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ABSTRACT

Linear induction motor (LIM) has the merits of direct drive, simple structure, low
noise, and low cost for maintenance. It is, therefore, being used in public transport
systems and automated factory lines. A conventional LIM has, however, a large air
gap and an open maLgnetic circuit; the power factor and the energy efficiency are,
consequently, low in comparison with rotary induction motors. Motors therefore
tend to be relatively large and heavy, and it takes long time to produce intended
forces. Furthermore, the LIM has the end effect, which worsens electric charac-
teristics of the motor, especially in the high speed region. Strategies against the
effect are unfortunately limited because of the conventional three- phase construc-
tion.

On the other hand, the technical progress of power switching devices and power
electronics is remarkable nowadays. High speed power switching devices are avail-
able at reasonable cost presently; it is possible to use many switching devices as
part of electric machines.

According to the present technical situation mentioned above, the author proposes
a novel control concept of the linear motors, where switching devices. are
integrated into the motor’s structure and magnetic flux in the gaps can be arbi-
trarily synthesized. The motor has been named:

"Flux Synthesizing Linear Induction Motor (FSLIM)”

In this thesis, the concept of the FSLIM is introduced. The time-dependent elec-
tromagnetic field analysis theory is mathematically formulated for investigations
and simulations of the FSLIM. Some calculated results are compared with meas-
urements in order to verify the analysis method. Further theoretical investigations
of the control scheme and the flux synthesis are described with a field-coordinates
oriented control scheme.

Key Words

Linear Induction Motor (LIM), Flux Synthesizing LIM (FSLIM), PWM Chopper,
Current-control-unit, Arbitrary magnetic flux distribution, Control Volume
Method, Impedance matrix, Field coordinates control scheme
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NOMENCLATURE

Chapters are subdivided into sections, which are numbered 1.1, 1.2, 1.3, and so on.
Sections may be divided into subsections, which are numbered 1.1.1, 1.1.2, and so
on. Figures, tables, references, and similar features are numbered consecutively
within each chapter, prefixed by the chapter number; only in the chapter 2, equa-
tions are prefixed by the section number. Vectors are denoted by boldface letters,
matrices by capital italic letters, and complex variables by characters below dots.
It has, however, not been possible to adhere to these rules completely consistently.

Commonly used symbols

SER A

b=y, P
—~
3
S

bt
5}

i5d igq

magnetic vector potential

vector potential, system matrix
coefficients of discretized equations
magnetic flux density

energy term of discretized equations
electric field

input vector of system matrix
primary frequency

© input current vector

stator current vector

two axes components of stator current
field current vector

amplitude of field current

forced current

coefficients between currents and force
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Chapter 1: Introduction

1.1 Purpose of the research

It is essential for civilized societies to transport people and materials. In particular,
a railway transport system of high quality is important. With this in mind, the
MAGLEV (magnetic levitation transport system)[l-1] is being developed in
Germany|[1-2], Japan[1-3], Canada and the United Kingdom.

A maglev transport system, with short stator linear induction motor drives and an
electromagnetic suspension system, has the advantage of simple and cheap facili-
ties on the ground. It is being developed in Japan as an advanced ground tran-
sportation system of medium capacity and over medium distances. It was demon-
strated and evaluated by the HSST vehicles at EXPO’85 (Tsukuba), at EXP0’86
(Vancouver) and at EXP0’89 (Yokohama)[l-4]; the evaluation of the system for a
practical application is being carried out in Nagoya with the support of the
Japanese Ministry of International Trade and Industry. Furthermore, the develop-
ment of new vehicles is being continued for future utilities.

In addition, linear motors can also be applied to drives of automated factory lines,
because of the merits of direct drive, simple structure, low noise, no pollution and
low cost for maintenance.

A conventional linear induction motor (LIM) has, however, a large air gap and an
opened magnetic circuit; the power factor and the energy efficiency are conse-
quently low. Therefore, the machine is compelled to be relatively large and heavy,
and it takes a larger time to realize intended forces than rotary motors. Further-
more, the LIM has the end effect (see the subsection 4.2.1.), which worsens the
electric characteristics of the motors, especially in high speed drives. ' Strategies
against these undesirable effects are inherently limited by the structure of the con-
ventional three- phase windings.

Nowadays, the technical progress of power switching devices and power electronics
is remarkable. High speed power switching devices are, therefore, available with
reasonable cost at present; it is possible to use many switching devices as parts of
electric machines.

Considering the present technical aspects above, I have proposed a novel
structure- and control- concept of linear motors, where magnetic flux in the gaps
can be arbitrarily synthesized. If the flux distribution in the gap can be produced
and controlled with reference values, the advantage of the new concept is




remarkable.

The purpose of this research is:
(1) Suppression of the end effect of a LIM.

(2) Improvement of the force response

The following points are described in detail:

(1) The proposal of the new concept of the flux synthesizing linear induction
motor (FSLIM) of multi-phase drives with power switching devices.

(2) The possibility to apply the field-coordinates oriented drive control theory to
the linear induction motor.

(3) Verification of a novel control scheme for the FSLIM.

1.2 Scope of the research

Theoretical study and numerical evaluation are necessary for the investigation
about novel control concepts. With this in mind, the following topics are investi-
gated: '

(1) Derivation of simultaneous equations for numerical calculations of eddy-
current problems with a velocity term: time dependent electromagnetic field
including a moving conductor.

