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第1章 概説

1.1 Percolation

こ の論 文で は, フ ラ クタル 格子 (fractal lattices) にお け るパー コ レーシ ョン (percolation) の 問 題 を考 える.

パ ー コ レー シ ョンは統 計力 学 の確率 モデル と して, 1957年 にBroadbent-Hammerslay [2] に よって定 式化

され た. G=(V,E) を 連 結 な無 限 グラ フ とす る. こ こ でVは 頂点 集合, EはVの2つ の元 を結ぶ 辺 の集

合 で あ る. V, Eは 高 々可 算, ま た 各 点か ら出 る辺 の本数 は有 限 とす る.[0, 1] 区 間 に値 を取 るパ ラメー タp

を 決 め, Eの 元 が独 立 にそれ ぞれ確 率pでopen, 確 率1-pでclosedで あ るとす る. openで あ る辺 はつ な

が ってお り自由 に通 る こ とが可 能 で あ り, closedな 辺 はつ な がっ てお らず 通 る こ とが不 可能 で ある とす る.

各 辺 のopen-closedが 定 ま る と, 頂 点v∈Vか らopenな 辺 を通 って 到達 可能 な点 の集合C(v) が 定 ま る.

pが 大 きい ほ ど, C(v) は 大 き くな る傾 向に あ る と考 え られ る. あ る 点vを 固定 し, そ こ か ら到 達で き る点 が

無 限個 あ る とい う事 象 の確 率 を

θ(p)=Pp(|C(v)|=∞)

と表 す. こ こでPpは 各 辺 のopen-closedを 上 記 の法則 で定 め る確 率測 度 で ある. θはpに 関 して 単調非 減

少 で あ る. 臨 界 確 率pc(=pc(G)) を

pc=inf{p|θ(p)>0}

で 定 め る. p>pcで は 確 率1で 無 限大 の ク ラスター が現れ, p<pcで は確 率1で すべ て の クラス ター は有

限 であ る. こ の 意味 で, p=pcで 相 転移 が 起 こ る と考 え られ る. こ の よ うにパ ー コ レー シ ョンは統 計力 学 に

お け る相 転移 を含 む簡 単 なモデ ル と して盛 ん に研 究 され てい る.

こ うした相転 移現 象 を調 べ るた めの最初 の問題 と して, pc<1, す な わ ち 自明で ない相 転移 が起 こるか ど

うか, が あ る. Zd格 子 にお いて は, d≧2でpc(Zd)<1で あ るこ とが知 られ て い る.(Grimmett [7] に詳 し

い.) 以 下Zdを 例 に とる. 0=(0, 0,..., 0) とす る. pcの 近 くで θや その他 の 関数, 例 え ば

(ξ(p) はcorrelation lengthと 呼 ばれ て い る.) が どの よ うな振 る舞 い を して い るか, とい うの が臨界現 象の

研 究で あ る. こ う した 関数 がpcの 近 くで

as p↓pc,

as p→pc,

as p↑pc,  (1.1)

as p→pc
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のように収束または発散 され ると予想 されている. ここでf≒gは 両辺の対数 を取った比が1に 収束する

ことを表す. このよ うな臨界指数 β, γ, v, △の 存在 はdが 十分大のとき (Hara-Slade [9]) を除いてまだ証

明されていない. これ らの指数においては関係式

(1.2)

が成 り立つ と言われている. これをhyperscaling relationと 言 う.

次元dが 小 さいとき, こうした問題の大半が未解決である. 上記 の指数則な どを考 えるには, グラフの平

行移動不変性 よりも自己相似性が重要である. そこで我々はフラクタル的な構造を持つ グラフでのパー コ

レーションを考えることとした. こうしたグラフでのパー コレーションの研究は本研究以前にはほ とん ど行

われていなかった. この新 しい観点からの研 究によって, パーコレー ション現象の解 明, お よびフラクタル

図形の性質の研究への貢献を目標 とした. これ らの意義お よび得 られた成果 について以下に詳 しく述べる.

1.2 Finite-ramified fractals

フ ラ クタル 格 子上 のパ ー コ レー シ ョンの最初 の研 究 として, pre-Sierpinski gasketと 呼 ばれ るグ ラフで の

パ ー コ レー シ ョンを考 えた. O=(0, 0), a0=(1/2, √3/2), b0=(1, 0) とす る . F0を △Oa0b0の3頂 点 お

よびそれ らを結ぶ 辺 か らな る グラフ とす る.{Fn}n=0, 1, 2,…を

Fn+1=Fn∪(Fn+an)∪(Fn+bn)

で 与 え られ るグラ フの列 とす る. こ こ でA+a={x+a|x∈A}, kA={kx|x∈A}, an=2na0, bn=2nb0

で あ る. F=U∞n=0Fnと す る. こ のFをpre-Sierpinski gasketと 言 う. こ の グ ラ フは, 2点an, bnを 取 り

除 くと不連 結 とな る. こ の よ うな性 質 をfinite-ramifiedと 言 う. この 中の長 さ1の 辺 がそれ ぞれ 独 立 に確 率

pでopen, 確 率1-pでclosedと す るbond percolationを 考 え る. θ(p), pcはZdと 同 様 に定義 す る と,

finite-ramifiedで あ る こ とか らこの グラ フで はpc=1と な る. そ こ で, correlation length

を定義 し, p↑1で の発散の様子を調べた.

Theorem 1.1 (=Theorem 2.1)

(1.3)

さらに

(1.4)

この (1.3),(1.4) の 式 はGefen-Aharony-Shapir-Mandelbrot [6] に よ っ て形式 的 な計算 によ り導か れて い

るが, この 論 文 で は これ を証 明 した.(1.3) をZdの 場 合 の予想 (1.1) と比 べ る と, pre-Sierpinski gasketで

は 通常 の意 味の 臨界指 数 は ∞と な る と言 える. した が ってhyperscaling relation (1.2) も そ の ま までは 意

味 を持 た ないの で, 次 の 形

as p↑1 (1.5)

に置 き換 えて考えることにする.
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Theorem 1.2 (=Theorem 2.2) D=log3/log2と す る. こ の ときすべ て のk≧1に 対 し

Ep|C|k={ξ(p)}Dk as p↑1.

こ の 定理 か ら,(1.5) が 次 元 をDと み なす こ とで成 立 して い る こ とが わか る. こ こ で, DはSierpinski

gasketの フ ラク タル 次 元 と一致 してい る.

これ らの結 果 につ いて は, site percolation (各 辺 でな く各頂 点 にopen-closedを 定 め るモデル) で も成 り

立 つ こ とが確 か め られ る.

さ らに, ξ(p) に つ い て は よ り詳 細 な発 散 のオー ダー が 計算 で き る こ とが わか った. pre-Sierpinski gasket

を 一 般 化 し, d次 元pre-Sierpinski gasketを 考 える. これ は上記 のpre-Sierpinski gasketの 構 成 にお け る

△Oa0b0の 代 わ りにd次 元 単体 を用い るもの であ る. こ の グ ラフにお い て ξ(p) を 同 様 に 定義す る と, グ ラ

フの 自己相似 性 お よび各 点 の周 りのlocalな 構 造の情 報 か ら次 の よ うな結 果 を得 る こ とが で きた.

Theorem 1.3 (=Theorem 3.2, d-dimensional pre-Sierpinski gasket)

as p↑1.  (1.6)

こ の オ ー ダ ー の 計 算 方 法 は 他 のfinite ramified fractalの グ ラ フ に も 適 用 で き る. そ の 例 と してsnowflake

lattice (Figure 3.3), pentakun lattice (Figure 3.4) に お い て 計 算 し た.

Theorem 1.4 (=Theorem 3.11, the pentakun lattice)

as p↑1.

Theorem 1.5 (=Theorem 3.12, the snowflake lattice)

as p↑1.

上記 の 内容 に関 しては, 本 論 文 で は第2章 におい てpre-Sierpinski gasketに お け るcorrelation lengthの

存 在, 臨 界 指 数 の発 散, hyperscaling relationの 成 立 をrecursion formulaを 用 い て証 明 し, 第3章 にお い て

correlation lengthの 発 散 の さらに詳細 なオー ダ ー を計算す る方法 を述 べ, d次 元pre-Sierpinski gasketや

他 のfinite ramified fractalの 場 合 での 実際 の計算 を行 ってい る.

1.3 Infinite-ramified fractals

次 に, 有 限 個 の 点だ けで は切 断 され な い (infinite ramified) フ ラ クタル格 子 につ い て考 え る. こ の グラ フ

で は前節 で扱 った場合 と異 な り, 必 ず しもpc=1と は な らない. infinite ramifiedで あ る フラ クタル と して

最 も有 名 で あ るもの の一 つ にSierpinski carpetが あ る. 1997年 にKumagai [10] に よ って, pre-Sierpinski

carpetに お い て はpc<1で あ る こ とが 証明 され た. こ の 後, 異 な る方 法 でLu [12] に よ って も同様 の結 果

が 示 され て いる. ま た, Murai [13] で はd次 元 に拡 張 され たcarpet上 で のd→∞と した ときのpcの 漸

近 挙動 が調 べ られ てい る.

一 般化 され たSierpinski carpet格 子 をZ2の 部 分 グラ フ と して定義 す る. L≧2, T⊂{0, 1,…, L-1}2

とす る. た だ し (0, 0)∈Tを 仮 定す る. グ ラ フGT=(VT, ET) を 以 下 の よ うに構 成 す る.
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Figure 1.1: the Sierpinski carpet lattice

L=3, T={(i,j)|0≦i,j≦2,(i,j)≠(1,1)} の と きのGTが 最 も知 られ たSierpinski carpet

格 子 で あ る (Figure 1.1).ま たL=2, T={(i,j)|0≦i,j≦1,(i,j)≠(1,1)} の と きはSierpin-

ski gasket格 子 に対応 す る こ とに も注 意 してお く.こ のGTに お いてbond percolationを 考 え る. こ

の とき, Tに どの よ うな 条件 が あ れ ばpc(GT)<1と な るか, を 考 え る. 知 ら れ て い る [10] の 結 果 は

{(i,j)|i∈{0,L-1} or j∈{0,L-1}}⊂Tな ら ばpc(GT)<1と い うもの で あ る.こ の結 果 を拡 張 し,

さ らに一般 的 な結 果 を得 よ うとす るのが この研 究 の意義で あ る. な お , bond percolationとsite percolation,

Ising modelの 相 転 移 の有 無 が 同値 で あ る こ とはHaggstrom [8] に よ って 示 され てお り, こ の グ ラフで の

Ising modelを 考 え る契機 に もな る. も う一 つ の問題 意識 につ い て述 べ てお く. Benjamini-Schramm [1] に

お いて, 次 の 問題 が提起 され た.

Problem. Gの 等 周 次 元 を

で定 義す る. こ こ でSは 有 限 かつ 連結 なEの 部分 集 合, ∂SはSのouter boundaryと す る. こ の とき

Dim(G)>1な らばpc(G)<1と 言 え るか.

こ の命 題 がSierpinski carpet格 子 で成 り立つ か調 べ られ な いか, とい うの も [10] を 拡 張す るた めの動機

とな ってい る.

Tに 関 す る十 分条件 と して, 以 下 の ものが得 られ た. こ こ でTl={j|(0,j)∈T}, Tr={j|(L-1,j)∈T},

Td={i|(i,0)∈T}, Tu={i|(i,L-1)∈T}と か くこ とにす る.

Theorem 1.6 (=Theorem 4.2)

任意のt∈T に対 し T＼{t} は連結, (1.7)

および

(1.8)

を仮 定す る. こ の ときpc(GT)<1で あ る.

こ の結 果 は [10] の 真 の拡 張 とな って いる. 証 明 か らpc (GT) に つ いて の以 下の評 価 式 が得 られ る.

Corollary 1.7 (=Corollary 4.5) fT(x)=x|T|+|T|x|T|-1(1-x) とす る . Theorem 4.2の 仮 定 の下で,
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であ る. こ こ で αは 方程 式fT(x)=xの (0, 1) 区 間 内に あ る最 も大 きい解 であ る.

pc (GT)<1と な るため の必要 条件 につ いて は, 以 下 の こ とが わか る.

