices. As we see, m; =1, mg = d+ 1 for T = {Amaz}, and m; = d,
mg =d+1for T = A\ {Amin}. We conclude

¢7(p) (3.33)
= 1-my(1l -p)?™ + V(1-p) - 2dm1m2n(1 —p)d2+d(m1_1) +W(n,1-p)

where V, W are polynomials of finite degree and V (z) = o(z%™1), W (n, z) = o(z®+4(m1-1)) as z — 0.
Set p' = p+ k(1 — p)¥°~4+1. All we have to do is confirm (3.19). By (3.33), we have

/ n 2 mq— 2 mq—
877 (0") — @2 (p) = (kd — 2 )mumy(1 — p)* T4™ =D 4 (1 — p)* T4m ),

Since ®71!(p'), ®%(p) are of finite degree, we complete the proof. O

Proof of Theorem 3.2.  Set g(p) = log&(p). Note that g(p) is an increasing function. Assume

log 2

lim sup(1 — p)dz_dg(p) <c<
p—1

and we lead a contradiction.

Set h.(z) = c{ —1—} where k = 2¢/d, s = d®> — d. Applying the L’Hospital’s theorem,

(z — kxstl)s Tz

1 — — s\s\/
lim h.(z) = ¢ lim (1= (1= ka*)") = cks.
z—0

22 (& — har ey
That is lirrh h.(z) < log2. Since h.(z) is continuous near to 0, we can pick pg such that
z—

he(z) <a<log2 for 0<z<1-pp. (3.35)
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Figure 3.3: G? of the pentakun lattice

Set 7(p) = p+ k(1 — p)**'. Define p,y1 = 7(p,) inductively, and we see p, is increasing with respect
to n and nli'ngo pn = 1. Let N = N(py) be a large integer. There exists ¢t such that py < t < 1 and
g(t) < c(1 —t)~* by (3.34). For this t, pick N’ with py» <t < pnry1. We see

c
gt) < (].Tt_j-‘- (3.36)
< 2t
(1 -pNnr41)°
c
= he(l=pnr) + el = prry) o he(l = po) +
(1= po)
< (N'+ 1o+ —o0
W+ Dat oy
by the definition of h.(z) and (3.34). On the other hand, we see
9(t) 2 g(pn+) > g(po) + N'log2 (3.37)

by (3.30). Combining (3.36) and (3.37), we have

N'(log2 - a) < a+ - — g(po).

¢
(1 - po)
Take N sufficiently large, that leads to a contradiction. O

3.4 Some other examples; the pentakun lattice and the snowflake
lattice

3.4.1 The pentakun lattice

In this section we study percolation on another fractal graphs. First, we define the pentakun. Recall
equation (3.7). Let ag = O be origin of R?, and let a; (i = 0,1, 2, 3,4) be vertices of the regular pentagon
on R? with |a; — a;4;| = 1. Here we define as = ag for simplicity. Let f; : R? = R? (1 =0,1,2,3,4) be
contraction mappings

1
f,-(x) = ’E(X - a,-) + a; (338)

3+2\/3 The solution of equation (3.7) for (3.38) is called the pentakun. Let V0 =

{ag,a1,...,a4} and E® = {@a; : 0 < i < j < 4}. We define V", E" the same as (3.9), (3.10).

where § =
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Let VM = {f"v:veEV"}and E" = {f"e: e € E™}. We define the vertex set V = U V™ and the edge

n=0
set B = U E™. The accomplished graph G = (V, E) is the pentakun lattice. (See Figure 3.3.) Notations

n=0
follow those in Section 2 and 3. The pentakun lattice is not symmetric with respect to the change of a
and a}, which differs from Sierpinski gaskets.
We consider bond percolation on this graph. P, denotes its distribution. We define correlation length

n—oo

£(p) = lim {——%logPp(O o a{')}_l (3.39)

where a = 1 + /3. a means a scale factor. Remark that o does not coincide 3, the ratio of contraction.
This constant is determined by the length of the shortest path from O to a}. The exsistence of the limit
in (3.39) will be mentioned below.

On this graph, we have a concrete expression of the recursion formulas. We concentrate three connective
probabilities, ©F(p) = ¥F ,,(p), OF;(p) = ¥f; (p) and OF;(p) = ¥f, 5(p). (Here OF(p) is the
probability of the event O ¢ a} and O ¢ a} in G™.) We have

07 (p) = (0} (1)’ + (07()*(07:(»)* - (07 (1)*(©71(P))*, (3.40)
el () = O (p)(OH (M) + (07(0)*(071(p)* — (07 (1) (O71(P), (3.41)
o7 () = 207(p)(07(r)*071,(p) + (07 (p)*(O7:(P))*O711(p)

-2(071(p))*(©7:(p))*.
We see

07 (p)©7(p) < O711(p) < O71(p) < OF (D). (3.42)

We use FKG inequality for the first inequality. The second inequality is given by a symmetry of the
graph. Combining (3.40) - (3.42), we have
o7t (p) . o7 ()

lim ————= = lim

nooo (O, (D)) oo OF ({07, (0))F (3.43)

Then n+l n+l1
lim i (p){G)” (p)} =1 where a=1++V3

n-r00 {@?(p){@)?I(P)}a }a i

follows. There exists the limit

i) = Jim { - log(@7(n) O} ()}

n—

by Proposition 3.3. Thus we obtain

€@ = lim{-—10507()}
(3 + V3)é(p).

Remark. We mention about the length of the shortest path. We denote the number of edges of the
shortest path from v to v/ by d(v,v'). Set d? = d(O,al). It is clear d7' = 2d} and dj*' = d + 243,
which correspond to (3.43). Moreover,

dp {-a""logOF ()}~ _ V3-1).

lim — = lim
n—oo d} n—oo &(p)
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Figure 3.4: G? of the snowflake lattice

We proceed to have the expansion of ®%(p). Here we consider two typical case for O to be isolated in
G™. Take note of E°. We write e; = a?a—?_‘_l. If at least one pair of edges (ep, e3); (eo,e4), (e1,e3) or
(e1,e4) are both closed, then O is isolated. This probability is approximately 4(1 — p)2. Consider the
second typical case. Set b} = g"*! fy(ap), by = B+ fi(ay), b} = "1 fy(a3) and b} = g7+ fy(ay).
(Here b3 = a?, by = a}.) For fixed k (1 < k < n — 1), if it cannot go through at least one pair of
vertices (b%,b%), (b%,bk), (b%, bk) or (b¥, b%), then O is isolated. This probability is approximately
4-8%(1 ~ p)*, which is independent of k.