(2) Numerical simulation for a LIM with the ¢**% method based on (1).

(3) Numerical simulation for a LIM with time differential method based on (1).

(4) Formulation of an analysis method for the induced voltage and the
impedances in the primary windings.

(6) Verification of the simulation described above with some experiments.

(6) Investigation about a concrete decision scheme of switching patterns for flux-
synthesis.

(7) Investigation about possibility to applicate the field coordinates oriented con-
trol theory to the FSLIM.
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Chapter 2: Numerical analysis of linear induction motors

Introduction

This chapter deals with numerical analyses of induction motors. The main pur-
pose of this chapter is to establish a fundamental framework of solving eddy
current problems from Maxwell’s equations to prepare a useful tool for calculations
in the following chapters. We proceed the discussion on solving the equations
based on the control volume method on the Cartesian coordinates for analyzing
ordinary LIMs, and on the cylindrical coordinates for analyzing tubular LIMs.
Further discussion on irregular triangular elements is of a more advanced nature;
it concerns mathematical compatibility of the discretizing method with the finite
element method. The topics next dealt with is a method to calculate asymmetrical
LIMs with finite length driven by voltage sources by applying a theory of multi-
terminal linear systems. ' ‘

2.1. Difficulties of analyzing linear induction motors

It is inherently difficult to calculate electromagnetic characteristics of induction
motors numerically, because the basic equations for it are complicated as described
in the next section. In particular, the following problems make the calculation diffi-
cult:

(1) Mathematical and physical treatment of the electric scalar potential ¢.
(2) Theoretical and numerical treatment of the time dependence.

(3) Numerical treatment of the velocity term with the up-wind scheme.

These difficulties and mathematical strategies against them are discussed in the
following sections: the sections 2.2 for (1), 2.3 for (2), and 2.4 for (3).

4.




2.2. Mathematical formulation and treatment of the electric scalar potential ¢

'2.2.1. Basic equations and assumptions

From the Maxwell's equations, one can derive the following basic equation with
the A—¢ method:

V x [V[V xA]} =J0+a{*%—v¢+vx [VxA]] (2.2.1)
where v is magnetic reluctivity, J, is a force-current density, and v is a velocity of
a secondary conductor. Furthermore one needs an appropriate constraint condi-

tion with the electric scalar potential ¢.

On the Cartesian-Descartes coordinates, each factor of the magnetic vector poten-
tial in the equation (2.2.1) is written as follows.

o[ 04, 5 [ o4, s [ 04, s o4,
oy |”* Bz 0z |V 0z ay | "oy |~ 8z | oz |
04, 04, 04, oA, 04,
= Jy—0———0— + o |v - -v, - (2.2.2.a)
ot Oz 1 8z oy 0z 9z |
K3 ) 0A, +_@_ 0A, __3_ BAy _._‘?_ BAy
0z | * Oy oz | * Oy 0z | © 0z oz | © 0Oz
84 0A, 04 8A, 04,
Joy a——-y-—a-?-i + 0|, 2 £ -, L - (2.2.2.h)
at 0y Oy 0z Oz oy |
s [ o4, o o04,] o[ 04,] o[ o4,
Yy + —|v, v L2 - |V,
Oz 0z Oy 0z | oz Oz Oy dy
0A, (04, 84, 04, 04
Jo, a-—————a-@ﬁ— + o], = - ——2 (2.2.2.¢)
7} 0z | 0z Oz Y| oy 0z

In addition to the equations (2.2.2), a condition of the scalar potential ¢ must be
solved simultaneously, i.e., one must solve the four time-dependent second-order
partial differential equations with the four dependent- and the four independent-
variables in a pure three-dimensional analysis of induction motors. Obviously, this
is mathematically vvery complicated.
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Although "a pure two-dimensional” analysis is inherently impossible in eddy

current problems for the reasons described later, the following assumptions of

quasi- two- dimensional analysis are made for simplicity.

(1) In the analyzed region, currents flow only in the z-direction. (J,, will be writ-
ten as J; for simplicity in the following expressions.)

(2) Hence, 4, = A, = 0. (A, will be written as A.)

(3) The conductive part moves only in the x-direction. (v, will be written as v.)

According to the assumptions above, the following simple equation is derived from
the equation (2.2.2.c).

0 0A 0 0A 0A 0A ¢
gl,e4l, 91,941 4 ‘ 2.2.3
oz |V bz +ay["‘ay °+”{at+"zaz +'Bz] (22.3)
8¢ . . T
The last term —— seems a little funny in the two-dimensional calculation, where
z

all the quantities are homogeneous along the z-axis; in the ”pure two-dimensional”
field, the basic equation should be:

0|, 94
dy | * oy

This is the first theoretical difficulty of the eddy-current problem, which will be
discussed in the following subsection in detail.