Theorem 1.8 (Corollary of Proposition 4.6) 以 下 の (i),(ii) の い ずれ か が満 た され て い る とす る.

(i) あ るj0に 対 し|{i|(i,j0)∈T}|≦1.

(ii) |Tl∩Tr|≦1.

こ の ときpc (GT)=1。

証 明はProposition 4.6の 場 合 と同様 で ある. こ の 結果 よ り, 自 明 で な い相転 移 が存 在す るこ との必要 十

分 条 件 を得 るた め には (1.7) を ど こま で弱 め る こ とが 出来 るか が課 題 とな る. 実 際 も う少 し弱 め る こ とは

可能 であ るが,(1.7), (1.8) の よ うにTに 関 す るチ ェック しやす い条件 を掲 げ る とい う目的 の ため定 理 では

この よ うな形 を とった. Sierpinski carpet 格 子 の等周 次 元 と相 転移 の存 在 との 関係 につ いて は, 今 の ところ

Dim (GT)>1か つPc (GT)=1で あ る例 はな いが, す べ て のTに 対 して命題 を証 明す るに はこの部 分 の条

件 の精密 化,お よび等周 次 元が1よ り大 きい こ とをTの 言 葉 で うま く表現 す る必 要 があ り, さ ら なる課題 と

な ってい る. な お, Sierpinski carpet格 子 の 場合 で もDim (GT)>1がpc (GT)<1の た めに必 要 とい うわ

けで はない. この 一例 と してT={0,1,2,3,4}2＼{(1,3),(1,4),(2,1),(2,3),(3,0),(3,1)} の場 合 (Example

4.11) が あ る.

次 に, Sierpinski carpet 格 子 で のoriented percolationを 考 える. 上 記 と同 じグラ フGTに お いて, bond

の 通 過 で きる方向 に制限 をつ け, 右 向 きまた は上 向 きに しか進 めない もの とす る. こ のoriented percolation

もZd上 で 盛 ん に研 究 に され て い る (詳 し くはDurrett [5],[7] な ど).特 にcontact processと の 関連 が

深 い. oriented percolationで の 相転 移 点pcが 真 に1よ り小 さい か ど うか を調 べ る. pc (Z2)<1で あ

る こ とは よ く知 られ てい る.現 在 で はpc (Z2)≦2/3 (Liggett [11]) とい う評 価 が得 られ て い る. こ こで

はSierpinski carpet格 子 の うち, 特 にTが 対 称性 を持 つ場 合 につ い て考 え た. L=2a+b (a, b>0),

Ta,b={0,1,...,L-1}2＼{a,a+1,...,a+6-1}2と す る.

Theorem 1.9 (=Theorem 5.6) a≦bな らばpc (G2a,6)=1.

この 結 果 は, あ る程 度 穴が 大 きけれ ばoriented percolationに お いて は 自明 でな い相転 移 が起 こ らな い こ

とを示 して い る. こ の 点 にお い てSierpinski carpet格 子 とZdに は 大 きな違 い が ある こ とが わか る. な お,

こ う したoriented percolationで の 相転 移 の 消滅 は [0,1] 2で のfractal percolationに お いて報 告 されて い

る ([3], [4]) が, 通 常 のpercolationに お い て は知 られ てい なか った. な お 残念 な が ら, 現 段 階 では 穴が小 さ

い場合 に 自明 でな い相 転移 が あ るか ど うか はわ か ってい ない.

こ の問題 はまたd次 元 空間 にお いて も考 え られ る. 2次 元 の場合の拡 張 と して例 えばd次 元pre-Sierpinski

Carpet, す な わちTd8c={0,1,2}d＼{(1,1,...,1)}dの とき を考 え る とこれ はZd-1を 部 分 グラ フ として含 む

のでpc (GTd8c)≦pc (Z4-1)<1は 明 らか であ る. そ こ で

を考 え る. これ はMenger Spongeと 呼 ばれ る フラク タル に対応 す る もの であ る. こ のTda,bか らGTda,bを 構

成 しoriented percolationを 考 え る と, 以 下 の結 果 が得 られ た.

Theorem 1.10(=Theorem 5.7)2≦d≦bと す る. こ の ときpc (Gd1,b)=1.

こ の 結果 は, ど ん な に高次 元 内の格子 で あ って も十 分穴 が大 きけれ ばや は り相 転移 が 消滅 して しま うこ と

を示す. 高 次 元 の場合 も, 今 の とこ ろT≠{0,1,...,L-1}dでpc (GT)<1と な る こ とがあ るか ど うか は

わか って いない.
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上記の内容 に関 しては, 本論文では第4章 でpercolationの 自明でない相転移に関するTの 必要条件 と十

分条件についての定理を証明 し, 必要十分条件を得るための考察, お よび グラフの等周次元 との関係につい

て述べた. 第5章 ではoriented percolationの 場合の相転移の消滅 についての定理 を証明 した .
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第2章 Percolation on the pre-Sierpinski

gasket

2.1 Introduction and statements of results

In this paper, we regard percolation as a model of phase transitions. We are especially interested

in problems near the critical point, where the phase transition occurs. We call these problems critical

behaviors. Our purpose in this paper is to clarify the critical behaviors of percolation on the pre-Sierpinski

gasket which has self-similarity.

Until now, studies of percolation are restricted on periodic graphs, such as Zd. (An exact definition of

periodic graph is mentioned in Kesten [1].) There are lots of conjectures and hypotheses about critical
behaviors, but many of them are still unsolved rigorously (see Grimmett [2] and references therein). In
high dimension lattices Zd, rigorous results for critical behaviors were obtained by Hara-Slade [3]. But
in low dimensions, except a work on Z2 by Kesten [4], few rigorous results have been proved about the
existence of critical exponents and justification of the scaling, hyperscaling relations.

For critical behaviors, self-similarity of the graph plays more important role than periodicity. This is
a motivation to consider percolation problems on the pre-Sierpinski gasket.
We now define the pre-Sierpinski ga8ket.Let O=(0,0), α0=(1/2,√3/2),

b0=(1,0). Let F0 be the graph which consists of the vertices and edges of the triangle △Oa0b0. Let

{Fn}n=0,1,2,...be the sequence of graphs given by

where A+a={x+a|x∈A}, kA={kx|x∈A}, an=2na0 and bn=2nb0. Let F=U∞n=0 Fn. We

call F the pre-Sierpinski gasket.(Fig.2.1) Note that F=U∞n=0 2-n F become the Sierpinski gasket. Let

V be the set of all vertices in F, and E the set of all edges with length 1.

We consider the Bernoulli bond percolation on the pre-Sierpinski gasket; each edges in E are open with

probability p and closed with probability 1-p independently. Let Pp denote its distribution. We think

of open bonds as permitting to go along the bond. We write x⇔y if there is an open path from x to

y. Let C (x)={y∈V:x⇔y}. C(x) is called the open cluster containing x. We denote by C the open

cluster containing the origin.

We define two functions in a similar way as percolations on Zd.

where |C| denotes the number of vertices contained in C, and Ep denotes the expectation with respect

to Pp.θ (P) is called the percolation probability, and x (p) is called the mean cluster size.

Let pc denote the critical point pc; that is
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Figure 2.1: the pre-Sierpinski gasket

Then pc=1 for the pre-Sierpinski gasket because it is finitely ramified. We note that X (p)=Ep|C|for

ｐ<1.

The correlation length is defined by

(2.1)

The existence of the limit in (2.1) will be proved in Section 2.

We write f (p)=g (p) as p→p0 if log f (p)/log g (p)→1 as p→p0.

We now state our main theorems:

Theorem 2.1 and

Theorem 2.2. Let D=log3/log 2. Then

Remark. Our results are quite different from the results on Zd (see below). In physical literture,
Theorem 2.1 was known by Gefen et al.[5] by using formal renormalization arguments. Our contribution
is that we prove Theorem 2.1 rigorously.

We collect results and conjectures of the percolation on Zd. It is conjectured (see [2])

(2.2)

The value ν (d) is called the critical exponent. It is proved that ν (d)=1/2 for sufficiently large d

(Hara-Slade [3]), and conjectured ν (2)=4/3 (see [4]).

Other critical exponents considered in Zd are as follows:

It is conjectured for Zd that dν=2△-γ. This relation is one of hyperscaling relations. We note

γ=△=∞ on the pre-Sierpinski gasket. So the relation dν=2△-γ does not make sense on the

pre-Sierpinski gasket. Accordingly we modify the hyperscaling relation as follows:

(2.3)
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If finite critical exponents ν, γ, △ exist, then (2.3) is equivalent to dν=2△-γ.

Remark. By Theorem 1.2, we have Ep|C|3={ξ(p)}3D and X (p)={ξ(p)}D. Hence the above hyper-

scaling relation (2.3) holds when we regard D as the dimension of the pre-Sierpinski gasket. The value
D=log3/log 2 coincides with the fractal dimension of the Sierpinski gasket.

In addition, we mention site percolation on the pre-Sierpinski gasket: each vertices in V are determined
to be open or closed independently. (Details will be given in Section 5.) We define the correlation length

ξ (p) in the same manner as (2.1). We have the result below;

Theorem 2.3. and

The critical exponent in a usual sense is also infinite in this case. But ξ (p)=log (1-p)-1, which is

different from Theorem 2.1. We cannot see the universality of this exponent on the pre-Sierpinski gasket.

We refer to the self-avoiding walks on the Sierpinski gasket, as related works of phase transitions;
Hattori-Hattori [6] and Hattori-Hattori-Kusuoka [7] construct the self-avoiding paths on two- and three-
dimensional Sierpinski gasket. Before [6], Hattori-Hattori-Kusuoka [8] constructed them on the pre-
Sierpinski gasket. These works also gave us a motivation to study percolation on the Sierpinski gasket.

The organization of this paper is as follows: In Section 2 we prepare for the proof of our main theorems;
we construct recursion formulas of relations between events in Fn and ones in Fn+1. In the reminder
of Section 2, we prove the existence of the correlation length. We prove Theorem 2.1 in Section 3 and
Theorem 2.2 in Section 4. In Section 5 we study site percolation and prove Theorem 2.3.

2.2 Recursion formulas and the existence of ξ (p)

We introduce two connectivity functions as follows.

We write O⇔an in△Oanbn if there is an open path from O to an in △Oanbn (contains its perimeter).

We easily calculate Φ0 (p)=p+p2-p3, Θ0 (p)=3p2-2p3. Note that (i) Φn (p)≧Θn (p) by definition,

(ii) if O⇔an and O⇔bn then we have an⇔bn automatically.

Proposition 2.4. For each n≧0 and 0≦p≦1,

(2.4)

(2.5)

Proof. Recall △Oanbn=Fn. Let F'n=Fn+an, F''n=Fn+bn, and cn=(3・2n-1,√3・2n-1). Let

A1n and A2n be events given by
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Figure 2.2:

Figure 2.3:

Then we have

(2.6)

Here we used the fact that a path from O to an+1 goes through an or bn. Since the events in Fn

, F'n, F''n are mutually independent, Pp (A1n)={Φn(p)}2, Pp (A2n)={Φn (p)}3, Pp (A1n∩A2n)=

{Θn (p)}2Φn (p)(Fig.2.2). Combining these with (2.6) yields (2.4).

We proceed to the proof of (2.5). Let B1n, B2n, B3n be events given by

(see Fig. 2.3). Then we have

We see easily
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(2.5) follows from this immediately.

From now on, we assume 0<p<1. We prove the existence of the limit (2.1), correlation length ξ (p),

by using these recursions.

Proposition 2.5. There exists ξ (p)>0 such that

Remark. The convergence as n→∞ in Proposition 2.2 is stronger than the convergence in (1).

Proof. By (2.4) and Θn (p)≦Φn (p), we have

Hence

Let hn (p)=Φn+1 (p)/{Φn (p)}2. Then 1≦hn (p)≦2 and limn→∞hn (p)=1 because limn→∞Φn (p)=0.

Now

Hence {logΦn (p)/2n}n=0, 1, 2,… is increasing and limn→∞ logΦn (p)/2n exists. Let

-{ξ(p)}-1=limn→∞logΦπ (p)/2n . Then

where Hn (p)=supm≧n hm (p). Therefore

(2.7)

Since limn→∞Hn (p)=1, we complete the proof.