Generally for T € G, we have

7(p) =1 —4™my(l = p)*™ + V(1 —p) — 4™ mym, - 4-8%n(1 — p)?™+2 4+ W(n,1 - p)

where m;, m, are defined as Section 3, and V(z) = o(z?™), W(n,z) = o(z®>™1*2) as x - 0. We obtain

the estimate of the correlation length

1igg?fw—if-((;'—”)312a i k>32

and k 3
lim sup M <a if
p—1 €(p)

As a conclusion, we have the following theorem.

k < 32.

Theorem 3.11 (the pentakun lattice)

1
f(p)wexp{%g—(l—p)'z} as p— 1.

3.4.2 The snowflake lattice

Next, we consider percolation on the snowflake lattice. We define snowflake. Let ag = O be origin of
R?, and let a; (0 < i < 5) be vertices of the regular hexagon on R? with |a; — a;,1| = 1. Here we define
ag = ag for simplicity. And let a_; be the center of the hexagon. Let f; : R2 - R? (-1 < i < 5) be
contraction mappings

fi(x) = z(x —a;) + a;. (3.44)
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Figure 3.5: O & v and v & a3™*! induce O ¢ a3™*!. B,(0 & v) > P,(O ¢ a;™*!) by symmetry.

The solution of equation (3.7) for (3.44) is called the snowflake. Note that the number of contraction
mappings is 7, which is not coincide the cardinality of VO. This is the difference from the examples
mentioned above. Let V° = {ag,a;,... a5} and E° = {@@;7 : 0 <i < 5}. We define V', E*, V", E™,
V and E in the same way as the previous sections. The accomplished graph G = (V, E) is the snowflake
lattice. (See Figure 3.4.)

Set ©F (p) = ¥y (), OF:(p) = ¥y 1(p) and OFy;(p) = ¥, y(p). We have
{07} < O71;(p) < OF1(p) < OF (D). (3.45)
See Figure 3.5 to have the first inequality. We have

O _ 01 (o)
) R T (249

for some C < oo. To see (3.46), estimate @7+ (p), OFF ' (p) like (3.15) and use (3.45). Thus the limit

() = lim {—%logPp(O o a?)}_l

n—oo

- (im{-eon) )

n—oo

exists by (3.17).
For Z € &, we have

32(p) =1 —4™my(1 - p)>™ +V(1—-p) — 4™ 8mimen(l — p)*™* + W(n,1 - p).
We have the following theorem.

Theorem 3.12 (the snowflake lattice)

f(P)%GXD{I%g-g(l—p)"‘} as p— 1.
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B 4F Existence of phase transition of
percolation on Sierpinski carpet
lattices

4.1 Introduction

Percolation is studied as a very important subject in statistical mechanics because this is one of the
simplest models which contains phase transitions of disordered media. Percolation has close relations
to disordered electrical networks, ferromagnetism, epidemic models and so on. Percolation models were
proposed by Broadbent-Hammersley [1], and have been well studied in the last thirty years. See Grimmett
[7] to view the whole of this field.

In this paper we consider percolation on fractal-like lattices. A fractal-like lattice is a graph which
corresponds to a fractal. It has a kind of self-similarity but it may not have translation invariance.

Now we explain two well-known examples, the Sierpinski gasket and the Sierpinski carpet. The former is
a finite ramified fractal and the latter is an infinite ramified fractal. In a previous paper [14] we analyse
percolation on the Sierpinski gasket lattice, which has no phase transition. The non-existence of the
phase transition is induced by the character of finite ramified fractals. In this paper we treat Sierpinski
carpet lattices. Sierpinski carpet lattices is the class of graphs which correspond to generalized Sierpinski
carpets and it contains infinite ramified fractals. Kumagai [9] gave a sufficient condition for Sierpinski
carpet lattices to have a phase transition. We will describe his results below.

We define the Sierpinski carpet and generalized Sierpinski carpets on R? as follows. Set L > 2 to be
an integer and set Ty = {0,1,...,L — 1}2. For (i,5) € T, we set an affine map ¥(; ;) from [0, 1)? to
[¢/L,(i + 1)/L) x [j/L,(j + 1)/L] which preserves the directions. For a nonempty subset T' C Ty, it is
well-known (see Falconer [6], for example) that there exists a unique nonempty compact set K7 C [0, 1]?
which satisfies the equation

Kt = | ®.(K7).

teT
We call these K7’s generalized Sierpinski carpets. The Sierpinski carpet is an element of generalized

Sierpinski carpets.

Example 4.1 Set L =3 and T = T3\ {(1,1)}. Kr is the Sierpinski carpet.

We remark that the Sierpinski gasket is also an element of generalized Sierpinski carpets.
Example 4.2 Set L =2 and T = T3\ {(1,1)}. Kt is the Sierpinski gasket.

Let us define the graph corresponding to K. Set

Fp = U W, 0¥, 0---00, ([0,1]).

ti,t2, - tn €T
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Figure 4.1: The Sierpinski carpet lattice, G for = T3\ {(1,1)}

Note that K7 can be constructed as the limit of F#. Set a graph G3 = (V(G%), E(G%)), where V(G%) =
Z? N L"F} and E(G%) = {{u,v) : u,v € V(G}),

|u — v| = 1}. Here we write (u,v) as a bond with endvertices 4 and v. From now on we assume through
this paper that Kt is connected, and

(0,0) € T. (4.1)

Under these assumptions we set Gr = Uoe, G3. That is, V(Gr) = Uj., V(G}) and E(Gt) =
U, E(G}). Note that V(G%) and E(G%) are increasing sequences with respect to m under (4.1).
We call the family of G corresponding K7's Sierpinski carpet lattices. The Sierpinski carpet lattice
given in Figure 4.1 is an example of Sierpinski carpet lattices.

We consider bond percolation on Gr. Set 0 < p < 1. Each e € Er is declared to be open with probability
p and closed with probability 1 — p independently. We denote the product measure by P,. We define
8(p) = P,(|C(0)| = oo) where C(0) is the open cluster containing the origin and |C(0)| is the number
of vertices in C(0). Let p.(Gr) = inf{p : 8(p) > 0}. We study the problem of finding a necessary and
sufficient condition for T to be p.(Gr) < 1.

The difficulty of this problem is that we cannot apply Peierl’s argument (see [7], for example) because
the ratio of the holes of G tends to 1.

In the case of L = 2, we can completely answer the problem; P.(Gt) < 1if and only if T = T;. Hereafter
we assume L > 3. In [9] Kumagai obtained a sufficient condition for this problem. Set 80;,:T = {(0, ) :
0<j<L-1}U{(L-1,j):0<j<L-1}U{(,0):0<i<L-1}U{(;,L~1):0<i<L-1}.

