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1. Profile of Drops Placed on Smooth
Inclined Surfaces

Figure 1 represents a typical profile of a drop
placed on an inclined plate. It is observed that
the drop adhering to the surface resisting to the
external forces exhibits different angles of contact
around its periphery. In Fig. 1 the angle denoted
6a is called advancing contact angle, while 6, is
called receding contact angle. It should, however,
be noticed here that these two contact angles are
the ones measured within the plane of symmetry,
which is to be parallel to the direction of the
resultant external force. However, since the drop
is three-dimensional, contact angles measured

within the other planes must take different values.

Fig. 1

Let us first assume that the inclined plate in
Fig. 1 is ideally smooth and the inclination is 8,
and that the earth’s gravity is the only external
force. If the profile of the liquid-vapor interface
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TFig. 2

is expressed as == f(x, y) (Fig. 2), then the three
interfacial energies and the gravitational potential

energy are expressed as follows :

Elv=g§Rawvmdwy (1)
E“:SSRJ“dxdy (3)
Eus= —SSRUUSchdy-I—C (3)

UZ_SSR'OQ sin By f(z, y)dxdy (4)

where f-=0f/0x and fy=0f/0y and R desig-
nates the region of the plate covered by the drop.

Thus, the total energy of this system becomes
E:SS 00V T F 2T g (015 us)
R
—pgsinfeyfx, y)}dxdy (5)

On the other hand, the mass of the liquid drop,

which is to be invariable, is
M=({ pfiz, ydzdy (6)
R

Quite similar to the previous report, the profile
of the drop attached to the inclined plate is so
determined that the total energy £ may take the
minimum value under the constraint M =con-

stant. Or, introducing the Lagrange multiplier

B T L T T T T T T T T T T T e e TR

25



156 Vol. 26, No. 4 (1974. 4)
wr 52 3
2, it becomes the variational problem of finding
a function f(z, y) which satisfies
OH=0(E+AM)=0 (7)
Here the boundary condition which holds along
the periphery of the drop on the plate is the
natural boundary condition.
As is well known the solution to this variational
problem can be found by solving Euler equation
wla mlor o0 ¥
Flz, y, f, fz, fv)
=00V T+ 22+ [ +(015—0us)
—pgsinB-yf (9)

And the natural boundary condition becomes

r-rilsr) G
nlor) Pl o
or OF 1

0fz 0fy

(10)
Substituting F° from Eq. (9) into Eq. (10) we

can obtain the following relation :

1 Ous—C1is
—_————— = 11
rritrs - o 00 (4D

It can be shown easily that the right-hand side

of Eq. (11) is the cosine of the contact angle 4.
Here we have reached very important conclu-
sions. First, the angle of contact of a liquid drop
placed on a smooth inclined plate is everywhere
equal to 0. As before, this angle is independent
of the gravity and the magnitude is quite the
same as that of a drop placed on a horizontal
plate. There is no reason at all to assume that
the so-called advancing and receding contact
angles are different. Secondly, once the above
statement is admitted, the drop on the smooth
inclined plate cannot resist at all the external
forces since the adhesive force due to surface
tension acting along the periphery cancels out.
The above statements seem bewitching. How-
ever, we have to seek another cause which actually

keeps the drop at rest on the inclined surface.
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The authors consider that it is the roughness of

the surface.

2. Profile of Drops on Rough Inclined

Surfaces

Let us assume that the roughness of the surface
of the plate is expressed by a known function
z=h(x, ). Tracing the similar procedure as the
preceding section, Eqs. (1) to (6) are modified

to the following forms, respectively :

EIU:SSRG,UVH For fidzdy  (12)
E1s=SSRUzs1/1 +ht+hytdxdy (13)

Eys= —SS 0oV T T h+ Iyt dady+C
R
(14)

U=—({ pgsinp-v(F(z, v)=h(z, v} dzdy
(15)

E:SSR["”VW

F(015s—0us)V 1+ R+ Dy
—pgsin By {f(x, v)—h(z, y)} 1dzdy
(16)

]W:SSRp{ F(x, )—h(z, v)dzdy (A7)

Thus, repeating the principle of the minimum
energy, the profile f(z, ¥) of the drop adhered
to the rough inclined surface A(x, ) should be
so determined that the total energy E expressed
by Egq. (16) may take the minimum value under
the constraining condition that M of Eq. (17)
remains constant. Hence, Eqgs. (7) and (8) re-
main the same except that the definition of F' in
Eq. (8) should be
F=0,,VIFf24+ 7
(15— 0us) VIF A+ Dy
—pgsinB-y{f(z, v)— Nz, )} (18)
instead of Eq. (9).
In the present case, the boundary condition at
the surface of the plate should be
F(z, vy=h(z, y) at the drop periphery

and the natural boundary condition is reduced to
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Substitution of F from Eq. (17) into Eq. (19)
yields

thz+fyhy+l _:(Tvs*“ols
1/1+fxz+fy2 V1+/lxz+]1yz Orv
(20)

The left-hand side of Eq. (20) represents the
scaler product between the unit vector normal to
the drop surface and the unit vector normal to
the rough plate surface. And it is, of course,
equal to the cosine of the angle between these
unit vectors. Since the right-hand side of Eq.
(20) represents the cosine of the contact angle 6,
Eq. (20) signifies that the drop contacts the sur-
face of the plate with the angle @ everywhere
around the periphery.

By the above statement we may explain why
the drop can stay on an inclined plate against the
action of the external forces. Figure 3 illustrates
the mechanism: A drop on a rough surface ad-
justs itself so that adhesive force due to surface
tension generated between its periphery and the
roughness of the plate works most effective against
the external forces. Considering on the plane of
symmetry (Fig. 3), both ends of the drop profile
come just on the point of the roughness curve
where the gradient of the roughness, |0A(0, ¥)/0y],

takes the maximum. In this case, the angles of

Fig. 3

contact still remain ¢ on the both ends. For the
person who observes this phenomenon with his
eyes, the roughness of the surface would be too
small to be noticed, and the drop seems to be
adhered to the surface, which is seemingly smooth,
with different contact angle at each end. This
might be the reason why the advancing and reced-
ing contact angles are observed.

Thus, if the surface roughness is, as an appro-
ximation, expressed by a (three-dimensional) peri-
odic function as is schematically illustrated in
Fig. 3, and the angle between its envelope (ap-
parently flat surface) and the maximum gradient
of the roughness is 6, the apparent advancing
and receding angles are expressed as follows;

Oo=0+0s; 0r=0—10s (214, b)
(Manuscript received, January 25, 1974)
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