Remark. Note that the function ξ (p) is continuous and increasing on (0, 1) from the proof above.

Lemma 2.6.

Proof. Recall that Φn (p)=Pp (O⇔an in Fn). Then
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Figure 2.4:

So

which implies

Combining this with Proposition 2.5 completes the proof.

2.3 Proof of Theorem 2.1

The next lemma is a key of the proof.

Lemma 2.7. There exists ε>0 such that

Proof. We introduce

(2.8)

Here O⇔an in Fn means that there exists no open path from O to an in Fn. By (2.4) and (2.5),

where S, T: R2→R are functions defined by
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Let D be a subset of R2 defined by D={(x, y): 0<x≦y<1}. We see ∂S/∂x, ∂S/∂y, ∂T/∂x, ∂T/∂y>

0 for (x, y) ∈D.Indeed,

Therefore if (x1, y1), (x2, y2) ∈D and x1<x2 and y1<y2, then

(2.9)

Note that Ψn (p)=Θn(p)+3{Φn(p)-Θn(p)}≧Θn(p) for all n by (2.8). Hence (Θn (p), Ψn (p)) ∈D.

Calculating Θn (p) and Ψn (p) directly from the recursions, we have

(2.10)

(2.11)

for n≧2. For 1-1/√3<p<1, let p=p+3 (1-p) 3. Then we have

Note that Θ2 (p), Ψ2 (p), Θ3 (p), and Ψ3 (p) are polynomials of finite degree. Hence we can take ε1>0 in

such a way that Θ2 (p)<Θ3 (p) and Ψ2 (p)<Ψ3 (p) for 1-ε1<p<1.By (2.9), We have

Estimating repeatedly as above, we have Θn (p)<Θn+1 (p), Ψn (p)<Ψn+1 (p) for n≧2. Combining this

with (2.8) yields Φn (p) <Φn+1 (p). So

This implies ξ (P)-1≧2・ ξ (p)-1, that is ξ (p)/ξ(P)≧2 for 1-ε1<P<1.

We now proceed to the estimate from the opposite side. By using (2.10) and (2.11) again, we see

Hence we can take ε2>0 such that Θ4 (p)<Θ2 (p) and Ψ4 (p)<Ψ2 (p) for 1-ε2<1. So we have

Θn+2 (p)<Θn (p) and Ψn+2 (p)<Ψn (p). Thereforeξ (p)/ξ (P)≦4 for 1-ε2<p<1, which completes
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the proof.

Proof Of Theorem 2.1. Let g (p)=logξ (p). Since ξ (p) is an increasing function, g (p) is also increasing.

Suppose that p is sufficiently large to satisfy g (p)>0. Let

First, we prove m≧2. Suppose m<2, and pick δ>0 with m+δ<2. Let

Applying the L'Hospital's theorem, we see limx→oh (x)=0. So we take p0 such that

(2.12)

and 1-p0<ε.(ε is given in Lemma 2.7.)

Let

(2.13)

We define {pn}n=1, 2,… by f (p0)=p1, f (pn)=pn+1 inductively. Then p0<p1<…<pn<1, and

liMn→∞pn=1. By (2.13) and Lemma 2.7, we have

and hence

(2.14)

Take N=N (p0) ∈N. By assumption, there exists t such that pN<t<1 and

(2.15)

For this t, there exists unique N'=N'(t) such that pN'≦t<pN'+1. By (2.15) and 1-pN'+1<1-t,

we have

(2.16)

The last inequality follows from (2.12). On the other hand, g (p0)+N'log2≦g (pN')≦g (t) by (2.14).

Combining this with (2.16) yields

(2.17)
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Figure 2.5:

Here we used N<N' for the first inequality. We can pick N (p0) so large that (2.17) does not hold. This

yields a contradiction. Hence we have m≧2.

We proceed to prove M≦2. Suppose M>2. Pick δ>0 such that M-δ>2. Let

Note that limx→0 h(x)=∞.Then by a similar argument as above, we lead a contradiction. Hence

M≦2, Which concludes m=M=2.

2.4 Proof of Theorem 2.2.

First, we estimate the probability Pp(1/9・3n≦|C|≦9/2・3n). Let M=sup{m:O⇔am or bm}. We

define two conditional probabilities

Clearly

(2.18)

and

(2.19)

We consider the event of the numerator of (2.19), {O⇔an, O⇔bn in Fn, O≠an+1, O≠bn+1}. We

divide the case into seven parts as Fig. 2.5. Since the events in Fn, F'n, F"n are independent, we have

(2.20)

Here we denoted Φn=Φn (p), Θn=Θn (p) briefly. Note that

(2.21)
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by (2.4). Hence by (2.18),

(2.22)

Let

(2.23)

Lemma 2.8. Vn (p)≧2/9 if n<n0.

Proof. From (2.18), it is enough to show

(2.24)

Let

By (2.20) and (2.22),(2.24) follows from the following:

(2.25)

The second condition in (2.25) comes from the fact that

(2.26)

Let y/x=t. Then the domain of (2.25) is 2/3≦x<1/(3-2t), 2/3≦t<y<1. And

Now let

From a direct calculation,

We see that if 2/3≦t<1, λ'(x)>0 for 2/3≦x<1/(3-2t). Therefore

Next, we estimate the expectation of |C| on condition that M=n (n<n0).

Lemma 2.9. Ep (|C||M=n)≧2/9・3n if n<n0.

To prove the above Lemma, we use the following inequality:
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Lemma 2.10. For all a∈Fn,

(2.27)

Proof. Besides (2.27), we introduce a similar inequality:

(228)

We prove (2.27) and (2.28) by induction at the same time. If n=0, clearly both of them hold. Suppose

(2.27) and (2.28) for n=k.

We prove (2.27) for n=k+1 at first. By symmetry, it is sufficient to prove the cases (i) a∈Fk and

(ii) a∈F'k.

(i) Suppose a∈Fk. By using (2.4), we see Φk (p)≧Φk+1(p). Indeed, suppose Φk(p)≧1/3, then

(2.29)

Here we used (2.26). Combining this with assumption, we see (2.27) for n=k+1 in this case.

(ii) Suppose a∈F'k. Let C1n, C2n, C3n be events given by

we see

Here we used assumption for the inequality. We thus obtain (2.27) for n=k+1.

We proceed to prove (2.28) for n=k+1.

(i) Suppose a ∈Fk. Let D1n, D2n,…, D5n be events given by
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D3n=D1n∩ (D2n) c, D4n=(D1n) c∩D2n, D5n=D1n∩D2n. We see

by assumption.

(ii) Suppose a∈F'k. We see

(2.30)

Here we note that

by assumption. Using this and (2.30), we have

Here we used assumption again. Now it is enough to show

(2.31)

The left-hand side of (2.31) equals

By (26), we see all terms above are nonnegative. Hence the proof is completed.
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Proof of Lemma 2.9.

Let D6n=(D1n) c∩ (D2n) c. Note that if M=n and O⇔an, O⇔bn, then (D6n)c occurs. For a∈Fn, we

see

Here we used FKG inequality for the forth line. Therefore

by Lemma 2.8. Note that |{a∈V: a∈Fn}|=3/2 (3n+1). By virtue of Lemma 2.10, we see

We used (2.23) and the fact that Φn (p)≧Θn (p) for the last inequality.

We proceed to the estimate of Pp (1/9・3n≦|C|≦9/2・3n).

Lemma 2.11  Pp (1/9・3n≦|C|≦9/2・3n)≧2/79Pp (M=n) if n<n0.

Proof. Note that |C|≦9/2・3n if M=n. Then we see the following.

By Lemma 2.9, we have

thus the proof is completed.

Lemma 2.12. Pp (M=n)>Φn (p){1-Φn (p)}2 if n<n0.
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Proof. Recall (2.21), that is

Let π (y)=2x-y-2ω2-2x3+2xy2+3x2y-2y3. It is enough to show that π (y)>x(1-x)2 if 2/3≦

x<1,(3x-1)/2<y<x. Note that

and that

Hence π (y)>min{π ((3x-1)/2), π (x)}・ π ((3x-1)/2)=(1-x)2 (x+3)/4 and π (x)=x (1-x)2, so

π ((3x-1)/2)>π (x) for 2/3≦x<1. This completes the proof.

Proof of Theorem 2.2, First, we estimate Ep|C|k from below. By using Lemma 2.11 and 2.12, we see

Let p be sufficiently large. Note that the function l (x)=x (1-x)2 is decreasing in 2/3≦x<1, and

Φ4m (p)≦e-24m/ξ (p) by (2.7). We can see

Here we set y=2x/ξ (p) in the last line. Note that Θn0+1 (p)<2/3, hence Φn0+1(p)<(1+2Θn0+1 (p))/3<

7/9 by (2.24). From (2.29), if Φk (p)<7/9, then Φk+1 (p)/Φk (p)<76/81. We see

Combining this with (2.7), we have

Hence 2n0-4/ξ (p)>2-16log(9/7). Since ξ (p)→∞ as p→1, Ep|C|k>K1{ξ(p)}Dk holds if we take
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Now we proceed to estimate from above. Note that Pp(M≧n)≦2Φn(p)≦2e-2n/ξ(p), and we can see

easily Pp (3/2・3n<|C|≦3/2・3n+1)≦Pp (M≧n)≦2e-2n/ξ(p). Hence

Now

So we can take K2 (k)<∞ such that Ep |C|k<K2{ξ(p)}Dk.

2.5 Site percolation on the pre-Sierpinski gasket

We define the Bernoulli site percolation on the pre-Sierpinski gasket; each vertices in V are open with

probability p and closed with 1-p independently. Let Pp denote its distribution. We write x⇔y if

there exists a sequence of open vertices x=x0, x1,…, xn-1, xn=y such that there is a bond in E which

connects xj with xj+1 for 0≦j≦n-1. We define another notations in the same manner as before. We

introduce connectivity functions;

We see Φ0 (p)=p2 and Θ0 (p)=p3 by definition.

Proposition 2.13. For each n>0 and 0<p<1,

(2.32)

(2.33)

Proof. We prove (2.32). Let A1n and A2n be events given by

Then we have

(2.34)

Remark that Fn∩F'n={an}. So we see Pp (A1n)=p-1{Φn(p)}2. Similarly, we have Pp (A2n)=

p-2{Φn(p)}3, Pp (A1n∩A2n)=p-3{Θn(p)}2Φn (p). Thus (2.32) follows from (2.34) immediately. (2.33)

is proved in the same way.
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Let Φn (p)=p-1Φn (p) and Θn (p)=p-3/2Θn (p)  Then we have the same recursions as (2.4), (2.5):

(2.35)

(2.36)

Hence we see that there exists ξ(p)>0 such that

that is

Lemma 2.14 Let √p=√p+6(1-√p)2. Then there exists ε>0 such that

Proof. We use the same method as in Section 3 again. Let

(2.37)

To apply (2.9), first we prove (Θn(p), Ψn(p))∈D. (Recall D={(x, y): 0≦x≦y≦1}.) Since

Ψn(p)=Θn(p)+3{Φn(p)-Θn(p)}, it is enough to prove Φn(p)≧Θn(p). Now

Hence we have Φn(p)≧Θn(p), which implies (Θn(p), Ψn(p))∈D.

A direct calculation from (2.35) and (2.36) shows

We can take ε>0 such that

for 1-ε≦p≦1.

Now we apply (2.9). We have for n≧1 and 1-ε<p<1,

We see Φn+2(p)≦Φn(p)<Φn+1(p) by (2.37), so we have the conclusion.

Proof of Theorem 2.3. Note that p={√p+6(1-√p)2}2=p+3(1-p)2+o((1-p)2) as p→1. We

have Theorem 2.3 in the same way as in Section 3.
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第3章 Asymptotic behavior of the

correlation length

3.1 Introduction

Percolation is a model of disordered media. It is very attractive because it is one of the simplest model
to observe phase transitions. In recent years percolation has been studied well, most of the studies are on

periodic graphs such as Zd. See [2],[3],[4] and references there in. The definition of the periodic graph
is mentioned in [3].