0A 0A

9 =—J, + 0[——— + vz-—-—-]. (2.2.3")
Oz

Oz

0A

V———
V oz

ot

2.2.2. The electric scalar potential ¢ in the two- dimensional eddy current problem
[2-1] |

I will discuss here the simple example, in which conductive parts have no motion,
and eddy currents are induced by a forced AC magnetic field due to a forced AC
current, as shown in the figure 2.1 (a). Both of the three- dimensional structures
(b) and (c) are possible corresponding to the cross-section drawn in (a). The physi-
cal phenomena in the structures are, however, completely different. In the case of
(b), the gap flux density is formed homogeneous caused by the shield effect of the
eddy-currents in the two side conductors, where the gap flux in the case of (c) is
almost compensated by the eddy current in the surrounding conductor. That
means, one must consider return paths of induced eddy currents even in a case of
two dimensional calculations; the "pure two-dimensional” analysis has no sense in
the time-dependent field calculation with eddy currents. The term %(f- seems
funny as mentioned in the previous subsection, however, one can view this term as
a correction of a "quasi- three- dimensional effect,” to take the return path of the
eddy currents into account in the two- dimensional analysis. In the following

-6-
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discussion, we write —5— as ¢’ for simplicity.
2

It is already known, that the condition of the divergence of currents, V-J = 0, in
the whole analysis region is implicitly satisfied in the two- dimensional calculation
with the equation (2.2.3’), in which the scalar potential is assumed to be always
zero. The scalar potential ¢, hence also ¢’ , is constant in a cross-section of a con-
ductor. Because eddy currents in the x- or y- direction would exist according to
the equations (2.2.2.a) and (2.2.2.b), if it were not constant in a cross-section; it
would be contradictory to the assumption (3). Therefore, we should add the unk-
nown variables ¢y, ¢’,, ..., ¢', (n: number of independent conductors) to the

simultaneous equations for formulating the current constraints fs J,, dzdy = 0

explicitly, corresponding to the number of the independent conductors; one ¢’ can
be decided arbitrarily. If there is only one conductor in the analyzed region by
chance, one can calculate the field based on the (2.2.3"), since one can give zero
value to the single scalar potential. In the analysis of a linear induction motor,
whose eddy current exists only in a secondary reaction plate, the equation (2.2.3’)
can be used as a basic equation.

2.3. Mathematical formulation of the time dependence

2.3.1. Complex variable method (” e/*! -method”) for a quasi- stationary field
analysis

This method is applied to A.C. stationary fields, whose physical variables, e.g.
magnetic vector potential and current etc., vary sinusoidally; one can replace the

operator -(%— with jwt and all the independent variables are written as complex

numbers. One can obtain a proper results in a linear field, where both the applied
voltages and the resultant currents vary sinusoidally. It cannot be applied if an
analyzed system has some nonlinearity, e.g. saturation and hysteresis, or if the
phenomena are transient.

The vector potential A and the forced current J;, are written with complex vari-

ables as A-e’! and Jye™* | where the dot ( - ) expresses complex variables.

oA

y 22
Y oz

9
Oz
The results are given as complex numbers. The standard vector is chosen based on

a phase angle of a forced current; an phase angle of a resultant complex number
means the phase difference from the standard vector.

Vz“_] = —Jy+ a[jwfi + vz—%:—]. (2.3.1)
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One can calculate A.C. complex impedances directly by calculating electromotive
forces induced in primary windings in this calculation; it is important for compar-
ing calculated results with classic A.C.-motor investigations based on linear alge-
bra, linear circuit theory, and function theory of complex variables, e.g. the
equivalent circuit, current vector loci, and multi-terminal linear system theory.
Since the agreement with the classic methods supports the propriety of the numer-
ical investigation, it is one of the most important points in this field of research.

2.3.2. Time discrete differential method
For analyzing transient phenomena of the LIM, we investigate the time finite dif-
ferential method, in which the time is discretized with a short time step At. We
will discuss on a following example of a one-dimensional diffusion problem for sim-
plicity in this subsection. (See the figure 2.2.)

oT 0

ko =

ar
at Oz

2.3.2)

The time is a "one-directional” variable, i.e., one can solve the differential equa-
tion by executing iterative procedures with a given initial condition; a new T at
t=t,g+At, using the old TP at t=t_; on a grid point has to be calculated. Let us
assume new unknown values at t,, = t,;+At as Tp, Ty, Ty, and old known
values at t,; as T, T9, T, on grid points P, E, and W. The equation (2.3.2) is
integrated along the x- and t- axis based on the Weighted Residual Method [2-2] as
described later. I assume the time-variant form of the T between t,; and
bnew = togtAt as follows:

n

‘[::,,+A‘Tpdt - [f-TP + [1—.f]‘TE] A't . ' (2.3.3)

where f: 0.0<f<1.0 is a weighting factor. Finally, the following discrete equations
are derived:

apTp = ag [fTb?+ [1—f] Tg] + aw[fTW+{1—f] T?V]

+ [apo— [1~f] ag— [1-—f]aw] T9 (2.3.4)
k k
where ap= ;e , aw=-g-1-v-—, apo=k1-é£, and ap=fap+fay+ap,.
z, T, At

(1) Complete explicit method (f = 0.0)

It is assumed in this method, that the old value TP at t=t,, is dominant at

toa<t<t,4y+At. The new value Tp can be derived with the known values

T?;, Tg? Tgy without solving simultaneous equations. However, there is a strict




constraint for the At, concerning the numerical stability. The following equation is
derived from the equation (2.6) by giving zero to the f.

apTp = agTh + ayTh + [apoéaE—aw] T3 (2.3.5)

In the equation above, the coefficient of the TP, can be negative. If it is negative,

Tp decrease when the TP would increase; it is physically irrational. Hence,

K ag >ap + ap” is the condition for the numerical stability: in a particular case of
. . kl(Al")2
regular grids, i.e., Az=6z,=6z,, the condition is written as ”At<T”. This
2

equation means that you must take the small A#'s when you make Az’s small for
accurate calculations; it could cause an enormous computing time.

