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Application of Stable Parameter Identification and Control
Scheme for the Classical Lur'e Problem (PART I)
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Summary

Numerous! works have been done on the absolute
stability problem proposed by Lur'e and Postnikov
in the area of nonlinear system stability. This type of
the problem often appears when total linearization is
not possible,but partial linearization is often profitable.
On the basis of the above results; we can show the
stable parameter identificationr and control scheme for
the Lur'e problem in the literature of the Model
Reference Adaptive System(MRAS ) via the Lyapunov
method.

This is ready to be applied to the two temper-
ature feedback model of nuclear reactor systems for
the purpose of adaptive parameter identifications and
controls.

1. Introduction

There have been many papers published on the
adaptive parameter identification and control of lin-
ear time invariant systems so far™®34 but few of
nonlinear systems, due to the difficulty of the stability
of nonlinear systems®! Among the nonlinear
systems, the Lur'e problem on the absolute stability
is one which has been most extensively studied and
whose results are well known as the Lur'e resolv-
ing equations, the Popov's method ® and the circle
criterion™ Therefore we focus on the adaptive
problem ot Lur'e type nonlinear systems.

In the following section, we show the adaptive
parameter identification and control of the above
mentioned nonlinear system are stable, regardless
the stability of a plant or a model. This can be
considered: as a step forward to tackle adaptive

problems of nonlinear systems.
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In the field of a nuclear reactor system, suppose
there are two kinds of feedback, fast and slow feedback,
the existence of nonlinear oscillations or limit cycles
has been pointed out as one of the harmful sour-

ces for reactor operations®?),

The proposed adap-
tive scheme is expected effective and useful to know
the stability margin of a plant or eliminate the

oscillations.
2. Formulation

The Lur'e problem has been traditionally clas-
sified into two types of problems in the past,which
are called direct control and indirect control. Direct
control is described by eq. (2.1), while indirect
control described by eq. (2.2).

X=AX+bu, o0=h" X+ 6y, u=p+rt,

r= =g (0. t) (2.1)
X=AXtbu , 60=h"X+8y. u=v+r,
t=—g(o,t) (2.2)

where X is a n-dimensional vector, # a scalor, v
an input, and the triple(%, A, #)has corresponding
dimensions.

These equations, however, turn out to be equi-
valent if the linear part of eq. (2.1) has an eigen-
value s=0. Therefore we consider eq.(2.1)
throughout this report without loss of generality.

The problems dealt with are clearly stated as
follows :
[. "For the parameter identification, find out the
stable parameter identification rule for the unknown
triple Ch, A.b). "
I. " For the adaptive control, find out the stable
control rule for the unknown triple (%, 4, p) . "
For the sake of simplicity, set § = 0 in the
following, and the linear part of eq. (2.1) is also
assumed to be completely controllable and comple -
tely observable. Then any linear time invariant,

completely controllable and completely observable,
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single input-single output system may be represen-

ted in the following nonminimal realization form.

d 11 :al _5’ Z X bl
L =l a4 0 2+ 9 u
dt \3 [0 o A\ \7] ©®

where (/, A) is any obsevable pair, x is a scalor,
%1, %2 are (n—1) dimensional vectors. And the
= (%10, 7(1)’5 6T ).

Then the plant can be assumed to be represented

initial condition is xT

by the following differential equation,
= —an—a g +butb’ x?
F=AT +x,
?EA B+iu
wu=r—g (x;, )
with initial conditions,

1(0)= %y, x(0)=xb, x%(0)=0

where g(x,,f ) is a known nonlinear function,

PLANT: (2.4)

and 7 is a reference input.
3. Identification

We can now set up a model for the parame-
ter identification purpose assoc1atedr/\ with eq. (2.4):
a.xl*alxl+b1u+b‘x2 INEED
= A X+ IX1

MODEL : i o= (3.1)
w=Ax+]u
u=r—glx, ) >0

with the initial conditions,
~ 2 2, _
x1(0)=0, x'(0)=x2%(0=0
Define errors,
N TI_o1_T1 2 2_ 2

e =x—xn, e=x'—x, e=x°-x°
Then substruction from eq.(3.1) to eq.(2.4) leads
to the following error equation

e, =—Aie— A+5! 2+ 0T
¢ = A2 (3.2)

—ézzAEz
with ¢,(0)=eu, 2(0)=gb, ¢*(0)=0, where ® and
V are 2n dimensional vectors, ~

=(-ata, (a‘—al) Bi—bu (B —BDT)

T T

Vi=Cx, x' u, x )

From the initial conditions, note ¢%¢) =0 for
all ¢, which yields the simple error equation writ-
ten in a vector matrix fomm,

{ ¢ =Ae+dO'V

(3.3)
e1=h'e

—T
where ¢™= (e, , e_‘T), A= l:—oil_a/;} , AT= (1,6T) ,

—T
AT=(1,0).
Now we can set a Lyapunov function candi-

date -as follows:

V—— TPe-l~ oTGO 3.4)

where P=pT>0, G=G">0.