In this paper, we study percolation on fractal lattices, which are not in the class of the periodic graphs.
There are some reasons why we consider percolation on the fractal lattices. First, many objects in nature
has fractal shapes. For instance, imagine water and nourishment percolating in the roots or branches
of a tree. Second, we want to justify scaling relations of percolation. To applicate the renormalization
methods, self-similarity of the graph is more important than periodicity. Third, we have mathematical
interests on fractals. Most of all, studies of self-avoiding walk on Sierpinski gaskets ([5],[6],[7]) gave us

good motivation.
To state problems, first we mention about bond percolation on 2-dimensional pre-Sierpinski gasket as
in [1]. Set O=(0, 0), a=(1, 0), b=(1/2,√3/2). Set G0 be the graph which consists of the vertices and

edges of the regular triangle △Oab. Let {Gn} n=0, 1, 2,… be the sequence of graphs given by

where A+a={x+a: x∈A}. Let G=∪Gn. We call G the pre-Sierpinski gasket. (Figure 3.1) Note

that G=cl(∪2-nG) become the Sierpinski gasket, Let V be the set of the vertices in G, and E the

set of the edges in G with length 1.

Let us define the Bernoulli bond percolation on the pre-Sierpinski gasket. Each edge in E is open

with probability p and closed with probability 1-p independently. Let Pp denote its distribution. More

precise definition of the probability space will be mentioned in Section 2. We think of open bonds as

permitting to go along the bond. We write v⇔v' if there is an open path from v to v'. We define open

cluster C={v∈V: O⇔v}.

We define the percolation probability

(3.1)

where |C| denotes the number of vertices contained in C. Let pc denote the critical Point; that is

(3.2)
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Figure 3.1: 2-dimensional pre-Sierpinski gasket

Pc=1 for the pre-Sierpinski gasket because it is finitely ramified.

Remark. All graphs we treat in this paper are finitely ramified and pc=1.

The correlation length is defined by

(3.3)

The existence of the limit is proved in [1]. Note that the definition above is equivalent to

(3.4)

or

(3.5)

It is clear that ξ (p)→∞ as p→1, We observe the asymptotic behavior of ξ(p), how fast it diverges to

infinity. we write f (p)=g (p) as p→Po if log f (P)/log 9 (P)→1 as p→Po.

Theorem 3.1 (2-dimensional pre-Sierpinski gasket)

(3.6)

This result is not contained in [1].

We mention about results and conjectures of percolation on Zd. It is conjectured (see [2])

The value v (d) is called the critical exponent. It is proved that v (d)=1/2 for sufficiently large d ([8]), and
conjectured v (2)=4/3 (see [9]). Our result is quite different from results on Zd. In physical literature

([10]), this remarkable difference between on Zd and on Sierpinski gaskets was suggested by using formal
renormalization arguments. Our contribution is that we prove Theorem 3.1 rigorously. And we apply our
method to another fractal lattices. We obtain similar results, Theorem 3.2, Theorem 3.11 and Theorem
3.12.
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The organization of this paper is as follows: we state the precise definition of bond percolation on

d-dimensional pre-Sierpinski gasket in Section 2 and observe the asymptotic behavior in Section 3. In

Section 4 we study percolation on the pentakun lattice and the snowflake lattice, which are also in the

class of fractal lattices.

3.2 Definition of bond percolation on d-dimensional pre-Sierpinski

gasket

3.2.1 Precise definition and the main theorem

In this section we state the definition of percolation on d-dimensional pre-Sierpinski gasket for d>2.

It is well-known that there is a compact set K of Rd such that

(3.7)

where f1, f2,..., fN: Rd→Rd are contraction mappings. K is called self-similar set.

Sierpinski gasket is an example of the self-similar sets. Let a0=O be the origin of Rd, and let ai

(i=0, 1,..., d) be vertices of the d-dimensional simplex with |ai-aj|=1 fbr i≠j. Set contraction

mappings

(3.8)

for i=0, 1,..., d. The solution of equation (3.7) for (3.8) is d-dimensional Sierpinski gasket.

Remark. consists of points. In this sense, Sierpinski gasket is classified

into finitely ramified fractal. Notions of finitely ramification are defined rigorously in [11], [12].

Let Vo={O, a1, a2,,.., ad}, and let E0={aiaj: 0≦i<j≦d}. Set

(3.9)

(3.10)

Let Vn={2nv: v ∈ Vn} and En={2ne: e ∈ En}. Here we write 2ne=2nv2nv' where e=vv'.

We define the vertex set and the edge set We call the graph G=(V, E) d-

dimensional pre-Sierpinski gasket. Note that (i) all edges in E have length 1, (ii) all vertices except

O have four adjacent edges and vertices. We denote ani=2n ((fi o fi o…o fi)ai)=2nai, and we see

|ani|=2n. (See Figure 3.2.)

Now we define the probability space with density parameter O≦p≦1. We take configuration space

Ω={0, 1}E. For ω={ω (e): e ∈ E} ∈ Ω, we call the edge e is open if ω (e)=1 and e is closed if

ω (e)=0. Let μ=μe be marginal distribution on e such that
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Figure 3.2: G2 of 3-dimensional pre-Sierpinski gasket

independently of any other edges and identically distributed. We take the product probability mea-

sure on Ω such that We call v is connected to v' if there is a sequence of vertices vo=

v, v1,…, vn-1, vn=v' and sequence of open edges el, e2,..., en such that ei=vi -1vi for 1≦i≦n.

Wb denote this event by v⇔v' and the complement by v⇔v'. We call C (v)={v'∈V: v⇔v'}

the open cluster containing v. Especially we denote the open cluster containing 0 by C. Percolation

probability and critical point are defined as (3.1),(3.2). We easily see pc=1 for all d.
The correlation length is defined, equivalent to (3.3), as follows:

(3.11)

We state the main theorem.

Theorem 3.2 (d-dimensional pre-Sierpinski gasket)

(3.12)

This theorem contains (3.6).

3.2.2 Existence of the correlation length

To simplify notations, we often denote O by ano. Let A={Aλ} be a partition of {0, 1, 2,…, d} and A

the set of all partitions. We define

(3.13)

QnA in Gn denotes the event that QnA occurs in Gn, where Gn=(Vn, En) is the subgraph of G. We write
QnA in Gn+a; for the event shifted to Gn+a: for short. We define the connectivity function

and

for B ⊂ A. It is clear that these probabilities are not changed by the shift of ani.
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For the family of {ΦnA(P)}A∈A, we give a numbering Φn1(p), Φn2(p),…, Φnl(p) where l is the cardinality

of A. Note that ΣΦnk(p)=ΦnA(p)=1. Set D={(p1,p2,…,pl)∈[0,1]t; Σpk=1}. It is clear

pn=pn(p)=(Φn1(p), Φn2(p),…, Φnl(p))∈D for all n, p by the remark above.

Proposition 3.3 There exist functions{Fk}1≦k≦l: D→D such that

Fk(pn)=Φn+1k(p)

for 1≦k≦l.

This proposition says that the probability Φn+1k(p) is given as a function of Φn1(p), Φn2(p),…, Φnl(p).

Note that we know whether an event Qn+1A in Gn+1 occurs or not whenever we know for all 0≦i≦d

which event of {QA' in Gn+ani} A'∈A occurs. This is because of the finitely ramification of Sierpinski

gaskets.

Remark. We have the concrete expression of recursion functions for d=2([1]). Let A1={{0,1,2}},

A2={{0,1},{2}}, A3={{0},{1},{2}}. SetΦnk(p)=ΦnAk(p). By symmetry, Φn1(p)＋3Φn2(p)十 Φn3(p)=1.

We have

Φn+11(p)=(Φn1(p))3+6 (Φn1(p))2Φn2(p)＋3Φn1(p)(Φn2(p))2,

Φn+12(p)=(Φn1(p))2+2Φn1(p)Φn2(p)+(Φn2(p))2-4(Φn1(p))2Φn2(p)

-(Φn1(p))3+(Φn2(p))3.

We define

RnA={ani⇔anj in Gn for i∈Aλ, j∈Aλ' and λ=λ'}.

(Compare this definition with (3.13).) And the definitions of RnA in Gn, RnA in Gn＋ani follow above. Let

ΨnA(p)=Pp (RnA in Gn).

We confirm the existence of correlation dength. We write[0,1]={{0,1},{2},{3},…,{d}}.

Lemma 3.4 Set Ψm(p)=Ψn[0,1](p), that is the probability of the event O⇔an1 in Gn. The limit

(3.14)

exists. We call ξ(p) the correlation length.

Remark. We give some remarks about definitions of ξ(P).(3.14) differs from (3.11), but there is no

effection of restriction in Gn because lim {Pp(Rn[0,1]in Gn)/Pp(Rn[0,1])}=1.(See Lemma 2.6 in [1].)

Set Amin={{0},{1},…,{d}}.(The meaning of the minimum will be mentioned in the next section.)

Set Ψn(p)=1-ΦnAmin(p), the probability of the event that there exist i,j (i≠j) such that ani⇔

anj in Gn. Then

because Ψn(p)≦Ψn(p)≦cΨn(p) for some constant c. This implies the equivalence between (3.4) and

(3.5).

We prepare two propositions to prove Lemma 3.4.
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Proposition 3.5 There exists a constant c which depends only on d such that

(3.15)

Proof. The left-hand inequality is clear because (Rn[0,1] in Gn)∩(Rn[0,1] in Gn+an1)⊂(Rn+1[0,1]in Gn+1).

For the right-hand side, we consider the self-avoiding walks from O to a11 in G1. There is only one walk

with length 2. Another walks are with length more than 3, and the number of walks are finite.(The

number is depend on dimension d.)□

The next proposition is a generalization of proposition 2.5 in [1].

Proposition 3.6 Suppose that a strictly positive seguence {xn}n=0,1,… and a constant α>1 satisfy

(3.16)

for all n. Then there exists, β≧0 such that

(3.17)

Proof. Set yn=xn+1/xan. We see

(3.18)

The right hand side of (3.18) converges as n→∞ since yn is finite. Let-β be the limit. From (3.18) we

see-αnβ-logxn=α-1logyn＋α-2 logyn+1+…. So we have

by assumption (3.16). This completes the proof. □

We see the justification of the definition (3.14) asacorollary of the above proposition.Set xn=Ψn(p)

and α=2. By (3.15), we can take c1=c2=1 for p>0.(Note that lim Ψn(p)=0 for p<1.) We have

lim{e-2n/ξ(p)/Ψn(p)}=1 where ξ(p)=β-1. We see that ξ(p) is a continuous function by the proof

above. Clearly ξ(p) is increasing by definition.

3.3 Asymptotic behavior of the correlation length

3.3.1 Sufficient conditions to have the asymptotic behavior

We give some definitions first in this section. We introduce the partially orderくon A such that

AくA'⇔A is a subpartition of A'.

That is Aλ⊂A'η if Aλ∩A'η≠0. It is clear that Amax={{0,1,…,d}} is the maximal partition and

Amin={{O},{1},…,{d}} is the minimal partition of A. A subset I⊂A is increasing set if and only if

IくI' and I∈I⇒I'∈I
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holds. ζdenotes the set of all increasing sets.

An event Q⊂Ω is called increasing event if and only if

ω∈Q and ω(e)≦ ω'(e) for all e∈E⇒ω'∈Q

holds. For instance,QnA is not Dincreasing event for A≠Amax, and RnA is an increasing event for any

A. We see QnI=UQnI is an increasing event if and only if I∈ζ.

The next lemma is the key to prove the main theorem.

Lemma 3.7 Suppose

(3.19)

for all I∈ζ. Then

(3.20)

holds for all I'∈ζ.

We give a proof for a modified version of Lemma 3.7.

Lemma 3.8 Let μ be the Lebesgue measure on [0,1] and v be a probability measure on A. Let F:

[0,1]→A be a function that F-1 (A) is μ-measurable for all A∈A. Suppose

(3.21)

for all I∈ζ. Then there is a function G:[0,1]→A such that

(3.22)

and

(3.23)

almost surely.

We prove Lemma 3.7 as a corollary of Lemma 3.8. There is a function F with μF-1(A)=ΦnA(p),

because μ([0,1])=ΦA(p)=1.Set v(A)=Φn+1A(p'), and (3.19) induce (3.21).

Suppose G(x) with (3.22) and (3.23) is given. Let G1 be a copy of Gn+1 and G2 a copy of Gn+2, μd+1

denotes the (d+1)-dimensional Lebesgue measure on [0,1]d+1, Regard μd+1 as the probability measure

which has the uniform distribution. Assume we pick apoint x=(x0,x1,…,xd) with respect to μd+1.