(2) Crank-Nicolson method (f = 0.5)

It is assumed that the T'p varies linearly during the time step At, it is physically
correct in the case of sufficiently short time steps.

(3) Complete implicit method (f = 1.0)

It is assumed that Tp varies immediately from the old value T?; to a new one T'p,
and the new value is kept all the rest during the time step At. In this complete
implicit scheme, the coefficients in the equation (2.3.5) are always non-negative,
i.e.,, one can choose the time steps At arbitrarily without considering any condi-
tions for the numerical stability, i.e., time-consuming very small time steps are not
necessary. I will formulate, therefore, transient models of LIMs in this dissertation
on the basis of this complete implicit method.

Characteristics of the models are compared visually in the figure 2.3.

2.4. Control volume method (1): Cartesian coordinates [2-3]

In this section, I describe mathematical formulations of discretization based on the
Control Volume method (C. V. method) on the Cartesian Descartes coordinates.
The C. V. method is one of the weighted residual methods: the basic equation is
multiplied with the weighting function, which is 1.0 in the control volume, and 0.0
out of it. The basic equation is discretized by putting the residual function
integrated in the whole region to zero. This method has been originally developed
for a heat flow analysis and implemented in the general heat flow analysis code
"PHOENICS” [2-4] ( © Prof. Spalding, Imperial College, British Kingdom &
CHAM co.), on the basis of the "SIMPLE” (Semi-Implicit Method for Pressure
Linked Equations).

-10-




It is known that numerical oscillations occur in a calculation of an eddy current
field with a velocity term, when the Peclet number [2-5], which will be explained in
detail later, is large; the Up-wind scheme [2-6] is often applied to FEM- (finite ele-
ment method) formulations as a mathematical strategy against it after experiences
in the fluid dynamic computation. The physical meaning of the scheme is, how-
ever, not obvious. In this research, the Peclet number is investigated based on the
principle, that coefficients in the discretized equations are “conductances” between
the physical variables on grids; for numerically stable computation, they must
always be non-negative. It has been resulted that linear interpolating functions
cause the numerical oscillation, since the coefficients in the discretized basic equa-
tions can be negative in the following cases:

(1) if the magnetic permeability is large,
(2) if the electric conductivity is large,
(3) if the velocity of the conductor is large, and

(4) if the grids for the discretization are rough.

Furthermore, the two- dimensional eddy current analysis with a velocity term has
been numerically stabilized by introducing the modified exponential interpolating
function, with which the up-wind effect is automatically adjusted correspondmg to
the "strength of a wind in the field” on each grid. :

2.4.1. Two conditions for physical propriety of a discretized equation [2-3]
(1) All the coefficients in discretized equations must be non-negative.

(2) The summation of the coefficients of all the adjacent coefficients must be
equal to the coefficient of the central point.

2.4.2. Discrete formulation with a linear interpolating function — corresponding to
a normal FEM with linear triangular elements |

First of all, I describe a formulation with a linear interpolating function in this
subsection, assuming that the electromagnetic potential A varies linearly between
two grid points. The two- dimensional grids, the control volumes and symbols used
in the formulations are shown in the figure 2.4.

From the equation (2.2.3’):

0A 0 0A 0 0A
—_— A — — | —v,— | = Jy(t). 2.4.1
ot Tz |7 T W, ay[ <ry ol?) (24.1)
If you write ¢, = ov,4 — v -Q-é-, Y, = — Vz—a'il‘, the equation (2.4.1) can be writ-
Vor' 7Y dy

ten:

AL




0A

0, oY,

(Y

ot

By applying the complete implicit method, the both hand sides of the equation
(2.4.2) are integrated along x- and y- axes:

+ + = Jo(t)

Oz Oy

[AP——A?;]A:cAy

Op

= + O~ +T,~ T, = JpAzAy

(2.4.2)

(2.4.3)

where the Ag is the value at the t=1¢,, Ap is the value at the
t= b, = tygtAt, U, = jcwzdy (244 a), ¥, = [D¢zdy (244 b), ¥ = j:lq,bydm
(24.4¢),and ¥, = [y dz (2.4.4.d).

According to the assumption of linear interpolation,

r
1—)\:],4,, + A Ag
1—/\,,,]AW+ ApAp

(
I—An]AP + A Ay

1-,\,]AS +AAp

[1—)\w]6:cw + A8z, = Az

[I—A,]éys + A0y, = Ay.

