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1. Introduction

This note is concerned with the analytical
solutions of the moments of the chromatographic
elution curve of a packed bed of bi-dispersed
adsorbent particles.

Concept of bi-dispersed pore structure is shown

in Figure 1. A particle of radius R is an

microparticle (radius a)
macropore

macroparticle

(radius R)

Fig. 1 Concept of Diffusion in a particle of bi-dispersed
pore structure

agglomerate of microparticles of radius a which
has micropores. The spaces between micro-
particles remain as macropores. In most cases,
the size of microparticles and then the size of
macropores are of the order of several mi-
crometers. The size of a micropore is sometimes
of the same order with the size of diffusing
molecules while it is often of the order of several
to several tens dngstrom, (1, 2, 3). In such cases,
the diffusion in micropores becomes a very slow
rate process and then the time constant of diffusion
in a microparticle will possibly be big enough

to be detected by a chromatographic technique.
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2. Adsorption and diffusion kinetics in

microparticles

It is assumed that microparticls are solely

responsible for adsorption capacity. The diffusion
into microparticles can be classified into two
typical kinetics.
Model I: The molecules are adsorbed at the
external surface of the microparticles and then
adsorbed molecule diffuses into microparticles. In
this case the driving force of the diffusion will
be the gradient of the concentration of adsorbed
molucules, ¢. Figure 2 shows an illustration for
this situation.
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Fig. 2 Particle surface adsorption and sorption in
microparticles (Model I)
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In most molecular sieving material, these equations
may be more descriptive than a model shown
later.

Madel 11 :

be gas phase concentration gradient in micropore

The driving force of diffusion will

and the diffusion is followed by adsorption at the
micropore wall. This idea is schematically shown

in Figure 3.
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Fig. 3 Gas phase diffusion and pore surface adsorption
in micropore (Model II)

In this case the equations describing the above
mentioned processes will be:

6ci

N,= Dla;r, i, Ca—:Cilri:a (3>
o, 20\ 1, _dec

g,(ar, +r, 37‘.) ENZ— ot (4)
ok — = o0

Nz—pzka<6‘: Ka> az (5)

When micropore is reasonably large compared
with diffusing molecules, gas phase diffusion can
be controlling. Then this situation will be
realistic for ordinary bi-dispersed systems rather

than molecular sieving materials.

3. Basic equations in a packed bed

Material balances in a packed bed, at the ex-
teral surface of the particles, inside the macro-

particle are as follows

P dc_3(l—g) ,, _0c

E a—z-'— E— SR O—at (6)
No=ksle—cal=n)=Da2|  (7)
Qg azCa _2_% _3( 75(1) afa

5a(6r2+r 6r> E€aa Ni= ot (8)

Impulse input is taken as the boundary condition
at the inlet of the bed
2=0 c:Mﬁ(t)}

z=o00 c=0

(9)

4. Solution in the Laplace domain

Model I: For Model I, Egs. (1) and (2) com-
bined with Egs. (6 )~( 9 ) can be solved in Laplace
domain. Let ¢, ¢o, §, No and N1 be the trans-
formed ¢, ¢a, q, Noand Ny, and Egs. (1), (2),
(6),(7), (8) and (9) be the transformed
version of Eqs. (1), (2),(6),(7),(8)and (9).

0% 65 3(1—¢)

R iy (6
No=ks(t—a|r=R)= a% o (7
e < = = WL
D(@_qurga) g (2)
2=0 =M (9)

The moments of the impulse response can be
related to the solution in the Laplace domain
(4, 5), which will be tried to obtain first. The
solution for § from Eq. (2), in terms of Bi(z,7)
(a function of z and 7 to be evaluated later), is

Bi(z,7)

i

q=

sinh (r:V p/D) (10)

The concentration in the macropore can be
established by substituting Eq. (10) into the last
two members of Eq. (1) :
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where
$i(p)=aV p[D (12)
Ai(p)=$1(p) coth $1(p)—1 (13)
A_(l—ea) . ksa
T 0K* D (14)

Equation (10) can be used to evaluate § and
(0g/0r;) at ri=a. These results can be sabstituted,
along with &, from Eq. (11), into Eq. (1) to
obtain N, in terms of z and r. Introducing this
relation for N, into Eq. (8) yields
Da{azBl(z r) 2 0B(z, r)}