Theorem 4.1 (Kumagai [9]) p.(Gs,,,T) < 1.
By the monotonicity, that is T D T' implies p.(Gr) < p.(Gt'), We see p.(Gr) < 1 if

T D 0;n:T. (4.2)
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In this paper we give a weaker condition than the theorem above. We write T; = {j : (0,j) € T},
T,={j:(L-1,5) €T}, Ta={i: (5,0) € T} and T, = {i : (i, L — 1) € T}. We say T is connected if for
any t,t' € T there exists a sequence t; =t, ts, ..., t, = t' which satisfies t; € T and |t; — t;41| = 1 for
1<i<n-1.

Theorem 4.2 Assume
T \ {t} is connected for any ¢t € T (4.3)
and
T;NT,| >2and |TyNT,| > 2. (4.4)

Then p.(Gr) < 1.

0in: T satisfies (4.3) and (4.4), so this theorem contains Theorem 4.1. We will give examples to which
Theorem 4.2 is applicable but Theorem 4.1 is not applicable. Moreover these conditions will be further
relaxed as we explain in the following sections.

Remark. If T O T' and T" satisfies (4.3) and (4.4), then p.(Gr) < 1 by monotonicity. This is a trivial
extension of Theorem 4.2.

We note the existence of phase transition on general graphs.

Héaggstrom (8] showed that if the maximum degree of the vertices is finite then the existence of phase
transitions of bond percolation, site percolation and the Ising model are equivalent. So we can consider
the critical phenomena of bond, site percolation or the Ising model on Sierpinski carpet lattices.

For a general connected graph G, we define isoperimetric dimension Dim(G) by

Dim(G) = sup{D > 0 : inf |s|afT'|‘ > 0}
where S is a finite connected subset of the bonds of G and 8S is the outer boundary of S. We hope to
clarify the relation between Dim(G) and p.(G). In [2], Benjamini and Schramm proposed the problem of
whether Dim(G) > 1 implies p.(G) < 1.
We check this problem in the case of Sierpinski carpet lattices. Now we can say only that it seems that
Dim(G7) > 1 implies p.(Gt) < 1, but we do not yet have the proof, and Dim(G7) = 1 does not imply
P<(Gr) = 1. We will discuss about the problem above with giving some examples.
We treat Sierpinski carpet lattices which satisfy (4.3) and (4.4) in Section 2 and give a proof of Theorem
4.2. In Section 3 we discuss the crucial examples which do not satisfy (4.3) or (4.4).

4.2 Proof of Theorem 4.2

To prove Theorem 4.2, we use a fractal percolation technique. See Chayes-Chayes-Durrett [3], Dekking-
Meester {5], Grimmett [7] for details on fractal percolation. To use the technique, we define box-
percolation on Gr. Let

t,J > 0 and there exists (k,l) € T }

By =S L, (i+ 1)L"] x [fL", (j + 1)L :
T {[z (1 )L™ <[5 @ )L7] such that i =k,j =1 mod L
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for n > 0. We say a box b € B} is open if the bottom edge and the left edge of b are open. The probability
of the event that b is open is p?, independent of any other boxes. Note that if there exists an infinite
sequence of connected open boxes then there exists an infinite sequence of connected open bonds, which
implies the existence of an infinite open cluster. We say a box b € B is good if at most one subbox
b’ € bN B is not open. (that is, at least |T| — 1 subboxes of b are open.) For n > 2, we say a box b € B}
is (very)™ ! good if at most one subbox b’ € bN B3~ is not (very)™~? good.

Lemma 4.3 For a sufficiently large p, there exists 0 < § < 1 such that
P,(b € B} is (very)" 'good) > 1 - 6" (4.1)
for any n.

Proof. We write p? = p to simplify the notation. Set fr(z) = z!T! + |T|z/TI=!(1 — z). It is clear that
P,(b € Bk is good ) > fr(p) by definition, and inductively we can see that

P,(b € By is (very)"™! good) > f£(p)

where f is the nth iterate of fr. Let a be the largest solution of fr(z) = z contained in (0,1). Note
that z < fr(z) and f3(z) < 0 in (@,1). We observe that (1 — fr(z))/(1 — z) is decreasing and smaller
than 1 in this interval. If > a, then there exists 0 < § < 1 such that

1- f2(p) <61 - f771(0) <O°(1—fr?(P) <---<"(1-p). O
Proof of Theorem 4.2. At first we assume
T, NT,| >3 and |[Ta NTy| > 3. (4.2)

Suppose b € Bk is good. Then {b' € bN By : b’ is open} is connected because of (4.3). Suppose b € B%
is very good. Then {b” € B} : b" is open and contained in a good

b € bN B} is connected by (4.3) and (4.2). Here (4.2) assures that good boxes b}, b5 € B% are mutually
connected when they are neighbors, even if each of them has one box which is not open. By the same
observation, we can see that if b € B} is (very)™™! good then there exist some sequences of open boxes
from the left (resp. bottom) side of b to the right (resp. top) side of b. We have

b € B} Nb*(0) are all open ,
b' € BL N b*(0) are all good ,

{(ICO)| =00} C{ ---, and . (4.3)
b(™) € Bz Nb"t1(0) are all (very)™~! good ,

Here we denote by b™(0) the box such that b"(0) € B} and 0 € 6™(0). Then by (4.1) and FKG inequality,
we have

8(p) > (1 - 0)ITI(1 - 6?)TI...(1 - 4™)IT)... > 0.
To complete the proof, we show the conditions (4.3) and (4.4) is enough to be P.(Gr) < 1. Set

T2 = {(i,j) : 0<1i,j < L?—1 and there exist (ki,l1), (k2,l2) €T }

such that i =k L+ ks and j =L L+ 12

46



That is, T?(C Ty2) represents the second iteration of T. We can consider that Gr is generated by T2
because G = |Joo, G% = Um_; G¥™. 1t is clear that T? satisfies (4.3) and (4.2) when T satisfies (4.3)
and (4.4). O

By the proof above, we have the following estimate.

Corollary 4.4 Under the same assumptions of Theorem 4.2,
2.(Gt) < Va,
where o is the largest solution of fr(z) = z in (0,1).
Corollary 4.5
pc(the Sierpinski carpet lattice) < 0.9224.

Remark. Under the same assumptions of Theorem 4.2 we can show that pS¢(Gr)

< 1, that is, there exists the phase transition in the case of site percolation on Gr. We also can observe
p¥(GT) < a. Grimmett-Stacey [7] showed

<P (G) < pP(G) <1 - (1-pim4(G))A

c

A-1

where A is the maximum degree of the vertices of G. By using of this inequality, we have p.(Gr) < a,
which is an improvement of Corollary 4.5. In the case of the Sierpinski carpet lattice, L = 3, T =
T3\ {(1,1)} and a = 0.9576 - --. We give a better upper bound in the following proof.