We determine what occur in G1 and G2 by the following rule. For each 0≦i≦d, we regard as

(3.24)

for G1, and

(3.25)

for G2. The events (Qn+1A in G1) and (Qn+2A in G2) are measurable by Proposition 2.1. We see

Φn+1A(p)=μd+1 (x∈[0,1]d+1: Qn+1A in G1 occurs by rule (3.24))
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and

Φn+2A(p')=μd+1 (x∈[0,1]d+1: Qn+2A in G2 occurs by rule (3.25))

by construction. If I'∈ζ we have (3.20), because F (xi)くG (xi) and QnI' in Gn is increasing for all n.

Proof of Lemma 3.8. We write (v-μF-1)(・)=v(・)-μF-1(・). Set A+{A∈A:(v-μF-1)(A)≧0},

A-={A∈A:(v-μF-1)(A)<0}. If A-=0, then take G=F and the proof is finished.

Pick a maximal element K of A-. Set uκ={A∈A:K≦A} and u+K=uK∩A+. Clearly

u+K=uK＼{K}, which contains Amax. For μ+K, we give a numbering U1=Amax, U2,…, Uk. Set

Remark that Mi is non-decreasing with respect to i. Set △U1=M1 and △Ui=Mi-Mi-1 for 2≦i≦k.

We see

(3.26)

For 2≦i≦k,(3.26) is clear. For i=1,

(3.27)

since uK∈ζ.

We construct F:[0,1]→A as follows.

(i) F (x)=F(x) if F (x)≠K.

(ii) Set F-1 (K)=S. Take S0⊂S such that μ (S0)=v (K), and define F (x)=K for x∈S0.

(iii) Take a sequence of subsets {Si} for 1≦i≦k such that

(a) Si∩Si,=0 if i≠i',

(b) USi=S＼S0,

(c) μ(Si)=△Ui.

It is possible to satisfy (a),(b) and (c) because Σ△Ui=Mk=-(v-μF-1)(K). We define F (x)=Ui

if x∈Si.

Clearly this map satisfies F (x)≦F (x) by construction. Moreover,

(v-μF-1)(I)>0

for any I∈ζ. To prove this inequality, we may assume K¢I.
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We use (3.26) and (3.27) for the second line.

Replace F by F and repeat this procedure to be A-=0. □

3.3.2 Probabilities of increasing events on Sierpinski gaskets

We apply Lemma 3.7 to see the asymptotic behavior of the correlation length. Owing to the lemma, if

we take p, p' and n which satisfy (3.19)for all I∈〓, then for any m>n we have

(3.28)

for all I'∈〓 By definition (3.14), we obtain ζ(p')/ζ(p)≧2 from (3.28).(consider the converse. If we take

p, p' and n which satisfies

(3.29)

for all I∈〓, we haveζ(p')/ζ(p)≦2. So it is the problem how to take p, p' and n to satisfy (3.19) or (3.29).

Lemma 3.9

(3.30)

and

Proof. We prove (3.30). It is sufficient to show (3.19) for some n. We want to have the expansion of

ΦnI (p) with respect to (1-p) because we observe probabilities near the critical point. First, we consider

the case I={Amax}.

Proposition 3.10 There exists N=N(d) such that for any n≧N

(3.31)

where V, W are polynomials of finite degree and V (x)=o (xd), W (n,x)=o (xd2) as x→0.

Proof. Observe when the event QnAmax in Gn does not occur. If it does not occur, at least one vertex of

an0, an1,…, and is not connected to any other d vertices in Gn. We say the vertex is isolated.

We consider two typical case for O=an0 to be isolated. If all adjacent edges of O are closed, O cannot

be connected to any other vertices. This probability is (1-p)d. Consider the second case. For fixed

k (1≦k≦n-1), let Ek-i be set of adjacent edges of aki contained in Ek and Ek+i set of those not

contained in Ek. If edges in Ek-i or in Ek+i are all closed, it cannot go through aki. This probability is

approximately 2(1-p)d if p is near to 1. So the probability that it cannot go through aki, ak2,…, akd is

approximately 2d(1-p)d2, which is independent of k.

We see

(3.32)
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The first term of the second line corresponds to the second typical case. Except the two typical cases
mentioned above, it is necessary more than d2 edges to be closed to make the event (O is isolated in

Gn+1)/(O is isolated in Gn) occur when n is sufficiently large. So we obtain (3.32). Thus

Pp (O is isolated in Gn)=(1-p)d+V(1-p)+2dn(1-p)d2+o((1-p)d2).

Since nAmax (p)=(ani is not isolated in Gn), we have (3.31).

Next, set I=A＼{Amin}, which is also an increasing set. Observe when the event QAmin in Gn occur .

(Recall (3.13), the definition of Q. The event QAmin can be regarded as all an0, an1,..., and are isolated.)

Suppose an0, an1,..., and-1 are isolated. Then and is isolated automatically. First typical case is that all

adjacent edges of d vertices are closed. This probability is (1-p)d2. Consider the second typical case.

That is, it cannot go through ak1, ak2,..., akd from O and all adjacent edges of an1,..., and-1 are ciosed .

This probability is approximately 2d(1-p)d2×(1-p)d(d-1). Take note of the possibility of choice of the

vertices, we have

where V (x)=o (xd2) and W (n, x)=o(x2d2-d) as x→0.

As a conclusion for I∈£, the top terms of the expansion of ΦnI (p) with respect to (1-p) depend on the

minimal number of isolated vertices to make the event QnI in Gn does not occur and possibility of choices

of vertices which attains the minimum. m1=m1 (I) denotes the minimal number, and m2=m2 (I)

denotes the possibility of choices. As we see, m1=1, m2=d+1 for I={Amax}, and m1=d,

m2=d+1 for I=A＼{Amin}. We conclude

(3.33)

where V, W are polynomials of finite degree and V (x)=o (xdm1), W (n, x)=o (xd2+d (m1-1)) as x→0.

Set p'=p+k (1-p)d2-d+1. All we have to do is confirm (3.19). By (3.33), we have

Since ΦnI+1 (p'),ΦnI (p) are of finite degree, we complete the proof.

Proof of Theorem 3.2. Set g (p)=logξ(p). Note that g (p) is an increasing function. Assume

(3.34)

and we lead a contradiction.

Applying the L'Hospital's theorem,

That is lim hc (x)<log 2. Since hc (x) is continuous near to 0, we can pick p0 such that

(3.35)
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Figure 3.3: G2 of the pentakun lattice

Set τ(p)=p+k(1-p)s+1. Define pn+1=τ(pn) inductively, and we see pn is increasing with respect

to n and lim pn=1. Let N=N (p0) be a large integer. There exists t such that pN<t<1 and

g(t)<c(1-t)-s by (3.34). For this t, pick N' with pN'≦t≦pN'+1. We see

(3.36)

by the definition of hc(x) and (3.34). On the other hand, we see

(3.37)

by (3.30). Combining (3.36) and (3.37), we have

Take N sufficiently large, that leads to a contradiction.

3.4 Some other examples; the pentakun lattice and the snowflake

lattice

3.4.1 The pentakun lattice

In this section we study percolation on another fractal graphs. First, we define the pentakun. Recall

equation (3.7). Let a0=O be origin of R2, and let ai (i=0, 1, 2, 3, 4) be vertices of the regular pentagon

on R2 with |ai-ai+1|=1. Here we define a5=a0 for simplicity. Let fi: R2→R2 (i=0, 1, 2, 3, 4) be

contraction mappings

(3.38)

where β=3+√5/2. The solution of equation (3.7) for (3.38) is called the pentakun. Let V0=

{a0, a1,..., a4} and E0={aiaj: 0≦i<j≦4}. We define Vn, En the same as (3.9),(3.10).
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Let Vn={βnv: v∈Vn} and En={βne: e∈En}. We define the vertex set V=∪Vn and the edge

set E=En. The accomplished graph G=(V, E) is the pentakun lattice. (See Figure 3.3.) Notations

follow those in Section 2 and 3. The pentakun lattice is not symmetric with respect to the change of an1

and an2, which differs from Sierpinski gaskets.

We consider bond percolation on this graph. Pp denotes its distribution. We define correlation length

(3.39)

where α=1+√3. α means a scale factor. Remark that α does not coincide β, the ratio of contraction.

This constant is determined by the length of the shortest path from 0 to an1. The exsistence of the limit

in (3.39) will be mentioned below.

On this graph, we have a concrete expression of the recursion formulas. We concentrate three connective

probabilities, ΘnI(p)=Ψn[0,1](p), ΘnII(p)=Ψn[0,2](p) and ΘnI1I(P)=Ψn[0,1,3](p).(Here ΘnIII(p) is the

probability of the event O⇔an1 and O⇔an3 in Gn.) We have

(3.40)

(3.41)

We see

(3.42)

We use FKG inequality for the first inequality. The second inequality is given by a symmetry of the

graph. Combining (3.40)-(3.42), we have

(3.43)

Then

where α=1+√3

follows. There exists the limit

by Proposition 3.3. Thus we obtain

Remark. We mention about the length of the shortest path. We denote the number of edges of the

shortest path from v to v' by d(v, v'). Set dni=d(O, ani). It is clear dn+11=2dn2 and dn+12=dn1+2dn2,

which correspond to (3.43). Moreover,
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Figure 3.4: G2 of the snowflake lattice

We proceed to have the expansion of  Here we consider two typical case for O to be isolated in

Gn. Take note of E0. We write ei=a0ia0i+1. If at least one pair of edges (e0, e3); (e0, e4), (e1, e3) or

(e1, e4) are both closed, then O is isolated. This probability is approximately 4 (1-p)2. Consider the
second typical case. Set  bn1=βn+1 f2 (a0), bn2=βn+1 f1 (a4), bn3=βn+1 f0 (a3) and bn4=βn+1 f4 (a2).

(Here bn2=an2, bn3=an3.) For fixed k (1≦k≦n-1),  if it cannot go through at least one pair of

vertices (bk2, bk3),(bk2, bk4),(bk1, bk3) or (bk1, bk4), then O is isolated. This probability is approximately

4.82 (1-p)4, which is independent of k.

Generally for I∈£, we have

where m1, m2 are defined as Section 3, and  V (x)=o (x2m1), W (n, x)=o(x2m1+2) as x-0. We obtain
the estimate of the correlation length

and

As a conclusion, we have the following theorem.

Theorem 3.11 (the pentakun lattice)

3.4.2 The snowflake lattice

Next, we consider percolation on the snowflake lattice. We define snowflake. Let a0=O be origin of

R2, and let ai(0≦i≦5) be vertices of the regular hexagon on R2 with |ai-ai+1|=1. Here we define

a6=a0 for simplicity. And let a-1 be the center of the hexagon. Let fi: R2→R2 (-1≦i≦5) be

contraction mappings

(3.44)
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Figure 3.5: O⇔v and v⇔a3n+1 induce O⇔a3n+1. Pp (O⇔v)≧Pp(0⇔a1n+1) by symmetry.

The solution of equation (3.7) for (3.44) is called the snowflake. Note that the number of contraction
mappings is 7, which is not coincide the cardinality of V0. This is the difference from the examples
mentioned above. Let V0={a0, a1,_,a5} and E0={aiai+1: 0≦i≦5}. We define Vn, En, Vn, En,

V and E in the same way as the previous sections. The accomplished graph G=(V, E) is the snowflake

lattice. (See Figure 3.4.)

(3.45)

See Figure 3.5 to have the first inequality. We have

(3.46)

for some C<∞. To see (3.46), estimate Θn+1I (p),Θn+1II (p) like (3.15) and use (3.45). Thus the limit

exists by (3.17).

For I∈£, we have

We have the following theorem.