It is clear that V is bounded from the above and
below by the norm in the ¢ — @ plane. The differ-
entiation of eq. (3.4) with respect to time, leads

to the following:
V=—4-e"(A"P+PA)e +0 (G 0+ Ve'Pd)
We invoke the Kalman— Yakubovich lemma’" here,
such that there exist P=PT>0 and g, saisfying the
following algebraic equations for sufficiently small
€o and a given positive definite matrix Lo= L{->>0,
AP+ PA= —qq" —¢o L,
Pd—h =0
because the transfer function of eq. (3.3) is

(3.5)

1

hT(sI_A)"d=—S—+T

€{S.P.R} (3.6)

which is a strictly positive real function. If we
choose the adaptive rule as,

0= -GV 3.7
then

V: _%MT(]‘Z“ [ eTLoe
From the Lyapunov invariant set theorem, the ori-
gin in the e— @ plane, e=0 and ®=0, is clearly
From ®=0 and 0"V =0,
®=0 can be obtained if 7 is modulated so that

only one invariant set.
each component of V is linearly independent.
Gl
If we choose G such that G= g
2G2
then eq. (3.7) becomes
{al— s gin @\1“ &1 82U

oA AV
al=e,Gx ., b= —ea1G’x?

with any arbitary initial conditions.

(3.8

4. Adaptive Control

we can set up a model with parameters, a1,
a', A, and ' which correspond to those of the
plant. During the transient period of adaptation,

the controller model can be represented as follows:

A O A T A AR O AR T
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1
Gi=—an=a" g+ piu A (- )
ilz/t 7 +7 1,
§2=A V47 u, 4.1

u,=r-g(x,, 1)
and the control input to the plant should be writ-
ten as

wp=v—-—g(x.t) (4.2)
Then similary to the identification problem, the
substruction from eq. (4.1) to eq. (2.4) leads to

the following differential error equations,

o= A2 (4.3)
o= A+ T (ur ~up)

with the initial conditions,
eill0)= ey, 2'(0)="¢}, 23(0=0

and @ and V are 2n dimensional vectors such that
0" =(-ayta, —(a@'=a'V, p—b., G- 5O
V=G g™, u,,,;c—\”)

where ;c_\? can be generated by the equation,

{?2 =A%+T u,

T0)=0

and so x2(¢) =xAZ(z‘) for all #£.

Therefore we can choose the control input to the

{ é=-2,e —E‘TE'Jrﬂl ( u,—up)+,§‘TEZ+a)TI7

(4.4)

plant as
ur—up=GpEK16;lxn+}_(l[Gt]ﬂ;I A~
KRG upt K (G 17 %2]
S0 =1 —G,[Ki Gi* 2, +K G, Iy
GG uy +RIG T 22
(4.5)
where Ky, K', K,, K? are control gains, and
Go=(s+2)(s+23) = (5 +2,)
Gpi=(s+2)(S+23) (5 +A,2) (S+4; 41)
(S + xn)
Gr =GytfGp,o + = +8"Gp,n (Bi=5/8))
IT= (11 D]
gl g, O J
Lo 1
The stable gain adjustment rules are given by
a set of differential equations,
klz _%7711'1
% _ Az,
R ?G it (4.6)
K= ‘ﬂ_lgzmup

=, . —_ A\
K= _ﬂLlemxz

& B Bt R

prd £z T RO A AR

where Ty=¢,+ &,
and £, shoud be generated by the following differen-
tial eguation.

Ei==26 =B K LR LR, R (4.7)
where f(+) is a function of the derivatives of control
gains, arising from the term consisting of all deriva-
tives in eq. (4.5)-

Eq. (4.5) can be derived as follows:
From eq.(4.3), the error equation can be written
(s +2) e+ @2 =4,GoGiy—up)+ 07V (4.8)
If we choose the control input of eq. (4.5), then eq.
(4.8) turns out to be

(st e+a"e =ﬂth{ch;1 x1+f{'T [GtT?] +
K:Glup RELGA R+ 07
Ceim—he= R (K iR T Y K+
RTZ) 44,/ R, K i K2) + 077
From eq. (4.7), the total error equation becomes as
follows :
o= -k Mg e +H(h K- art a)m+ (BRI
@I T+ (B Ky +01— b up+ (B

B -b"x3
Zi=dm (4.9)
which is equivalent to eq. (4.10).
1 =An+dyV
Tosnrey (4.10)
7,=h7
where
7= .8, d"=(1 39, kT'=(1 57)
A= [‘11 —a"]
o 4 J

vT=0"+f, (K, K" Kz KD
Since the transfer function of eq. (4.10) is
BTG AVd =
which is strictly positive real, the differentiation of the
following Lyapunov function candidate,
V==42"Py+45¥TG™' Y (4.11)
leads to negative semi-definite with the aid of the
Kalman Yakubovich lemma;
V=-31n"gP-Lten"Ln=<0
with substitution of eq. (4.6), where P=PT>( and
G=G">0.

Note that control gains converge to some values
at the end of the adaptation, and so f( *) converges
to zero.Then ¥=0 and 7="0 can be brought about
from the invariant set theorem if the referenceinput

7 can be modulated so that each component of I_/

D A A R T O O

30



8#%8%5 (1976.8)

e L T T T T TR T T T s

identifi (2)

This guarantees that the adaptive

is linearly independent as the case of the
cation problem.

control rule of eq. (4.5) and (4.6), is asymptoti~
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