Proof of Corollary 4.5. In this proof we denote the Sierpinski carpet lattice by G = (V, E). We change
the definition of a box being good. For b = [37,3(: + 1)] % [35,3(j + 1)], set

VP={(k,) €EV:3i<k<3(:+1),3 <I<3(+1)},
Vi={(k,)) eV :3i<k<3(+1),3i <I<3(j+1)},
VE={(Bi,)) eV :3i<I<3G +1)},VE={BG+1),)€eV:3j <I<3(G+1}

VE={(k,3j) €V :3i<k<36+1)},Vi={(k3(+1)€V:3 <k<3(i+1)}
and
Eb={(v,v+(1,0) € E:veV}n{{v,v+(0,1)) € E:v eV}

Set G* = (V?, E*) and consider sub-percolation on G®. We say b is good if there exists a open cluster C
of G® which satisfies |C N V| > 2 for n = I,7,d and u. We have

P,(b is good)
= p'® +18p'"(1 - p) + 147p*%(1 — p)? + 704p'®(1 — p)3 + 2129p* (1 — p)*
+4002p'3 (1 — p)° + 4165p'2(1 — p)® + 1780p' ! (1 — p)? + 142p'%(1 - p)® (4.4)
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by direct calculation. We follow the definition of (very)™~! good for n > 2 in the proof of Theorem 4.2.
It is sufficient to be 6(p) > 0 that the probability (4.4) is greater than 0.9577. O

At the end of this section, we comment on Theorem 4.2.

First, we emphasize that this method to show p.(G) < 1 is a different approach from Peierl’s argument.
Peierl’s argument is suitable for graphs which have translation invariance and our method is suitable for
graphs which have self-similarity.

Second, we show that Theorem 4.2 is a true extension of Theorem 4.1.

Example 4.3 Set L >3 and T = {(¢,j) € T :i € {0,1} orj € {0,1}}. Then (4.2) does not hold, but
we have p.(GT) < 1 because (4.3) and (4.4) hold.

Last, we remark on the extension of this theorem to subgraphs in R%, d > 3. We can define d-dimensional
Sierpinski carpet lattices. Set Ty = {0,1,...,L—1}¢, an affinemap ¥;, ;,. . i,) from [0, 1])* to [i /L, (i1 +
1)/L) x [ia/L, (32 + 1)/L] x --- x [¢4/L, (ia + 1) /L], and so on. We call the family of Gt corresponding
Kr’s d-dimensional Sierpinski carpet lattices.

Example 4.4 Set L=3 and T = T3\ {(1,1,...,1)}. Then Kr is the d-dimensional Sierpinski carpet.
We call Gt corresponding this Kt the d-dimensional Sierpinski carpet lattice.

Example 4.5 Set L =3 and T = T3\ {(¢1,%2,... ,%4) : |{{ : 4 = 1}] < 1}. Then Kr is the d-dimensional
Menger Sponge. We call Gt corresponding this Kt the d-dimensional Menger sponge lattice.

Gt in Example 4.4 contains the Z? lattice and Gt in Example 4.5 contains the 2-dimensional Sierpinski
carpet lattice as a subgraph, so p.(Gr) < 1 is clear. Murai [13] studied an asymptotic behavior of p.(Gr)
as d — oo. Generally, if a Sierpinski carpet lattice contains a 2-dimensional sub-Sierpinski carpet lattice
which satisfies the assumptions of Theorem 4.2, then p.(GT) < 1 follows. Moreover, it is easy to modify
Theorem 4.2, being suitable for d-dimensional Sierpinski carpet lattices, to make it is applicable to the

following example.

Example 4.6 Setd =3 and L = 3. Let T = {(i,5,k) : (5,5) € H and k € {0,2}} U{(0,0,1),(2,2,1)}
where H = {0,1,2}2\ {(1,0),(1,2)}.

This G contains Gy (a 2-dimensional Sierpinski carpet lattice) as a subgraph but this does not imply
p.(G1) < 1 because p.(Gg) = 1, as we will show in the next section. But this T satisfies the modification
of (4.3) and (4.4) and we can obtain p.(Gr) < 1.

4.3 Remark on the isoperimetric dimension

In this section we discuss the case where T' does not satisfy (4.3) or (4.4). To study the relation between

the phase transition and the isoperimetric dimension of the graph, we give three examples; G with
I. Dim(Gr) =1 and p.(Gr) = 1,
II. Dim(Gr) > 1 and p.(Gr) < 1,

III. Dim(Gr) =1 and p.(Gr) < 1.

I. The following is a simple example of G on which p.(Gr) = 1 is not so clear.
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Figure 4.1: The image of T' in Example 4.6.

Example 4.7 Set L = 2k +1 (k> 1) and T = {(0,j) : 0 < j<L-1}JU{(L-1,j):0<j <
L-1}U{(i,k) : 0 <i<L-1}. Then Dim(Gr) = 1, because we can take {S,} as Figure 4.3 to satisfy
65| < 8.

Proposition 4.6 Let T be defined in Example 4.7. Then p.(Gt) = 1.

When & > 2, this proposition is shown in Kumagai [9]. Here we give a proof for the k = 1 case, that is
L = 3. (This T corresponds to H in Example 4.6.) Recall the definition of G%., that is G N[0, L"]?. We
say there exists an left-right (resp. top-bottom) open crossing of G% if there exist u € {z = 0} N V(G})
and v € {z = L"} NV (G}) (resp. u€ {y =0} NV(G}) and v € {y = L™} N V(G%})) such that u and v
are in the same open cluster of G%. Set

zn(p) = Pp(there exists a left-right open crossing of G7),
yn(p) = Pp(there exists a top-bottom open crossing of G7).

From now on, we assume 0 < p < 1. For briefly we write z,, and y, instead of z,(p) and y.(p).

Lemma 4.7

nlLrI;O zn =0. (4.1)
Proof. We observe
T < net {1 = (1= 202)®}? < - S {1 = (1 - 20)%P2Y), (4.2)

and z; < 1 induces (4.1). O

By the proof above, we can also see that z, is strictly decreasing with respect to n.
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Figure 4.1: Gr for T = T3\ {(1,0),(1,2)}

Lemma 4.8 There exists 3 > 2 and 0 < 6 < 1 such that
T, <67, (4.3)

Proof. To observe the construction of T more precisely, we have better estimate of z, than (4.2). That

is
Ty <Tpoy-{1-(1- xn_z)a}z{l —(Q=-2z,3)° Y <zp_1- (3zp_2)?- (92,_3)*.