Theorem 3.12 (the snowflake lattice)
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第4章 Existence of phase transition of

percolation on Sierpinski carpet

lattices

4.1 Introduction

Percolation is studied as a very important subject in statistical mechanics because this is one of the
simplest models which contains phase transitions of disordered media. Percolation has close relations
to disordered electrical networks, ferromagnetism, epidemic models and so on. Percolation models were

proposed by Broadbent-Hammersley [1], and have been well studied in the last thirty years. See Grimmett
[7] to view the whole of this field.
In this paper we consider percolation on fractal-like lattices. A fractal-like lattice is a graph which
corresponds to a fractal. It has a kind of self-similarity but it may not have translation invariance.
Now we explain two well-known examples, the Sierpinski gasket and the Sierpinski carpet. The former is
a finite ramified fractal and the latter is an infinite ramified fractal. In a previous paper [14] we analyse

percolation on the Sierpinski gasket lattice, which has no phase transition. The non-existence of the
phase transition is induced by the character of finite ramified fractals. In this paper we treat Sierpinski
carpet lattices. Sierpinski carpet lattices is the class of graphs which correspond to generalized Sierpinski
carpets and it contains infinite ramified fractals. Kumagai [9] gave a sufficient condition for Sierpinski
carpet lattices to have a nhase transition. We will describe his results below.
Wb define the Sierpinski carpet and generalized Sierpinski ca叩ets on R2 as follows. Set L≧2 to be

an integer and set TL={0,1,...,L-1}2. For (i,i) ∈ TL, we set an affine map Ψ (i,j) from [0,1] 2 to

[i/L,(i+1)/-L]×[j/L,(j+1)/L] which preserves the directions. Fbr a nonempty subset T⊂ TL, it is

well-known (see Falconer [6], fbr example) that there exists a unique nonempty compact set KT ⊂ [0,1]2

which satisfies the equation

We call these  KT's generalized Sierpinski carpets. The Sierpinski carpet is an element of generalized

Sierpinski carpets.

Example 4.1 Set L=3 and T=T3＼{(1,1)}, KT is the Sierpinski carpet.

We remark that the Sierpinski gasket is also an element of generalized Sierpinski carpets.

Example 4.2 Set L=2 and T=T2＼{(1,1)}. KT is the Sierpinski gasket.

Let us define the graph corresponding to KT. Set
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Figure 4.1: The Sierpinski carpet lattice, GT for=T3＼{(1,1)}

Note that KT can be constructed as the limit of FnT. Set a graph GnT=(V(GnT), E(GnT)), where V (GnT)=

Z2∩Ln FnT and E (GnT)={〈u,v〉: u,v∈y (GnT),

|u-v|=1}. Here we write〈u,v〉as a bond with endvertices u and v. From now on we assume through

this paper that KT is connected, and

(0.0)∈T. (4.1)

Under these assumptions we set GT=U∞η=1GnT. That is, V (GT)=U∞η=1 V (GnT) and E( GT)=

U∞η=1E(GnT). Note that V (GnT) and E(GnT) are increasing sequences with respect to η under (4.1).

VVe call the family of GT corresponding KT's Sierpinski carpet lattices. The Sierpinski carpet lattice

given in Figure 4.1 is an example of Sierpinski carpet lattices.

We consider bond percolation on GT. Set0≦p≦1. Each e ∈ ET is declared to be open with probability

p and cJosεd with probability 1-p independently. We denote the product measure by Pp. We define

θ (p)=Pp (|C(0)|=∞) where C (0) is the open cluster containing the origin and |C (0)| is the number

of vertices in C (0). Let Pc (GT)=inf {p:θ(p)>0} .We study the problem of finding a necessary and

sufficient condition fbr T to be Pc (θT)<1.

The difficulty of this problem is that we cannot apply Peierl,s argument (see[7}, for example) because

the ratio of the holes of GT tends to 1.

In the case of L=2, we can completely answer the problem;Pc( GT) < 1 if and only if T=T2. Hereafter

we assume L≧3. In[9] Kumagai obtained a sufficient condition for this problem. Set ∂int T={(0,j):

0≦j≦L-1}∪{(L-1, j): 0≦j≦L-1}∪{(i, 0): 0≦i≦L-1}∪{(i, L-1): 0≦i≦L-1}.

Theorem 4.1 (Kumagai [9]) pc(GaintT)<1.

By the monotonicity, that is T⊃T' implies pc(GT)≦pc(GT'), we see pc(GT)<1 if

T⊃∂intT. (4.2)
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In this paper we give a weaker condition than the theorem above. We write  Tl={j:(0,ゴ)∈T},

Tr={j:(L-1,j)∈T},Td={i:(i'0)∈T} and Tu={i:(i,L-1)∈T}. We say T is connected if fbr

any t, t'∈ T there exists a sequence t1=t, t2, ..., tn=t'which satisfies ti ∈ T and |ti-ti+1|=1 fbr

1≦i≦n-1.

Theorem  4.2 Assume

(4.3)

and

(4.4)

Then pc (CT)<1.

∂int T satisfies  (4.3) and (4.4), so this theorem contains Theorem 4.1. We will give examples to which
Theorem 4.2 is applicable but Theorem 4.1 is not applicable. Moreover these conditions will be further

relaxed as we explain in the following sections.

Remark. If T⊃T' and T' satisfies (4.3) and (4.4), then pc (CT)<1 by monotonicity. This is a trivial

extension of Theorem 4.2.

We note the existence of phase transition on general graphs.
Haggstrom [8] showed that if the maximum degree of the vertices is finite then the existence of phase
transitions of bond percolation, site percolation and the Ising model are equivalent. So we can consider
the critical phenomena of bond, site percolation or the Ising model on Sierpinski carpet lattices.
For a general connected graph G, we define isoperimetric dimension. Dim(G) by

where S is a finite connected subset of the bonds of G and OS is the outer boundary of S. We hope to
clarify the relation between Dim(G) and pc(G). In [2], Benjamini and Schramm proposed the problem of
whether Dim(G) > 1 implies pc(G) < 1.
We check this problem in the case of Sierpinski carpet lattices. Now we can say only that it seems that

Dim (CT) > 1 implies pc (CT)<1, but we do not yet have the proof, and Dim (CT)=1 does not imply

pc(CT)=1. We will discuss about the problem above with giving some examples.

We treat Sierpinski carpet lattices which satisfy (4.3) and (4.4) in Section 2 and give a proof of Theorem

4.2. In Section 3 we discuss the crucial examples which do not satisfy (4.3) or (4.4).

4.2 Proof of Theorem 4.2

To prove Theorem 4.2, we use a fractal percolation technique. See Chayes-Chayes-Durrett [3], Dekking-
Meester {5], Grimmett [7] for details on fractal percolation. To use the technique, we define box-

percolation on GT. Let
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for n≧0. We say a box b∈B0T  is open if the bottom edge and the left edge of b are open. The probability

of the event that b is open is p2, independent of any other boxes. Note that if there exists an infinite

sequence of connected open boxes then there exists an infinite sequence of connected open bonds, which

implies the existence of an infinite open cluster. We say a box b∈B1T is good if at most one subbox

b'∈b∩B0T is not opon.(that is, at least |T|-1 subboxes of b are open.) For n≧2, we say a box b∈BnT

is (very)n-1 good if at most one subbox b'∈b∩Bn-1T is not (very) n-2 good.

Lemma 4.3 For a sufficiently large p, there exists 0<θ<1 such that

(4.1)

for any n.

Proof. We write p2=p to simplify the notation. Set fT (x)=x|T|+|T|x|T|-1(1-x). It is clear that

Pp(b∈B1T}is good)≧fT (p) by definition, and inductively we can see that

where fnt is the nth iterate of fT. Let α be the largest solution of fT (x)=x contained in (0,1).Note

that x<fT (x) and f"T(x)<0 in (α,1). We observe that (1-fT(x))/(1-x) is decreasing and smaller

than 1 in this interval. If p>α, then there exists0<θ<1 such that

Proof of Theorem 4.2. At first we assume

(4.2)

Suppose b∈B1T is good. Then{b'∈b∩B0T:b'is open}is connected because of (4.3). Supposeb∈B2T

is very good. Then{b"∈B0T: b"is open and contained in a good

b'∈b∩B0T}is connected by (4.3) and (4.2). Here (4.2) assures that good boxes b1',b2'∈B1T are mutually

connected when they are neighbors, even if each of them has one box which is not open. By the same

observation, we can see that if b∈BnT is (very) n-1 good then there exist some sequence of open boxes

from the left (resp. bottom) side of b to the right (resp. top) side of b. We have

(4.3)

Here we denote by bn (0) the box such that bn (0)∈BnT and 0∈bn (0). Then by (4.1) and FKG inequality,

we have

To complete the proof, we show the conditions (4.3) and (4.4) is enough to be Pc(GT)<1. Set
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That is, T2 (⊂TL2) represents the second iteration of T. We can consider that GT is generated by T2

because GT=∪∞n=1 GnT=∪∞m=1 G2mT It is clear that T2 satisfies (4.3) and (4.2) when T satisfies (4.3)

and (4.4).

By the proof above, we have the following estimate.

Corollary 4.4 Under the same assumptions of Theorem 4.2,

where α is the largest solution of fT (x)=x in (0, 1).

Corollary 4.5

pc (the Sierpinski carpet lattice)<0.9224.

Remark. Under the same assumptions of Theorem 4.2 we can show that pcsite (GT)

<1, that is, there exists the phase transition in the case of site percolation on GT. We also can observe

Pcsite (GT)≦α. Grimmett-Stacey [7] showed

where △is them aximum degree of the vertices of G. By using of this inequality, we have pc (GT)≦ α,

which is an improvement of　Corollary 4.5. In the case of the Sierpinski carpet lattice, L=3, T=

T3＼{(1,1)} and α=0.9576…. We give a better upper bound in the following proof.

Proof of Corollary 4.5. In this proof we denote the Sierpinski carpet lattice by G=(V, E). We change

the definition of a box being good. For b = [3i,3(i+1)]x[3j, 3(j+1)], set

and

Set Gb=(Vb, Eb) and consider sub-percolation on Gb. We say b is good if there exists a open cluster C

of Cb which satisfies lC∩Vηbl≧2 for η=l, r, d and u. We have

Pp (b is good)

(4.4)
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by direct calculation. We follow the definition of (very) n-1 good for n>2 in the proof of Theorem 4.2.

It is sufficient to be θ(P)>0 that the probability (4.4) is greater than 0.9577.

At the end of this section, we comment on Theorem 4.2.

First, we emphasize that this method to show pc(G)< 1 is a different approach from Peierl's argument.

Peierl's argument is suitable for graphs which have translation invariance and our method is suitable for

graphs which have self-similarity.

Second, we show that Theorem 4.2 is a true extension of Theorem 4.1.

Example 4.3 Set L≧3 and T={(i, j)∈TL:i∈{0, 1}or j∈{0, 1}}. Then (4.2) does not hold, but

we have pc (GT)<1 because (4.3) and (4.4) hold.

Last, we remark on the extension of this theorem to subgraphs in Rd, d≧3. We can define d-dimensional

Sierpinski carpet lattices. Set TL={0,1,…, L-1}d, an affine map Ψ (i1, i2,...,id) from [0, 1] d to [i1/L, (i1+

1)/L]×[i2/L, (i2+1)/L]× … ×[id/L, (id+1)/L], and so on. We call the family of CT corresponding

KT's d-dimensional Sierpinski carpet lattices.

Example 4.4 Set L=3 and T=T3{(1, 1,..., 1)}. Then KT is the d-dimensional Sierpinski carpet.
We call GT corresponding this KT the d-dimensional Sierpinski carpet lattice.

Example 4.5 Set L=3 and T=T3＼{(i1, i2,…,id):|{l:il=1}1≦1}. Then KT is the d-dimensional

Menger Sponge. We call GT corresponding this KT the d-dimensional Menger sponge lattice.

GT in Example 4.4 contains the Z2 lattice and GT in Example 4.5 contains the 2-dimensional Sierpinski

carpet lattice as a subgraph, so MGT)<1 is clear. Mural [13] studied an asymptotic behavior of MGT)

asd→∞. Generally, if a Sierpinski carpet lattice contains a 2-dimensional sub-Sierpinski carpet lattice

which satisfies the assumptions of Theorem 4.2, then pc(GT)<1 follows. Moreover, it is easy to modify

Theorem 4.2, being suitable for d-dimensional Sierpinski carpet lattices, to make it is applicable to the

following example.

Example 4.6 Set d=3 and L=3. Let T={(i, j, k):(i, j)∈H and k∈{0, 2}}Ｕ{(0, 0, 1), (2,2,1)}

where H={0, 1, 2}2 {(1, 0), (1, 2)}.