€a or? r Oor
=rx(p) Bz, 7) (15)
where ’
L 3(1—ea) B;
ORISR vrre

Then Bi(z, r) can be solved to give
By, r)=@ sinh (Ve ma(p)/Da}  (17)

The concentration in the interparticle gas can be
established by substituting Eq. (11) and (17) into
the last two members of Eq. (7) :

Ba(z)  sinh @1(p) sinh ¢a(p)

C=B.B.K* 2R
X {Ay(p)+B:} {As(p)+ B} (18)
where
P2(p) =RV eaks(p)] Da (19)
As(p) = p2(p) coth p2(p)—1 ; (20)
kR
B.=E @0

Equation (11), along with Eq. (17), can be used to
evaluate ¢, and (02,/0r) at r=R. These results
can be substituted, along with ¢ from Eq. (18),
into Eq. (7)" to obtain N, in terms of =z.
Introducing this relation for N, into Eq. (6 )
yields

asz(Z)_uaBz(Z)
0=? 0z

E; —G(p)Bx(z)=0 (21)

where

3(1—¢)

B,
Glo)=p+ 3 ! [1—

prre Al
The solution of Eq. (21) gives
By(z)= By exp {—(p)z} (23)
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Ap)= [\/1+4EZG(;>) 1] (24)
The expression for ¢ is Eq. (18) with By(z) from
Eq. (23), or

= BEBBi.OK* exp {—A(p)z} sinh¢1(pzii2nh¢z(P)

X {Ax(p)+ Bi} {Ax(p)+ Ba} (25)
Then, using the initial condition, Eq. (9, the

o

final equation of #(p) becomes

e(p)=M exp{—A(p)z} (26)
Ap)=5 [\/1+4E2G(p) IJ
. 3(l—g) B.
SONES 5 b reaee

As(p)=p2(p) coth @a(p)—1
$2(P)=RV €aia(p)] Da

_ . 80—c) B
ka(p)=p+ €arafks |:1_ AI(P)JFB*]

Ai(p)=p1(p) coth gu(p)—1
$u(p)=aV p/D
Model II: For Model II, Egs. (3)~(9) can be

solved in Laplace domain. The transforms of
Egs. (3)~(5) are

(@7)

Nl:D,gi: ri=a Ea:éilr;:g (3)/
Difde; | 202\ 1 /
8;‘(67‘;2 ri ar,) zNZ_PC‘ (4)
Nao=p; ka(c, _K;) piph (5)

Eqgs. (6)'~(9) are valid here. Elimination of
7 from Egs. (4) and (5) give

D;(0%; 2 0¢; o

Bl
where

v ! = pikap 2

£ (p) P+8i(P+ka/Ka) (29)
Then ¢; can be solved to give

ci= Bl(z Bi=7) Gon {riveid(p)/Diy (30)
From Eq. (3)’

aa:BLZ’"l sinh ¢./(2) (31)

¢ (p)=aV'e; k' (p)/Di (32)

Introducing Egs. (3 )/, (30) and (31) into Eq. (8 )’
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yields

Daf0%By(2, ) iﬁBl(z, 7)

8a< or? + r or )

=r2!(p)Bi(z, 1) (33)
where

B )=+ () coth 62 (2)-1)
(34)

Then

Bi(z, )= Br( ) sinh (Ve (5D} (35)

This is the same form as Eq. (17). Then similar
treatment shown for Model I is employed to
give the final result same as Egs. (26) and (27)
except that £2/(p) (Egs. (34), (32) and (29)) should
be used instead of £2(p) (Egs. (16), (13) and (12)).

5. Moment equations

The moments of the impulse response are
¢(p), by the

related to the transfer function,

expression

mnzsmc(t)t"dt
0

. a\"
=(-1)"1 —c 36
o]
Then the first absolure moment #: is given as
=™ im| 2o |z
=t~ lim [ o) o) @D
Also the second central moment us is easily

related to g2 and /
,ug’=S”c(t)-(t—‘ul)zdt/smc(t)dt
0 0
=Smc(t)t2dt/5wc(t)dt——lu12
o o
. d? ~
—tim[ et [fer @9
Model I: Then the moment equations for Model

I are derived by app.ying Egs. (37) and (38) to Eq.
(26).