Set 2z, = logz, and we have z, < z,_1 + 22,2 + 42,3 + 10log 3. By (4.1), we can pick m for z, being
sufficiently small. Set {Z,}n>m such that Z,, = zm, Zm+1 = Zm41, Zm+2 = Zm+2 and

Zns = Znya + 2Zni1 +4Z, +1010g 3 (4.4)
for n > m. Then z, < Z, for all n > m. By (4.4) Z, can be written as

Zp = 01/\? + oAy + 63)\3

with ¢; < 0 where ); are the eigenvalues of the matrix , A1 > 2 and |[A1] > |Az| > |As]. So

O =
=2 V]
S O =

we can choose A\; > 8 > 2 and ¢ > 0 to be Z,, < —¢8™", that induces (4.3). O

Lemma 4.9
Yman < 2My2" + 7™ 12, (4.5)
Proof. If there is a top-bottom open crossing of G+*™, either of the events (i),(ii) must occur.

(i) There is a top-bottom open crossing in at least one of the rectangles, {[iL™, (i + 1)L"] x [0, L™™"]}

m—1

where i = Yo" 41344 € {0,2}.
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(ii) There is a left-right open crossing in the center subbox (size L™) of the boxes with size L™*!.

As for the event (i) we can take 2™ boxes with size L™ disjointly from each rectangles. That is, {[{L", (z +
1)L*] x [jL™, (j+1)L"]} where j = Z,";Bl 713,71 € {0,2}. In these boxes there must be top-bottom open
crossings, and this probability is not greater than 2™y2" . As for the event (ii) we count the number of
boxes with size L™*!. We see the probability of this event is less than 7™~ !z,,. O.

Proof of Proposition 4.6. Choose 2 < vy < . Set an integer m to be v < m < 4™ + 1, and we have
yn+m S 27n+1y121'1" + 7‘7"95"

by (4.3) and (4.5). Clearly the second term of the right hand side goes to 0 as n — co. For the first term,

we note that y, <1-(1 - p)2n+1 by definition and we have only to prove

lim 27"+ {1- (1-p)2""'}?" =o.
n—oo
This equation is true because 2 < 4. O

Example 4.8 Set 0< I,J < L-1. SetT =T \{(,j):3# J}. Thisis a generalization of Example
4.7. Then Dim(Gr) =1 and p.(Gt) = 1.

By this example, we can see that forany 0 < j < L -1
TN {G,j):0<i<L—1}>2 (4.6)
is a necessary condition of p.(Gr) < 1.

II. Generally speaking, it is difficult to determine the exact isoperimetoric dimension of Sierpinski car-
pet lattices. Osada [11] established the dimension of the d-dimensional Sierpinski carpet, that induces
Dim(Gr) = log(3¢ — 1)/(log(3% — 1) — log(3¢~! — 1)) for the d-dimensional Sierpinski carpet lattices
mentioned in Example 4.4. But if G does not have good symmetries then it seems hard even to be
sure that Dim(G1) > 1. We believe the assumptions of Theorem 4.2 are sufficient for Dim(Gr) > 1, but
we do not yet have the proof. Conversely, we think the assumptions of Theorem 4.2 are stronger than
Dim(Gr) > 1, and we wonder that the proof of Theorem 4.2 is effective for all Sierpinski carpet lattices
with Dim(Gt) < 1. In that proof, we need (4.3) and (4.2) only to assure (4.3). We can change the
assumptions so long as they assure (4.3). If we can show Dim(Gr) > 1 implies (4.3), then p.(Gr) < 1
holds.

Remark. We can see that (4.4) is a necessary condition for p.(Gr) < 1, which is similar to (4.6). So we
should change (4.3) to a suitable alternative.

Example 4.9 Set L =7 and T = T7 \ {(2,4),(2,5),(2,6),(3,2),(3,4),(4,0),(4,1),(4,2)}. In this case
(4.3) does not hold but (4.3) holds, and p.(Gr) < 1.

Example 4.10 Set L >3 and T = {(¢,j) : 1 € {0,1} and 0 < j < L—-1}U{(3,j):0<i<L-1landj€
{0,L —1}}. Then p.(Gt) < 1 holds.

II1. Here we show Dim(Gt) > 1 is not necessary for p.(Gt) < 1. We give an example.
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Figure 4.2: Gr for T =T \ {(1, 3)’ (174)1 (2,1), (2’3)’ (3,0), (3s 1)}

Example 4.11 Set L =5 and T = Ts\ {(1,3),(1,4),(2,1),(2,3),(3,0),(3,1)}. In this case Dim(Gt) =
1 because we can take {S,} as in Figure 4.4 to satisfy |0S,| = 2. On this graph p.(GT) < 1.

In this example the component corresponding (2,0) seems a dangling subgraph, but if we delete (2,0)
from T then p.(Gr) = 1.

We conclude this paper with a further problem; Is p.(Gr) < 1 eqivalent to the condition that Gt contains
a subgraph G with Dim(G) > 17
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£ 5E Non-existence of phase transition of
oriented percolation on Sierpinski
carpet lattices

5.1 Introduction

Percolation is studied as an important subject in statistical mechanics because this is one of the simplest
models which contains phase transitions of disordered media. Percolation has close relations to disordered
electrical networks, ferromagnetism, epidemic models and so on. Percolation models were proposed by
Broadbent and Hammersley [1], and have been well studied in the last thirty years. See Grimmett [7] to
view the whole of this field.

Percolation problems had been studied mostly on Z¢ lattice until recent years. We note that 74 lattice
has translation-invariances. In this paper we consider percolation on fractal-like lattices. Fractal-like
lattices are graphs which correspond to fractals. All of them have a kind of self-similarity, but most of
them have no translation invariances. The Sierpinski gasket and the Sierpinski carpet are well-known
examples of fractals. The former is a finite ramified fractal (that is, it can be disconnected by removing
a finite number of points) and the latter is an infinite ramified fractal. See Mandelbrot [12] for details of
fractals. In a previous paper [14] we have analysed percolation on the Sierpinski gasket lattice, which has
no phase transition. The non-existence of phase transition is induced by the character of finite ramified
fractals. Now we focus on the Sierpinski carpet lattice. The Sierpinski carpet lattice is a graph which
corresponds to the Sierpinski carpet.

Let us define the Sierpinski carpet on R? as follows. For (i, j) € {0, 1,2}? we set an affine map ¥; ;) from
[0,1]% to [i/3, (i4+1)/3] x[j/3, (+1)/3] which preserves the directions. Set T' = {(¢,j) € {0,1,2}?| (i,7) #
(1,1)}. It is well-known (see Falconer [6] for example) that there exists a unique nonempty compact set
K C [0,1]? which satisfies the equation that K = J,cr ¥:(K). We call this K the Sierpinski carpet. Let
us define the graph corresponding to K. Set F™ = Uy, 4, .. 4 e1 Yt 0 ¥e, 0000 ¥y, ([0,1)?). We note that
K can be constructed as the limit of F™. We write kA = {ka| a € A}. Set V™ = Z2 N 3"F". We denote
by ||z|| the Euclidean norm of z. For a vertex set W we define a bond set E(W) = {(u,v)| u,v € W,
llu — v|| = 1}. Here we wrote (u,v) as a bond with endvertices u and v. Set a graph G™ = (V", E(V")).
Note that V™ and E(V™) are increasing sequences with respect ton. Set G = ;e ; G™, that is G = (V, E)
where V = |22, V" and E =, E(V"). We call this G the Sierpinski carpet lattice. We will define
a family of Sierpinski carpet lattices in Section 3.