This GT contains GH (a 2-dimensional Sierpinski carpet lattice) as a subgraph but this does not imply

Pc(GT)<1 because pc(GH)=1, as we will show in the next section. But this T satisfies the modification
of (4.3) and (4.4) and we can obtain MGT)<1.

4.3 Remark on the isoperimetric dimension

In this section we discuss the case where T does not satisfy (4.3) or (4.4). To study the relation between

the phase transition and the isoperimetric dimension of the graph, we give three examples; GT with

I. Dim (CT)=1 and pc(GT)=1,

II. Dim (CT)>1 and pc(CT)<1,

III. Dim (CT)=1 and pc(CT)<1.

I. The following is a simple example of GT on which Pc(GT)=1 is not so clear.
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Figure 4.1: The image of T in Example 4.6.

Example 4.7 Set L=2k+1 (k≧1) and T={(0, j):0≦j≦L-1}∪{(L-1, j):0≦j≦

L-1}∪{(i, k):0≦i≦L-1}.Then Dim (CT)=1, becavse we can take{Sn} as Figure 4.3 to satisfy

|∂Sn|≦8.

Proposition 4.6 Let T be defined in Example 4.7. Then pc(GT)=1.

When k≧2, this proposition is shown in Kumagai [9]. Here we give a proof for thek=1 case, that is

L=3.(This T corresponds to H in Example 4.6.) Recall the definition of CTn, that is CT∩[0, Ln]2. We

say there exists an left-right (resp. top-bottom) open crossing of CTn if there exist u∈{x=0}∩V(CTｕ)

and v∈{x=Ln}∩V(CTn) (resp. u∈{y=0}∩V(CTn) and v∈{y=Ln}∩V(CTn)) such that u and v

are in the same open cluster of GnT. Set

xn(p)=Pp (there exists a left-right open crossing of GnT),

yn(p)=Pp (there exists a top-bottom open crossing of GnT).

From now on, we assume 0<p<1. For briefly we write xn and yn instead of xn(p) and yn(p).

Lemma 4.7

(4.1)

Proof. We observe

(4.2)

and x1<1 induces (4.1).

By the proof above, we can also see that xn, is strictly decreasing with respect to n.
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Figure 4.1: GT for T=T3/{(1, 0),(1, 2)}

Lemma 4.8 There exists, β>2 and 0<θ<1 such that

(4.3)

Proof. To observe the construction of T more precisely, we have better estimate of xn than (4.2). That

is

Set zn=log xn and we have zn≦zn-1+2zn-2+4zn-3+1010g 3.By (4.1), we can pick m for zn being

sufficiently small. Set {Zn} n>m such that Zm=zm, zm+1=Zm+1, zm+2=Zm+2 and

(4.4)

for n≧m. Then zn≦Zn for all n>m. By (4.4) Zn can be written as

with c1<0 where λi are the eigenvalues of the matrix 1 2 4 1 0 0 0 1 0, λ1>2 and|λ1|>|λ2|>|λ3|・so

we can choose λ1>β>2 and c>0 to be Zn<-cβn, that induces (4.3).

Lemma 4.9

(4.5)

Proof. If there is a top-bottom open crossing of GmT+n, either of the events (i),(ii) must occur.

(i) There is a top-bottom open crossing in at least one of the rectangles, {[iLn,(i+1)Ln]×[0, Lm+n]}

wherei=Σm-1l=0il3l, il∈{0, 2}.
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(ii) There is a left-right open crossing in the center subbox (size Ln) of the boxes with size Ln+1.

As for the event (i) we can take 2m boxes with size Ln disjointly from each rectangles. That is,{[iLn,(i+

1) Ln]×[jLn,(j+1)Ln]}where j=Σm-1l=0jl3l, jl∈{0, 2}. In these boxes there must be top-bottom open

crossings, and this probability is not greater than 2my2mn. As for the event (ii) we count the number of

boxes with size Ln+1. We see the probability of this event is less than 7m-1xn.

Proof of Proposition 4.6. Choose2<γ<β. Set an integer m to beγn≦m<γn+1, and we have

by (4.3) and (4.5). Clearly the second term of the right hand side goes to 0 as n→∞. For the first term,

we note that yn≦1-(1-lp)2n+1 by definition and we have only to prove

This equation is true because2<γ.

Example 4.8 Set 0≦I, J≦L-1. Set T=TL/{(I, J):j≠J}. This is a generalization of Example

4.7. Then Dim (GT)=1 and pc (GT)=1.

By this example, we can see that for any 0≦j≦L-1

(4.6)

is a necessary condition of pc (GT) <1.

II. Generally speaking, it is difficult to determine the exact isoperimetoric dimension of Sierpinski car-

pet lattices. Osada [11] established the dimension of the d-dimensional Sierpinski carpet, that induces

Dim (GT)=log(3d-1)/(log(3d-1)-log(3d-1-1)) for the d-dimensional Sierpinski carpet lattices

mentioned in Example 4.4. But if GT does not have good symmetries then it seems hard even to be

sure that Dim (GT)>1. We believe the assumptions of Theorem 4.2 are sufficient for Dim (GT)>1, but

we do not yet have the proof. Conversely, we think the assumptions of Theorem 4.2are stronger than

Dim (GT)>1, and we wonder that the proof of Theorem 4.2 is effective for all Sierpinski carpet lattices

with Dim (GT)<1. In that proof, weneed (4.3) and (4.2) only to assure (4.3). We can change the

assumptions so long as they assure (4.3). If we can show Dim (GT)>1 implies (4.3), then pc (GT)<1

holds.

Remark. We can see that (4.4) is a necessary condition for pc (GT)<1, which is similar to (4.6). Sowe

should change (4.3) to a suitable alternative.

Example 4.9 Set L=7 and T=T7/{(2, 4),(2, 5),(2, 6),(3, 2),(3, 4),(4, 0),(4, 1),(4, 2)}. In this case

(4.3) does not hold but (4.3) holds, and pc (GT)<1.

Example 4.10 Set L≧3 and T={(i, j): i∈{0, 1}and 0≦j≦L-1}U{(i, j): 0≦i≦L-1 and j∈

{0, L-1}}. Then pc (GT)<1 holds.

III. Here we show Dim (GT)>1 is not necessary for pc (GT)<1. We give an example.
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Figure 4.2: GT for T=T5/{(1, 3),(1, 4),(2, 1),(2, 3),(3, 0),(3, 1)}

Example 4.11 Set L=5 and T=T5/{(1, 3),(1, 4),(2, 1),(2, 3),(3, 0),(3, 1)}. In this case Dim (GT)=
1 because we can take {Sn} as in Figure 4.4 to 5satisfy|∂Sn|=2. On this graph pc (CT)<1.

In this example the component corresponding (2, 0) seems a dangling subgraph, but if we delete (2, 0)

from T then pc (GT)=1.

We conclude this paper with a further problem; Is pc (GT)<1 eqivalent to the condition that GT contains

a subgraph G with Dim (G)>1?
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第5章 Non-existence of phase transition of

oriented percolation on Sierpinski

carpet lattices

5.1 Introduction

Percolation is studied as an important subject in statistical mechanics because this is one of the simplest
models which contains phase transitions of disordered media. Percolation has close relations to disordered
electrical networks, ferromagnetism, epidemic models and so on. Percolation models were proposed by
Broadbent and Hammersley [1], and have been well studied in the last thirty years. See Grimmett [7] to
view the whole of this field.
Percolation problems had been studied mostly on Zd lattice until recent years. We note that Zd lattice
has translation-invariances. In this paper we consider percolation on fractal-like lattices. Fractal-like
lattices are graphs which correspond to fractals. All of them have a kind of self-similarity, but most of
them have no translation invariances. The Sierpinski gasket and the Sierpinski carpet are well-known
examples of fractals. The former is a finite ramified fractal (that is, it can be disconnected by removing
a finite number of points) and the latter is an infinite ramified fractal. See Mandelbrot [12] for details of
fractals. In a previous paper [14] we have analysed percolation on the Sierpinski gasket lattice, which has
no phase transition. The non-existence of phase transition is induced by the character of finite ramified
fractals. Now we focus on the Sierpinski carpet lattice. The Sierpinski carpet lattice is a graph which
corresponds to the Sierpinski carpet.
Let us define the Sierpinski carpet on R2 as follows. For (i, j)∈{0, 1, 2}2 we set an affine mapΨ(i, j) from

[0, 1]2 to [i/3,(i+1)/31×[j/3,(j+1)/3] which preserves the directions. Set T={(i, j)∈{0, 1, 2}2|(i, j)≠

(1,1)}. It is well-known (see Falconer [6] for example) that there exists a unique nonempty compact set

K⊂[0, 1]2 which satisfies the equation that K=Ut∈TΨt (K). We call this K the Sierpinski carpet. Let

us define the graph corresponding to K. Set Fn=Ut1,t2,…tn∈TΨt1○Ψt2○…○Ψtn([0, 1]2). We note that

K can be constructed as the limit of Fn. We write kA={ka|a∈A}. Set Vn=Z2∩3nFn. We denote

by ||x|| the Euclidean norm of x. For a vertex set W we define a bond set E (W)={<u, v>|u,v∈W,

||u-v||=1}. Here we wrote<u, v>as a bond with endvertices u and v. Set a graph Gn=(Vn, E (Vn)).

Note that Vn and E (Vn) are increasing sequences with respect to n. Set G=U∞n=1Gn, that is G=(V, E)

where V=U∞n=1Vn and E=U∞n=1E (Vn). We call this G the Sierpinski carpet lattice. We will define

a family of Sierpinski carpet lattices in Section 3.

We consider bond percolation and oriented bond percolation on G. Let0≦p≦1. Each e∈E is

declared to be open with probability p and closed with probability 1-p independently. We denote by

Pp the product measure. Next let us consider a sequence of vertices π=(v0, v1,…, vm) where vi∈V

for0≦i≦m. We say π is a path when<vi-1, vi>∈E for 1≦i≦m and vi≠vj for i≠j. We give

a partial order on Z2 such that (x1, x2)≦(yi, y2) if and only ifx1≦Y1 and x2≦y2. We say πis an
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Figure 5.1: the Sierpinski carpet lattice

oriented path when π is a path and vi-1≦vi for 1≦i≦m. We write u⇔v if and only if there exists a

path π with v0=u, vm=v and <vi-1, vi> are open for1≦i≦m. We denote C (v)={u∈V|v⇔u}.

We call C (v) the open cluster containing v, and we denote by C the open cluster containing the origin.

we define θ(p)=Pp (|C｜=∞) where |C| means the number of vertices in C.Set pc=inf{p|θ(p)>0}.

We write u→v if and only if there exists an oriented path π with vo=u, vm=v and <vi-1, vi> are

open for 1≦i≦m. We define C (v)={u∈V|v→u}, C, θ (p) and pc in the same way as C (v), C,

θ (p) and pc. We write pc (S. C.) and pc (S. C.) for pc and pc respectively when we want to emphasize its

dependence on the graph (the Sierpinski carpet lattice in this case).

We explain studies of percolation on Sierpinski carpet lattices. Kumagai [9] showed that pc<1 for a

family of Sierpinski carpet lattices (which includes the Sierpinski carpet lattice) and studied under an

assumption its critical phenomena and uniqueness of infinite cluster for p>pc.Lu [11] gave an alternative

proof of pc<1 using a Peierls argument. Shinoda [15] gave sufficient conditions and necessaryc onditions

to have pc<1 for generalized Sierpinski carpet lattices. Murai [13] studied an asymptotic behavior as

d→∞ of the critical probability of d-dimensional Sierpinski carpet lattices. Dekking and Meester [5]

studied the fractal percolation process (Mandelbrot percolation) on the Sierpinski carpet.

In this paper we study oriented percolation on Sierpinski carpet lattices. Oriented percolation is significant

as a model of disordered media because it has close relations to media of semiconductors, contact processes

and so on. On Z2 we may regard this model as a one-dimensional contact process in discrete time. See

Durrett [4] and [7] for details. On Zd (d≧2), it is well-known that the critical probability pc (zd) of

percolation and that pc(Zd) of oriented percolation are strictly less than 1. In particular, pc(Z2)=1/2

has been shown by Kesten [9] and pc (Z2)≦2/3 has been shown by Liggett [10]. We shall determine

the critical probability pc (S. C.) of oriented percolation on the Sierpinski carpet lattice. By definition

pc (S. C.)≦pc (S. C.) is clear. We obtain the following result.