Putting them into the equations (2.4.4),

v

ze

W

yn

ys

il

-

Ap—A
o,vy, A, — vV ~2 F Ay

[ ye 6
z
[

[ AE_AP
o,V [1—)‘e]AP+)‘eAE - uyeT Ay
L €
[ Ap—Ay
T VoA, — uyw------—------—(Sm Ay
w
[ | Ap—Ay
T V20 [1—-/\w]AW+)\wAW T VT Ay
Ay—A
—Vg, rF Az
L 6yn
[ Ap—Ag
—v,, z
L. 6y"
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These ¥'s are substituted into the equation (2.4.3); the following equation is
derived in the same way as (2.3.5):

aPAP == aEAE+aWAW+aNAN+a5A5+b (2415)
where
opAzAy
apy = T (2.4.16)
Vye
ap = —aevm!/\ye + -"5—;— Ay (2.4.17)
. .
.
Vyw
ay = +awv2w[1—)\w] + Ay (2.4.18)
L &cw
v
ay = — Az (2.4.19)
oy, ‘
v
a5 = — Az (2.4.20)
oy,
ap = agp + Qw + an + ag -+ G pg -+ [Ucvh—awvm] (2421)
and
b= JpAzAy + apyAl. (2.4.23)

There is no problem practically if o,v,, = 0,0y, = oy is assumed.

In these equations, there is no problem in the case of:

Vyw v

e < g, < — ’ (2.31)
(oo, 25 A

however, if the conditions in the subsection 2.4.1 are not satisfied, the validity of
the numerical calculation is not guaranteed. That is to say, numerically oscillating
solutions can be obtained in the case of high speed or rough discretization; this is a
defect of this discretizing scheme.

2.4.3. Exponential method

An improved formulation is described in this subsection in order to avoid the
numerical oscillation by applying the up-wind scheme to the interpolation with an
exponential function.

First of all, I discuss an example of a passive one-dimensional model, in which the
time dependence and the input term are neglected from the equation (2.4.1) for
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Figure 2.5. Passive one- dimensional model.
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simplicity, illustrated in the figure 2.5.

v, = av2A~Vygf-1~ =0 (2.4.24)
Oz :
The equation (2.4.24) is an ordinary differential equation of the separation of vari-
able:

dA

y.—(_i-; = GUZA. (2'4'25)
A=A, at z=0 is an initial condition, and A=A} at =L is given as a supplemental
condition.
A(z) L ov :
/ 44 _ [ 2 gp (2.4.26)
4 A Vy

where v, and v, should be constant in the considered region.

V3

—T

A(z) = Ay e” (2.4.27)
Hence,
ov, UUZ ]
o exp|—z|-1
A""‘AO Aoe ¥ "‘Ao Vy
Ar—A4, - ALY - oV,
Age ™ —A4, exp ” L{-1

I define the distance [, between the central point P and the boundary of the con-

0,02,
trol volume e, and introduce the local magnetic Peclet number P, = ———._ By
A v
. ye
substituting z=I, and L=4z, into the equation (2.27),
Pele
exp -1
A,—Ap bz,
Ap—Ap exp [Pe] -1
Hence,
P, P,
[exp [Pe] —exp [ —— exp | — —-1]
T, bz,
Ae = ” AP + AE (2.4.28)
exp [Pc]-—-l exp [Pe]—~1

94,

ve Bz

¢ze = anZeAe -V



= O Vg |73

AP_AE

= O,V AP +
exp [Pc]-—l

(2.4.20)

For the left side of the central point P, the following equation is derived in the
. . Uwv2w6xw
same way by introducing the local Peclet number P, = ———

Vyw

AW"AP

¢zw = OyVy AW +
exp [Pw] -1

(2.4.30)

The equations (2.4.19), (2.4.20), (2.4.28) and (2.4.29) are substituted into (2.4.1),
and (2.4.15) is derived with the following coefficients.

aPAP = aEAE+aWAW+aNAN+asA5+b (2431)

opAzlAy :
apy = YR (2.4.32)
o,y Y
ap = —————
exp [Pe]-l

veby | P
ye € .
= ‘ + Ma:c[—» Uy Ay, 0] 2.4.33
bz, exp|P,|-1 Tef2e2Y ( )

e

0 4 V9,€XP [Pw] Ay

exp [Pw] -1

aW:‘—

Ay P
=7 [P + Maz:[«l—crwvzwAy, 0] (2.4.34)
bz, exp|P,|-1

O(e or w)V2 0T
where P(e orw) = feorw)2 77 is the Peclet number.

Ve orw)y

Ven

ay = — Az (2.4.35)

0y,
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28
ag = Sy, Az (2.4.36)
ap = ap + ay + ay + ag + aég + [aevze-awvzw} (2.4.37)

and
b= JpAzAy + apyAd (2.4.38)

In this formulation, all the coefficients are non-negative.

2.4.4 Modified exponential method

The exponential method described in the previous subsection is a good method, in
which the numerical stability is always guaranteed by modifying automatically the
form of the interpolating function corresponding to the Peclet number. However,
the time consuming exponential calculation must be carried out on every grid

. . - 0 . .
points, in addition, —0— and — can occur numerically; such weak points should be
00

removed for a numerical computation. The exponential interpolating function

—-—J——L——, therefore, is substituted with the multinominal approximation
exp|P|-1 .