We consider bond percolation and oriented bond percolation on G. Let 0 < p < 1. Each e € E is
declared to be open with probability p and closed with probability 1 — p independently. We denote by
P, the product measure. Next let us consider a sequence of vertices m = (vo, V1, ,Um) Where v; € V
for 0 < i < m. We say 7 is a path when (v;_1,v;) € E for 1 <1 < m and v; # v; for i # j. We give
a partial order on Z? such that (z1,22) < (y1,y2) if and only if z; < y1 and z2 < y2. We say m is an
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Figure 5.1: the Sierpinski carpet lattice

oriented path when 7 is a path and v;_; < v; for 1 <1 < m. We write u & v if and only if there exists a
path 7 with vg = u, v;, = v and (v;_1,v;) are open for 1 < i < m. We denote C(v) = {u € V| v & u}.
We call C(v) the open cluster containing v, and we denote by C the open cluster containing the origin.
We define 8(p) = P,(|C| = co0) where |C| means the number of vertices in C. Set p. = inf{p| 6(p) > 0}.
We write u — v if and only if there exists an oriented path = with vg = u, v, = v and (v;—1,v;) are
open for 1 < i < m. We define ﬁ(v) ={u€eV|v-ou}, ﬁ, ?(p) and p¢ in the same way as C(v), C,
6(p) and p.. We write p.(S.C.) and p2(S.C.) for p. and p? respectively when we want to emphasize its
dependence on the graph (the Sierpinski carpet lattice in this case).

We explain studies of percolation on Sierpinski carpet lattices. Kumagai [9] showed that p. < 1 for a
family of Sierpinski carpet lattices (which includes the Sierpinski carpet lattice) and studied under an
assumption its critical phenomena and uniqueness of infinite cluster for p > p.. Lii [11] gave an alternative
proof of p. < 1 using a Peierls argument. Shinoda [15] gave sufficient conditions and necessary conditions
to have p. < 1 for generalized Sierpinski carpet lattices. Murai [13] studied an asymptotic behavior as
d — oo of the critical probability of d-dimensional Sierpinski carpet lattices. Dekking and Meester [5]
studied the fractal percolation process (Mandelbrot percolation) on the Sierpinski carpet.

In this paper we study oriented percolation on Sierpinski carpet lattices. Oriented percolation is significant
as a model of disordered media because it has close relations to media of semiconductors, contact processes
and so on. On Z? we may regard this model as a one-dimensional contact process in discrete time. See
Durrett [4] and [7] for details. On Z¢ (d > 2), it is well-known that the critical probability p.(Z?) of
percolation and that B¢ (Z%) of oriented percolation are strictly less than 1. In particular, p.(Z?) = 1/2
has been shown by Kesten [9] and p2(Z?) < 2/3 has been shown by Liggett [10]. We shall determine
the critical probability p7(S.C.) of oriented percolation on the Sierpinski carpet lattice. By definition
p.(5.C.) < p2(S5.C.) is clear. We obtain the following result.

Theorem 5.1 The critical probability ¢ (S.C.) of oriented percolation on the Sierpinski carpet lattice is
equal to 1.

This result is interesting because it shows a difference between the Sierpinski carpet lattice and Z? lattice.
Theorem 5.1 says that there exists no phase transition of oriented percolation on the Sierpinski carpet
lattice, in spite of the existence of phase transition of percolation on it. This kind of extinction of phase
transition had been shown by Chayes [2] and Chayes, Pemantle and Peres [3] in the case of the fractal
percolation process on the unit square. Theorem 5.1 says also that the contact process will die out if
p < 1 on the Sierpinski carpet lattice.
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We give a proof of Theorem 5.1 in Section 2. In Section 3 we consider this problem on a family of
Sierpinski carpet lattices, and give sufficient conditions for non-existence of phase transition.

5.2 Proof of main theorem

In this section we shall prove the main theorem. In this proof, events of a crossing in a rectangle play
important roles. For a rectangle R C R?, we say left-right crossing (respectively bottom-top crossing) of R
exists if u — v for some u on the left (respectively lower) side of R and some v on the right (respectively
upper) side of R. We write LR(R) (respectively BT(R)) for the event. This event depends on the
configuration of {(u,v)| u,v € R}. For a positive integer k, we write z}(p) = P,(LR([0, k- 3"} x [0,3"])).
Note that z}(p) is non-increasing with respect to k. In order to show Theorem 1.1 it is enough to prove

lim z3(p) = 0, (5.1)
because for any n
{ICI = 00} C LR(0,2-3"] x [0,3"]) UBT(0,3"] x [0,2-3"))
which implies ?(p) < 2z%(p) by symmetry. We will use the following lemmas.

Lemma 5.2 Let p < 1. There exist kg > 1 and ¢ > 0 such that

o}, (p) < e (5.2)
for any n.
Lemma 5.3 Let kK > 3. For any n and p,
ot (p) < 22744 (D). (5.3)
Lemma 5.4 For any n and p,
23+ (p) < 23 (p)* + 225 (p). (5.4)
Lemma 5.5 For anyn and p,
z23p) < {1-1-p"" ) (5.5)

We give a proof of these lemmas one by one.
Proof of Lemma 5.2. For m > 1 we define a random variable
X7 = inf{j| there exists w such that 0 <w < 3" and (0,w) = (m,j)}. (5.6)

For convenience we set X§ = 0, and we set X = oo if the right-hand of (5.6) is empty. X is non-
decreasing with respect to m. Set V,, = ([0,m] x [0,00)) NV and E,, = E(V,,). Note that X7, is
determined by the configuration of E,,. For any configuration wy,, of E,, we have

Py X =Xnlwm) < b, (5.7)
P(Xp2Xp+1lwn) > 1-p (5.8)
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It is clear that
zp(p) = Pp(Xig3n < 37)

by definition. Let {Yi}i=12,.. be the sequence of independent random variables with P(Y; = 1) =
1 - P(Y; =0) =1 —p for any i. Then we have

k3"
Pp(Xian £3%) < P(Z Y; < 3")

i=1
by (5.7) and (5.8). The event of right-hand side has been studied well as a sum of independent random
variables, such as random walks (see Spitzer [16] for example). If 1/k < 1 —p then the probability decays
exponentially with respect to 3". O

Remark. Lemma 5.2 is true also on Z?2 lattice. In case of Z? lattice the conditional probabilities in (5.7)

and (5.8) are equal to p and 1 — p respectively.