Theorem 5.1 The critical probability pc (S. C.) of oriented percolation on the Sierpinski carpet lattice is

equal to 1.

This result is interesting because it shows a difference between the Sierpinski carpet lattice and Z2 lattice.

Theorem 5.1 says that there exists no phase transition of oriented percolation on the Sierpinski carpet

lattice, in spite of the existence of phase transition of percolation on it. This kind of extinction of phase

transition had been shown by Chayes [2] and Chayes, Pemantle and Peres [3] in the case of the fractal

percolation process on the unit square. Theorem 5.1 says also that the contact process will die out if

p<1 on the Sierpinski carpet lattice.
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We give a proof of Theorem 5.1 in Section 2. In Section 3 we consider this problem on a family of

Sierpinski carpet lattices, and give sufficient conditions for non-existence of phase transition.

5.2 Proof of main theorem

In this section we shall prove the main theorem. In this proof, events of a crossing in a rectangle play

important roles. For a rectangle R⊂R2, we say 1eft-right crossing (respectively bottom-top crossing) of R

exists if u→v for some u on the left (respectively lower) side of R and some v on the right (respectively

upper) side of R. We write LR (R)(respectively BT (R)) for the event. This event depends on the

configuration of{<u, v>|u, v∈R}. For a positive integer k, we write xnk (p)=Pp (LR([0, k・3n]×[0, 3n])).

Note that xnk (p) is non-increasing with respect to k. In order to show Theorem 1.1 it is enough to prove

(5.1)

because for any n

which implies θ (p)≦2xn2 (p) by symmetry. We will use the following lemmas.

Lemma 5.2 Let p<1. There exist k0≧1 and ψ>0 such that

(5.2)

for any n.

Lemma 5.3 Let k>3. For any n and p,

(5.3)

Lemma 5.4 For any n and p,

(5.4)

Lemma 5.5 For any n and p,

(5.5)

We give a proof of these lemmas one by one.

Proof of Lemma 5.2. For m≧1 we define a random variable

(5.6)

For convenience we set Xn0=0, and we set Xnm=∞ if the right-hand of (5.6) is empty. Xnm is non-

decreasing with respect to m. Set Vm=([0, m]×[0, ∞))∩V and Em=E (Vm). Note that Xnm is

determined by the configuration of Em. For any configuration ωm of Em we have

(5.7)

(5.8)
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It is clear that

by definition. Let {Yi}i=1, 2,… be the sequence of independent random variables with P(Yi=1)=

1-P(Yi=0)=1-p for any i. Then we have

by (5.7) and (5.8). The event of right-hand side has been studied well as a sum of independent random

variables, such as random walks (see Spitzer [16] for example). If 1/k<1-p then the probability decays

exponentially with respect to 3n. □

Remark. Lemma 5.2 is true also on Z2 lattice. In case of Z2 lattice the conditional probabilities in (5.7)

and (5.8) are equal to p and 1-p respectively.

Proof of Lemma 5.3. We set s=「(ｋ-1)/2」where「 ｘ」means the greatest integer not greater than ｘ.

Note that 2s+1≦k. We observe that

where

Here we used the property of G that there exists a hole with size 3n×3n centered at [(2s+1)3n+1/2, 3n+1/2].

Thus xn+1k(p)≦2xn3s+2(p) follows.We note that k+1≦3s+2 when k≧3, and we have completed the

proof. □

Proof of Lemma 5.4. We observe that

where

We have (5.4) immediately from this relation. □

Proof of Lemma 5.5. Set Enm={<(m, ω),(m+1, ω)>｜0≦ω≦3n}∩E. If LR ([0, 2・3n]×[0, 3n]) occurs,

then at least one bond in En(3n-1)/2 must be open and so as in En(3n+1-1)/2. We obtain (5.5) immediately

because ｜En(3n-1)/2｜=｜En(3n+1-1)/2｜=2n+1. □

We give a proof of Theorem 5.1 by using of these lemmas.

Proof of Theorem 5.1. For p<1 we pick ko and ψ>0 which satisfy (5.2). By (5.3) we obtain
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Figure 5.1: the graph of G22,2

for n≧k0-5. By this inequality and (5.4) we have

(5.9)

for some c<∞ and ψ>0. If lim infn→∞ xn2(p)<1 then (5.1) follows because limn→∞ ce-3nψ=0.

Suppose that limn→∞ xn2(p)=1. Pick N such that xn2(p)≧1/2 for any n>N, By (5.9) and (5.5) we

have

for n>N. So we can pick N'such that xn+12(p)≦xn2(p)3/2 for any n>N'.This contradicts to

limn→∞ xn2(p)=1. □

5.3 On generalized Sierpinski carpet lattices

In this section we consider oriented percolation on a family of Sierpinski carpet lattices in Zd, d≧2. Let

a and b be positive integers. We write L=2a+b. For i=(i1, i2,…, id)∈{0, 1,…, L-1}d we set an

affine map Ψi from [0, 1]d to [i1/L,(i1+1)/L]×[i2/L,(i2+1)/L]×…×[id/L,(id+1)/L] which preserves

the directions. Set

We take the unique nonempty compact set Kda,b⊂[0, 1]d which satisfies the equation that Kda,b=

We note that Kd1,1 is called d-dimensional Menger sponge (see [12] for example). Set

Set and

We define a graph that is where and

As an example, the graph of G22,2 is illustrated in Figure 5.2.

We consider bond percolation and oriented bond percolation on Gda,b. We give a partial order on Zd such

that (x1, x2,…, xd)≦(y1, y2,…, yd) if and only if xi≦yi for 1≦i≦d. We define

and in a similar fashion as in Section 1. In case of percolation, Pc(Gda,b)<1 has been

shown for all a and b in [9]. In contrast we obtain two theorems in case of oriented percolation.

Theorem 5.6 Let d=2 and a≦b. Then →pc(G2a,b)=1.
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Theorem 5.7 Let 2≦d≦b. Then=1.

Theorem 5.6 says that on two-dimensional Sierpinski carpet lattices if the ratio of its hole in is not

smaller than 1/32 then there is no phase transition. Theorem 5.7 says that for any d≧2 there exist

d-dimensional Sierpinski carpet lattices on which there is no phase transition. We do not know whether

1 for all d,a and b or not.

Remark. We may define generalized Sierpinski carpet lattices in a different manner. Set L=3 and

={0, 1, 2}d＼{(1, 1,…, 1)}. Let be the unique nonempty compact set which satisfies the

equation that is called d-dimensional Sierpinski carpet. Both and

are a generalization of the Sierpinski carpet in d dimensions. Let be the graph corresponding to

We note that contains Zd-1 lattice as a subgraph, and we observe that (Zd-1)<1

when d>3.

For a rectangle R=[s1, t1]×[s2, t2]×…×[sn, tn] ⊂ Rd we denote by LR (R)the event {u →

v for some u, v ∈ R with u1=s1, v1=t1} where u1 and v1 mean the first coordinate of u and v re-

spectively. Set We notice that (p) depends on d,a and b but

we omit to write them.Note that (p) is non-increasing with respect to k and non-decreasing with

respect to l.

First we shall prove Theorem 5.6. Recall that d=2 and a≦b in this case. It is enough to show that

(5.10)

We have already shown this theorem in case of a=b=1 in Section 2. Also in case of a=1 and b≧2 we

can prove (5.10)in exactly the same way. Hereafter we assume that 2≦a≦b. We will use the following

lemmas.

Lemma5.8 Lmt p<1. There exist ko≧1 and ψ>0 such that

(5.11)

for any n.

Lemma 5.9 (i) Let k≧2a+3. For any n and p,

(5.12)

(ii) Let k≧4a+2. For any n and p,

(5.13)

Lemma 5.10 For any n and p,

(5.14)

Lemma 5.11 For any n and p,

(5.15)
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Lemma 5.8 and Lemma 5.11 are obtained in exactly the same way as Lemma 5.2 and Lemma 5.5 respec-

tively. We give a proof of Lemma 5.9 and Lemma 5.10 briefly.

Proof of Lmmma 5.9. Let α1=[[(k-1)/a]/2] and α2=[(k-1)/a]. Note that 2α1+(a-1)α2+1≦k.

We have the following relation:

where

Thus we obtain

We note that xnk,2l(p)≦2xn[k/2], l(p) holds for any k and l. So we have

VVe note that α1L+a+b≧[(α2L+b)/2] holds for any k, a and b by the definition of α1 and α2. If

k≧2a+3 then [(α2L+b)/2]≧k+1 because

and a≦b. Thus we have proved (5.12). Let us prove (5.13) in a similar fashion. Let, β1=[[(k-

1)/(2a)]/2] and β2=[(k-1)/(2a)]. Note that 2β1+(2a-1)β2+1≦k. We obtain

We observe that k≧4a+1 implies β1≧1 and bk≧4a2+2a implies β2L+b≧k+1. Thus we have

obtained (5.13). □

Proof of Lemma 5.10. Let γ=[(a+b-2)/(α-1)」. We have

We observe that a≦b implies γ≧2, and we have obtained (5.14) similarly to the proof of Lemma 5.4.

□

Proof of Theorem 5.6. Let p<1. If we prove that there exist c<∞ and ψ>0 such that

(5.16)

61



then by (5.14) and (5.15) we can prove (5.10) in the same way as the proof of Theorem 1.1 in Section 2.
Let us prove (5.16). Let k0 and ψ>0 satisfy (5.11). By using (5.12) repeatedly we have

(5.17)

where q=k0-3a-2b. We have also xn4a+36,2a(p)≦c'e-Lnψ' for some c'<∞ andψ'>0 in the same

way by (5.13),(5.11) and (5.17). □

We turn to prove Theorem 5.7. Recall that d≧2, a=1 and L=2+b≧d+2 in this case. It is enough

to show that limn→∞xn1+b,1(p)=0. Theorem 5.7 follows immediately from the followng two lemmas.

Lemma 5.12 Let p<1. There exist k0≧1 and ψ>0 such that

(5.18)

for any n.

Lemma 5.13 Let k≧d+1. For any n and p,

Proof of Lemma 5.12. Recall that Gd,n1,b=Gd1,b∩[0, Ln]d, and we regard Gd1,b∩([0, kLn]×[0, Ln]d-1) as

a subset of [0, kLn]×Gd-1,n1,b. we denote by П the set of the oriented paths on Gd-1,n1,b starting at the

orign. For π∈П we define H(π)={v∈Vda, b|0≦v1≦kLn and (v2, v3,…, vd) is a vertex of π}. We

have

{u→v in H(π) for some u, v with u1=0, v1=kLn}.

Note that the length of π∈П is not more than (d-1) Ln. The number of the paths in П is not more

than d(d-1)Ln. We have

where Yi is the random variable defined in the proof of Lemma 2.1. We can pick k0 sufficiently large to

satisfy P(Σk0Lni=1 Yi≦(d-1)Ln)≦e-Lnψ and e-ψ<d-(d-1). Then (5.18) follows. □

Proof of Lemma 5.13. Let≡be the set of the oriented paths from (0, 0,…, 0) to (1, 1,…, 1) on Zd-1:

that is, ξ=(ξ1, ξ2,…, ξd)∈≡ if and only if ξ1=(0, 0,…, 0), ξd=(1, 1,…, 1) and ξi≦ξi+1 for

1≦i≦d-1 with respect to the partial order on Zd-1. We write A+x={a+x|a∈A}. For ξ∈≡we

set Rξ, i= [0, Ln]d-1+(L-1)Lnξi. Let s=[(k-1)/d]. Note that s≧1 and ds+1≦k. we observe

that

where A ξ, i=LR([((i-1)sL+1)Ln,(isL+1+b)Ln]×Rξ, i). We have
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because the number of the paths n≡equals (d-1)!. Let us prove that sL+b≧k+1 to complete this

proof. If k≧3d/2 then

Suppose that d+1≦k<3d/2. Then s=1, and sL+b=2b+2≧2d+2≧k+1.
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