Ma:z:[O, [1——0.1]1’{]5]; the two functions are compared in the figure 2.6. As

results, the coefficients in the equation (2.4.15) are written as follows:

aPAP = aEAE+aWAW+aNAN+aSA5+b (2439)
opAzAy
apg = T (2.4.40)
v,, Ay
ap = 3:; Ma:c[(), (1—-0.1|Pe|)5] + Mam[——aevzeAy, O] (2.4.41)
zc
VDAY
ay = ’;’” Maa:[(), (1«-0.1|Pw|)5] + Ma:c[crvawAy, 0] (2.4.42)
xw
T (e or w)¥2 bz
where P, ,, ) = is the Peclet number.
Vieor w)y
v
ay = —— Az (2.4.43)
oy,
%
ag = — Az (2.4.44)
oy,
ap = ag + ay + ay + ag + apy + [aevh—awvw] (2.4.45)
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b= JpAzAy + apyAd. (2.4.46)

All the following calculated results in this dissertation are based on the modified
exponential method. ‘

2.4.5. Stationary analysis — e/“!-method
The discretized equation with complex variables is as follows:

dP‘A.'P = GEAE + awAW + GNAN -+ asfis -+ l; (2447)
where the dot () means a complex variable, and ag, ay, ay and ag are the same
real coefficients as in the previous subsection, and:

ap = ap + ay + ay + a5 + jwopAzAy + [026v26~02wv26]Ay (2.4.48)

b = JyAzAy. (2.4.49)

2.4.6. Calculation of magnetic flux density, secondary current, primary voltage and
forces

Since the analysis described in the previous subsection is two- dimensional, contour
lines of the vector potential A, mean magnetic flux lines as shown in the figure 3.8
(b). The magnetic flux density is calculated as follows.

B=VxA (2.4.50)

The secondary current density is derived considering that the scalar potential ¢ is
assumed to be zero.

04, o4,] o
iy, = —a (2.4.51)

ot + 0z

The forces are calculated by integrating the Maxwell’s stress tensor in thé gap.

The terminal voltage is calculated by integrating the induced electromotive force E
along windings. Particularly, in the two- dimensional analysis in this research, one
needs only to multiply an effective core width by the electromotive force E,, since
the end portions of a winding are neglected. From the Maxwell's equations and
the equation (2.4.50), the following one is derived.

E=--|2A | vy (2.4.52)
ot
Particularly, in the two- dimensional analysis with ¢ = 0,
0A
= 2.4.53
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Since the voltage is calculated using the magnetic vector potential, which is the
solution of the field analysis, the calculation is possible only after the field analysis

with a current source. Therefore, the voltage-source simulation should be carried’

out in the case of linear fields !/ as follows:

(1) the preliminary current-source field is analyzed for calculating induced pri-
mary terminal voltages,

(2) the impedances are calculated,

(3) the primary currents are calculated corresponding to the given terminal vol-
tages using the impedances calculated above, and

(4) the field is analyzed with the modified primary currents again.

The procedures above are simple in the stationary calculation. On the other hand,
transient voltage-source problems should be solved iteratively with a transition
matrix; the mathematical procedure will be described in the subsection 2.8.

The terminal voltage and the impedance are written in the stationary analysis as
follows:

E, = E, e (2.4.54)

A, = A e (2.4.55)
According to the equation (2.4.53),

E, = —jwd, (2.4.56)
For instance in the case shown in the figure 2.7,

Vyy = J\(,-[—A"1 + ffz]‘L'[—jw] . | (2.4.57)

. vV ,

Zyy = —2 (2.4.58)

Iy ‘
2
—i2n

3

(In the case of a three- phase drive for instance, iU = Iy, fV = Iye , and

.4
—)—x

‘fW= Iw'e 3 .)

1) If you would treat all the primary currents as unknown variables, you could analyze a
LIM with a voltage source directly. In this case, however, the band width of the
coefficients matrix, which is substantially sparse, in the field analysis is much larger than
with a current source; it consumes naturally much more computing time.
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There may be no considerable difference, either if one would calculate the induced
voltage only on a central point of the cross-section of a primary conductor, or if
one would take an average value on the cross-section.

A primary resistance Ry and a leakage inductance at the coil-end portion of the
primary winding, which is a considerable part of a primary leakage inductance Lg,,
are neglected in the impedance calculations; the neglected impedances should be
added to the main impedance after the preliminary field analysis in the simulation
prbcedures.
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Figure 2.7. An example of a concrete model and principle of voltage calculation.

(r.6,%) Figure 2.8. Three- dimensional cylindrical coordinates.
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2.5. Control volume method (2): cylindrical coordinates

2.5.1. Application of the analysis

The discrete formulation on the cylindrical coordinates will be described in this
section also using the control volume method. One can analyze a tubular LIM,
which has substantially a coaxial structure; calculated results will be shown in the
chapter 6. The formulation on the cylindrical coordinates can be applied also to
two- dimensional analyses of rotary motors in the r—@ cross-section; the concrete
formulation will be described in the appendix I.

2.5.2. Basic equations

The following equation, which has already been written in the subsection 2.2.1.,is
derived with the 4 —¢ method from the Maxwell’s equations:

V x [V[V X A” =J, + 0[--€;~;—:— - Vo +v x [VXA]] (2.2.1)

where v is magnetic reluctivity, Jy is a force-current density, and v is a velocity of
a secondary conductor. One needs an appropriate constraint of the electric scalar
potential ¢ in addition, as mentioned in the subsection 2.2.1.

On the three- dimensional cylindrical coordinates in the figure 2.8, each factor of
the magnetic vector potential is written as follows.