Proof of Lemma 5.9. We set s = |(k — 1)/2] where |z] means the greatest integer not greater than z.
Note that 2s + 1 < k. We observe that

LR([0,k -3"*1] x [0,3"1!]) C AT U AT

where
AY
Ay

I

LR([0, (3s +2)3"] x [0,37]),
LR([(3s + 1)3", (25 + 1)3"*'] x [2-3",3™*1]).

I

Here we used the property of G that there exists a hole with size 3" x3™ centered at [(2s+1)3"+1/2,3™+1/2].
Thus z;“"l(p) < 2z%,,,(p) follows. We note that k +1 < 3s+ 2 when k > 3, and we have completed the
proof. O

Proof of Lemma 5.4. We observe that
LR([0,2-3""!] x [0,3"%1]) C (A3 N A}) U A3 U Ag
where

A} = LR([0,2-3"] x [0,3"]),

A? = LR([4-3",2-3""] x [2-3",3"F1]),
Ar = LR([0,5-3"] x [0,3"]),

A? = LR([3",2-3"*!]x[2-3",3"")).

We have (5.4) immediately from this relation. O

Proof of Lemma 5.5. Set E™ = {{(m,w),(m +1,w))| 0 <w < 3"} NE. If LR([0,2-3"] x [0, 3"]) occurs,
then at least one bond in E&,._l) /2 must be open and so as in E('an_l) /2 We obtain (5.5) immediately

because |E('§,,_1)/2 |=| Elnsi_1)/2 |=2~*+. O
We give a proof of Theorem 5.1 by using of these lemmas.

Proof of Theorem 5.1. For p < 1 we pick ko and ¢ > 0 which satisfy (5.2). By (5.3) we obtain

2B(p) < 2257 (p) < - < 2SR (p) < oo
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Figure 5.1: the graph of G3,

for n > kg — 5. By this inequality and (5.4) we have
237 (p) < 23 (p)” + ce™Y (5.9)

for some ¢ < 00 and ¥ > 0. If liminf, o z3(p) < 1 then (5.1) follows because lim, oo ce™3"¥ = 0.
Suppose that lim,_, 5 (p) = 1. Pick N such that z}(p) > 1/2 for any n > N. By (5.9) and (5.5) we
have

23 (p)*/? {5 (p)!/* + 2%/ %ce™¥"¥}
z3()¥?{1 - (1-p)*"" +23/2ce=3"%)

=3t (p)

IA IA

for n > N. So we can pick N’ such that z3*t'(p) < z3}(p)®/? for any n > N’. This contradicts to

im0 z5(p) = 1. O

5.3 On generalized Sierpinski carpet lattices

In this section we consider oriented percolation on a family of Sierpinski carpet lattices in Z%, d > 2. Let
a and b be positive integers. We write L = 2a + b. For i = (iy,42,... ,44) € {0,1,... ,L — 1}¢ we set an
affine map ¥; from [0,1]¢ to [i1/L, (i1 + 1)/L] x [ia/L, (i2+1) /L] X - - - x [ia/ L, (iq + 1) /L] which preserves
the directions. Set

T:lbz{(il,ig,...,id)e{O,l,...,L——l}d‘ [ila<i; <a+b-1}< 1},

We take the unique nonempty compact set K7, C [0,1]* which satisfies the equation that K2, =
Uiers, W;i(K¢,). We note that K¢, is called d-dimensional Menger sponge (see [12] for example). Set
Fov=Us i, iners, Uiy 0 Wi 00 U5 ([0,1]%). Set Vi = Z4NL"Fyy and Gyp = (Vi E(V).
We define a graph G2, = (i, Goy, that is G2, = (V3,, E2,) where V3, = U2, V" and B¢, =
Uoe, E(Vf,;,"). As an example, the graph of G}, is illustrated in Figure 5.2.

We consider bond percolation and oriented bond percolation on G¢ ;. We give a partial order on Z¢ such
that (z1,22,...,24) < (41,92, ,¥a) if and only if z; < y; for 1 < i < d. We define 62 ,(p), pc(G2,),
71,,(;0) and E’(Gg,b) in a similar fashion as in Section 1. In case of percolation, p.(G4,) < 1 has been
shown for all a and b in [9]. In contrast we obtain two theorems in case of oriented percolation.

Theorem 5.6 Let d = 2 and a <b. Then p¢(G2,) = 1.
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Theorem 5.7 Let 2 < d <b. Then p2(G{,) =1.

Theorem 5.6 says that on two-dimensional Sierpinski carpet lattices if the ratio of its hole in T‘f,b is not
smaller than 1/3% then there is no phase transition. Theorem 5.7 says that for any d > 2 there exist
d-dimensional Sierpinski carpet lattices on which there is no phase transition. We do not know whether
p2(G3,) = 1 for all d,a and b or not.

Remark. We may define generalized Sierpinski carpet lattices in a different manner. Set L = 3 and
T¢ = {0,1,2}¢\ {(1,1,...,1)}. Let K& be the unique nonempty compact set which satisfies the
equation that K¢, = UieT;"c Wi(K2). K2 is called d-dimensional Sierpinski carpet. Both K{, and K&
are a generalization of the Sierpinski carpet in d dimensions. Let G¢, be the graph corresponding to K.
We note that G¢, contains Z! lattice as a subgraph, and we observe that p2(G2,) < p2(Z¢™!) < 1
when d > 3.

For a rectangle R = [s1,t1] X [$2,t2] X -+ X [8n,tn] C R? we denote by LR(R) the event {u —

v for some u,v € R with u; = s;,v; = t;} where u; and v; mean the first coordinate of u and v re-

spectively. Set z},(p) = Po(LR([0, kL] x [0, IL")41)). We notice that z} ,(p) depends on d, a and b but

we omit to write them. Note that z% (p) is non-increasing with respect to & and non-decreasing with

respect to l.

First we shall prove Theorem 5.6. Recall that d = 2 and a < b in this case. It is enough to show that
lim 27, ,(p) =0. (5.10)

n—oo

We have already shown this theorem in case of a = b =1 in Section 2. Alsoin caseofa =1and b > 2 we
can prove (5.10) in exactly the same way. Hereafter we assume that 2 < a < b. We will use the following

lemmas.
Lemma 5.8 Let p < 1. There exist ko > 1 and ¢ > 0 such that

Thy20(p) S €7H¢ (5.11)
for any n.