= u[1+(1 A=Ee 10, K*)} (39)

=B P tbato by (40)
E.[,, (1—¢) *

b= {1+ (eatp,K )}

R
6/‘:1—8— k <8a+ppK*)2

BT ! BTNV T

‘ -1;§ R? *\2

64— c 15Da(8a+ppK) (41)
5.—1—€ @ (0pK*)?

T e 3R (1—el)

_1-¢ *

Oi=— 15D""K

These 6 can be used to check the relative
importance of each transport process. Naturally,
when the intra-microparticle diffusion is not
significant, the resu'ts coincide with those obtained

for uni-dispersed system (6).

Model II: The results for Model II are
(= u[1+(1 Q=8 fe (1 —ed)(est 01 Ka)}]
(42)
yz'=2§{6d+5f+aa+6,-+5ad} (43)

5d=E_;[1+ o))
u €

< {eat+(1 —Sa)(ii-l-PiKﬂ)}T

0r =1 (et (L—ea)(ei+pika)

e R? (44)

dum 5 (et (L—ea)(er+ 0.}
_1—g a* _ a2
0= e 15D, (1—¢d)(eit+piKa)
— _‘EL _ R 2
Oag =~ 7 (1—¢a)(piKa)

This resu't is identical with the form shown by
Kawazoe (2) and Hashimoto and Smith (7).

Notation

A, function of ¢: defined by Eq. (13)
Ay function of ¢» defined by Eq. (20)

a radius of micropartic’e [cm]

By integration constant in Eq. (23) [cm]}
Bi(z, ) coefficient in Eq. (10) [cm]

Ba(z)  coefficiet in Eq. (17) [em]

¢ concentration in the fluid phase [mole/cc]
Ca concentration in the macropore [mole/cc]
Ci concentration in the micropore [mole/cc]
D diffusivity in micropores based on amount

adsorbed gradient driving force [cm?/sec]

D, diffusivity in macropores [cm?/sec]
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diffusivity in micropores based on gas
phase concentration gradient driving
force [cm?/sec]

axial dispersion coefficient base on void
spaces in the bed [cm?/sec]

function defined by Eq. (22) [sec™']
apparent adsorption equilibrium constant
[ee/g]

apparent adsorption equiibtium constant
[ec/g]

adsorption rate constant [g-lsec™!]
fluid-to-particle mass transfer coefficient
[cm/sec]

adsorption rate constant [cm/sec]
intensity of injected pulse [mole-sec/cc]
nth moment integra!, defined by Eq. (36)
[mole/cm®+sec™]

molal flux from fluid to particle in bed
[mo'e/cm?-sec]

molal flux from macropore to micro-
particle [mo'e/cm?-sec]

mo'al flux from micropore to surface
[mole/cm3-sec]

amount adsorbed [mole/g]

Laplace transform variadle [sec™']
amount adsorbed [mole/g]

radius of adsorbent particle [cm]

radial distance from center of particle
[cm]

radial distance from center of micro-
particle [cm]

time [sec]

average velocity in the interparticle
space in the bed [cm/sec]

axial distance in the bed [cm]

Greek symbols
0a, Oaq, 04,0r,0:,0s functions defined by Egs. (41)
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42

and (44) [sec]

d(¢) delta function

€ void fraction in the bed

€a void fraction of macropore in the particle

¥ void fraction of micropore in the micro-
particle

ki(p)  function defined by Eq. (29)
k(p) function defined by Egs. (16) and (34)
Ap) function defined by Eq. (24)

s first absolute moment, defined by Eq. (37)
[sec]

)2y second central moment, defined by Eq.
(38) [sec?]

0i density of microparticle [g/cc]

o density of particle [g/cc]

#1(p)  function defined by Egs. (12) and (32)
¢2(p)  function defined by Eq. (19)

Dimensionless groups

Bazklgf
ek
Bi=0k* ' D

A bar over c,cq ci,q,n, No, N1 and N3 denotes
the Laplace transform of the variable.
A prime of £ and ¢ denotes that these functions
are concerned with Model II.

(Manuscript received, October 23, 1973)
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