10 |v.[0(r4y) 04,)] 5 0A, OA,
rdd | r| or @ || a0:1°% 8z or

(2.5.1.a)

04, 5 ﬁra(“‘ie) 8A,.}_ ‘[6A, BAz”'

=7 _—r 2 L _
°’+0[ ot or 1| or o0 5z o

F) 1 04, 04, o | v, | 0(rdy) 0A,

0z V'rBG_Bzv—t')r r ar o
0A 0A, 0A a(rA 0A

= Tppto|— 8—-1—0¢+v, 1 94 "‘Ur'l‘ ( 9)_ r (2.5.1.b)
a r 00 r 06 Oz r or 08

10 6Ar aAz 1 0 1 6‘4‘2 6A9

r Or Yo 8z o0 Ty o9 Yr r 89 Oz
0A, 0¢ 0A, 0A, 1 04, 04,

=J - A - —ys | = — 2.5.1.

0:tC ot 0z +‘U,.[ 0z or Yo r 00 0z ( c)

+Gauge condition
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2.5.3. Maxwell stress tensor

A basic mathematical formulation is described in this subsection for calculating
forces with the Maxwell-stress method on-the cylindrical coordinates.

The Lorenz force f in a volume illustrated in the figure 2.9 is calculated with the
magnetic flux density B and the total current i including magnetization current as
follows:

f=jxB (2.5.2)

The total magnetic force applied to the volume is calculated by integrating the f
as follows.

F=[[]£drrdg-dz (2.5.3)

From the Maxwell’s equations:

j=VxH=-1 vxB (2.5.4)
Ho
the force consequently is written as follows.
= L[V X BJ x B (2.5.5)
Ko .
With the following formula of the vector algebra,
V(uv) = (wV)v+(v-V)utux (Vxv)+vx(Vxu) (2.5.6)
hence,
V(B'B) =2 (B-V)B + 2Bx(VxB) (2.5.7)
the force is separated into two terms as follows. . |
1 1 1 »
f=—(VxB)xB = — (B-V)B——V(B'B) (2.5.8)
Ho Ho 2 ,
The first factor of the vector equation (2.5.8) is:
1/, 98 _19B 9B 14 .
=—\B B B - B,+B;+B 2.5.9

When the following formulas are applied to the equation (2.5.9),

B(Brz) _ 2B, 0B,
or ar
1 a(BrBG) 1 6B0 1 aBr
r 0 r o s 0
B(B,,Bz) 0B, 0B,
= Br + Bz
0z 0z dz
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then

B 0B, B 1 OB, B 0B,
T Or + Bo r o9 + 5 9z

= + + -B, +— +
or r o0 0z ar r 09 0z

-5, [vB).
or ' r o9 0z P VB0

a(B;) LA O(B,By) N 4(8,B,)

= 2.5.11
or r  0f 0z ( )
the following expression is derived as a result.
1]18 [ 2 2 2] 10 [ 0
= —1=2|p2_p2p -——-BB] —-——[ ] 5.12

The second- and the third- factors are derived in the same way as follows:

1 .
fo= ——{—?— [B,,B,] + =1 [Bg-Bf—Bf] + —Q—[B(,BZJJ (2.5.13)
2r 0z

9
Ko | OF 0o

1|48 1 0 10
fo= ;;{'5; [2.8.] + S [.30) + 5252 2-53) J 2514

The force element f, is integrated here. If one defines the vector

t
F,= 11 [33-33—133], ——I—B,B,,, —-l—BrBz , the following form is derived from
2 py Ko Ho A

the Gauss’ divergence theorem:

F, = [[[ f, drrd8 dz = [[[ V'F, dr rdf dz = [[F, ndS

1 1
= f[g’ 21ig [Bf—Bg—Bf]er-n rdf dz + f‘[?a —;;)- [BTB(,] e;n dr dz

+ [ —L[B,Bz]ez-n dr rdf (2.5.15)
* Ho

where the S,, Sy and S, mean the surfaces whose normal vectors are in the direc-

tions of r, §, and z respectively. The other two factors are integrated in the same

way.

Finally, the volume integral of the Lorenz force has been substituted by the sur-

face integral of the following Maxwell’s stress tensors.

% [33—33—33] B.B, BB
' r-z
;1- BB, -;—[33-33—133] ByB, (2.5.16)
0
N BB g [er-nm)|
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Figure 2.9. Lorenz force in a volume

?

Figure 2.10. Control volume in the three-

dimensional cylindrical coordinates.

Induced
~ Voltage

Figure 2.11. Control volume and grid points in a coaxial cross-section.

-25.




2.5.4. Formulation for a tubular LIM — integral of a control volume

For simplicity of analyzing a coaxial symmetrical tubular LIM with a single con-
tinuous secondary conductor, one should accept-the following assumptions:

(1) In the analyzed region, currents flow only in the 6-direction. (Jyy will be sim-
ply written as Jj in the following formulations.)

(2) Hence, A, = A, = 0. (A4, will be simply written as A)

(3) The conductor moves only in the z- direction. (v, will be written as v.)

(4) Eddy current flows only in a continuous secondary part.