Lemma 5.9 (i) Let k > 2a+ 3. For any n and p,

extH(p) < 20z}, (p). (5.12)
(i) Let k > 4a + 2. For any n and p,

EZE(P) <223, 405 0(P) + (2a — )74 2, (D). (5.13)

Lemma 5.10 For any n and p,
(D) < Thypa(p)? +2{z3, (p) + (a — 1)z§ (p)} (5.14)

$a+b,a(p S ToqpelP)” + {z3a+2b,a p a T4a+36,2a\P) s- .
Lemma 5.11 For any n and p,
n n+14a+b

Tpa(p) < {1- (1 -p)P" (5.15)
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Lemma 5.8 and Lemma, 5.11 are obtained in exactly the same way as Lemma 5.2 and Lemma 5.5 respec-
tively. We give a proof of Lemma 5.9 and Lemma 5.10 briefly.

Proof of Lemma 5.9. Let a1 = ||(k—1)/a]/2]) and a2 = | (k—1)/a]. Note that 2a; + (e — 1)az +1 < k.
We have the following relation:
LR([0,kL™*'] x [0,aL™*")) C | ] B}
j=0

where

B = LR([0,(cnL+a+b)L"] x [0,aL"]),
B? LR([(euL + (j — 1)agL + a)L™,(e1 L + jasL + a + b)L"
x[(jL—a)L™,(jJL+a)L™]) forl<j<a-1,
B? = LR([(e1L + (a — )agL +a)L™, (2a; + (a — 1)ag + 1)L™*!]
x[(aL — a) L™, aL™")).

Thus we obtain
z:,tl(l’) < 2$31L+a+b,a(17) + (a— 1)x:2L+b,2a(p)-
We note that =7 ,,(p) < 22" p) holds for any k and I. So we have
k21 Lk/2)
Tpn (0) 225 [ yatsa(P) +2(a = D)2 0,148)/2).0(P)-

We note that oy L +a+ b > |(a2L + b)/2] holds for any k,a and b by the definition of a; and as. If
k > 2a + 3 then [(az2L + b)/2| > k+ 1 because

asL +b 1]lk—-1
_ > (B2 _1\_
[ . J k+1) > 2{[ - JL+b 1} (k+ 1)
k—a b-1
> o= _
> o L+ 2 (k+1)
bk —2a’ - 3a
- 2a

and ¢ < b. Thus we have proved (5.12). Let us prove (5.13) in a similar fashion. Let 8; = [|(k —

1)/(2a)|/2] and B, = [(k — 1)/(2a)|. Note that 23, + (2a — 1)B; + 1 < k. We obtain
x:ﬁ(ﬁ”) <275 [4a4b,0(P) + (20 — 1)T5, 144 20 (P)-

We observe that k > 4a + 1 implies §; > 1 and bk > 4a® + 2a implies BoL + b > k + 1. Thus we have
obtained (5.13). O

Proof of Lemma 5.10. Let v = [(a + b—2)/(a —1)]. We have

J?ZI;,, (p) < 933+b,a(17)2 +2{z5,,9..(p) + (a — 1)$:L+b,2a(p)}-

We observe that a < b implies v > 2, and we have obtained (5.14) similarly to the proof of Lemma 5.4.
a

Proof of Theorem 5.6. Let p < 1. If we prove that there exist ¢ < oo and 3 > 0 such that

T3 425.0(P) + (@ — 1)T3 3p24(p) < ce™X7Y, (5.16)

61



then by (5.14) and (5.15) we can prove (5.10) in the same way as the proof of Theorem 1.1 in Section 2.
Let us prove (5.16). Let ko and ¢ > 0 satisfy (5.11). By using (5.12) repeatedly we have

That2pa(P) < (20)72 4(p) < (20)z}, 4, (p) < (20)%e 2777 (5.17)

where ¢ = ko ~ 3a — 2b. We have also z}, , 3, 5,(p) < ¢'e"L"¢ for some ¢ < oo and ¢ > 0 in the same
way by (5.13),(5.11) and (5.17). O

We turn to prove Theorem 5.7. Recall that d > 2,a=1and L =2+ b > d + 2 in this case. It is enough
to show that limn 00 27, ; (p) = 0. Theorem 5.7 follows immediately from the following two lemmas.

Lemma 5.12 Let p < 1. There exist kg > 1 and ¢ > 0 such that
T (P) S e7F7e (5.18)
for any n.

Lemma 5.13 Let k > d+ 1. For any n and p,

172,*1'1(1’) <d' zi.(p).

Proof of Lemma 5.12. Recall that G‘li:f =G¢,n[0,L")9 and we regard G§ , N ([0,kL"] x [0, L"]*"!) as
a subset of [0, kL™] x G‘f;l‘". We denote by II the set of the oriented paths on G‘f;l ' starting at the
origin. For m € Il we define H(n) = {v € Va‘fbl 0 <wv; < kL™ and (vq,vs,... ,vq) is a vertex of m}. We

have

LR([0,kL™] x [0, L™)¢"1)
= U {u = v in H(r) for some u,v with u; = 0,v; = kL"}.
well

Note that the length of = € II is not more than (d — 1)L"™. The number of the paths in II is not more

than d(4-DL" We have
kL™

27(p) < dVEP(Y Y < (d-1)L7)
=1

where Y; is the random variable defined in the proof of Lemma 2.1. We can pick kg sufficiently large to
satisfy P(X5L"y; < (d—1)L") < e L7 and e=¥ < d~(?~1). Then (5.18) follows. O

i=1

Proof of Lemma 5.13. Let Z be the set of the oriented paths from (0,0,...,0) to (1,1,...,1) on Z¢~!:
that is, £ = (£1,€2,...,¢&%) € E if and only if €' = (0,0,...,0), & = (1,1,...,1) and & < ¢! for
1 <i < d~—1 with respect to the partial order on Z¢~!. We write A+ = {a + | a € A}. For £ € = we
set Re; = [0,L™)4"! + (L — 1)L"¢'. Let s = [(k — 1)/d]. Note that s > 1 and ds + 1 < k. We observe
that

i=1

d
LR([0,kL™] x [0, L**")*") c | (U Ae,i)
£EE
where A¢; = LR([((¢ — 1)sL + 1)L™, (isL + 1+ b)L"] x R¢ ;). We have

szl(P) <(d-1!-d-z5p1(p) = dlzypp1(p)
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because the number of the paths in = equals (d — 1)!. Let us prove that sL +b > k + 1 to complete this
proof. If k > 3d/2 then

sL+b—(k+1) = F%JL+b—(k+1)
> k—;—dL+b—(k+1)
_ (b+2—-d)k-3d
- d
2k — 3d
>
= d
> 0.

Suppose that d +1 < k < 3d/2. Thens=1,and sL+b=20+2>2d+2>k+1. O
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