According to the assumptions, the following simple basic equation is derived where
a new dependent unknown variable U = A-r is defined; thanks to the assumption
(4), one can choose the simplest gauge-condition ¢ = 0.

v, v,
10U 0 |Zov) b8 |%0ou) 108U Jy (2.5.17)
or| r Or

r 0z
The equation (2.5.17) is multiplied by the step-weighting function, which is unity
in the control volume and zero out of it, to discretize the basic equation based on
the control volume method, where the control volume is illustrated in the figure
2.10.

1At e o oU o |veoUul| o lv:ou] ovwaU
ar L1254 B Al

r Oz

rdr dz dt =0 (2.5.18)

t s |r ot oz|r 0z] or|r or r 0z
2.5.5. Discrete formulation with a linear interpolation function — the PAp-”
method

First of all, a formulation with a linear interpolating function is described in this
subsection, assuming the potential variable U varies linearly between two grid
points. The quasi-three- dimensional grids in a coaxial cross-section are illustrated
in the figure (2.11). According to the assumptions, the potentials on boundaries of
a control volume are written as follows: ‘

U = (1-X)Ug + A, Up - (2.5.19)
Uy =(1=-2,)Up + A, Uy (2.5.20)
U, =1-X)Uy+ X, Up (2.5.21)
U, =(1-2,)Up + X, Us (2.5.22)
The first term of the equation (2.5.18):
UpU
=0p Ar Az
At
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7,

[2nd term] = — [V 9y

v
[3rd term]= —Az[ r—a—-[-i-g-g-} dr

or| r Or
=_Az[r;_?__v_ RN 2R
r Or|, s | v Or

Vn(UN=Up)  vau(Up=Us) vu(Up=Us) rp v Uy—Up) 1] -
= |- In n—i Az
ory, or, or, r, b1, rp
v T Vg T v Tn 178 r '
= == [1Hn—= == [ 1in—" | A 20— | 14— | A 2Ty~ |1+ | A 2D
51‘,, Tp Ts Ty 61‘.,, Tp 61‘, Ts

[4th term]= {oeveAcwawvw(l——/\w)]AZUP+UCvc(l—/\e)ArUE—awvw)\wUArUW

(rn+ro)

n .
[5th term]= —JOAz_c rdr = —JopAz‘——z—-'——-(rn——.ra) = —JopTpArAz

-These results are substituted into the equation (2.5.18); the following discretized

equation is derived:

GPUP—GEUE—awUW—aNUN—asUS = b (2523)
where
VT
ap = : -—acve(l——/\e)}Ar (2.5.24)
0z,
, .
ay = [-—;ri——awvw/\w]Ar (2.5.25)
w
VZT]- r’n
ay = P 1+ln—]Az (2.5.26)
Ta Tp
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28 Tp
g = ——|1+ln—|Az (2.5.27)

r‘ rJ

opAzAT
al = —-fz—t-—— (2.5.28)
b = JoprpArAz + adUD (2.5.29)
and

ap = agtaytaytagtad+ [aevc~—awvw]Ar (2.5.30)

2.5.6. Modified exponential method

With complete implicit discrete time method and consideration of the up-wind
effect [2-3] in the same way as the subsection 2.4.4., the resultant discrete equation
for general transient phenomena is derived as follows:

aPUP—-aEUE—-aWUW——aNUN——aSUS = b (2.5.31)
v, Ar 5 ,
ag = -Maz[o, [1—0.1IP6|] ] + Maa:[—aeveAr, 0] (2.5.32)
€
Vo, Ar 5 :
ay = -Maz[O, [I—O.IIPwI] ] + Ma:c[awvar, 0] (2.5.33)
w

where the Peclet numbers P, and P, are defined as follows:

o,v,0z
A (2.5.34)
VTC
OV, 02 :
P, = Lww ‘ (2.5.35)
Urw
v r ~
ay = ——[1+ln— Az (2.5.36)
or, rp
v r
ag = = |1+ln—=|Az (2.5.37)
or, T
opAzAT
al = —5-&?-— (2.5.38)
b= JoprpArAz + aPUY (2.5.39)
and
ap = ag+ay+aytagtap+ [aeve-—awvw]Ar (2.5.40)
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It is said that accuracy of the calculation is relatively bad near the central axis
r=0 in an ordinary finite element method with linear triangular elements due to
the following approximation of the integral in an element:

/ jw;l—zv- N, dr daw~

{4
r e

Ale) (2.5.41)
9rfe)

where the (e) means a region in an element; AL); area of the element; N,,: shape
function; and ré,‘) r-value of the weight point of the triangular element. This

Tp

r T
approximation corresponds to substituting the ln—-P— with Afe) , and In— with

Ty Ty Tp

r

A(°)-——"—; the formulation described here is, therefore, more accurate than the ordi-
Tp

nary FEM with linear triangular elements.

2.5.7. Stationary analysis — e/“!. method

For a stationary analysis using e’“*:

dP[}P-aEU.E—aWUW—aNUN"aSUS = b (2531,)
ap = agt+ay+ay+agtjwopAzAr (2.5.40")
b= JoprpArAz (2.5.39")

2.5.8. Calculation of magnetic flux density, secondary current, primary voltage and ‘

forces

Magnetic flux densities are written as:

B, =2V | . (2.5.42)
r 0z _

B, = 19U (2.5.43)
r Or

o | o8U oU
. __o|ou 9.5.44
8 = T [ ot T 31} (2.5.44)

Normal force density in the r- direction and thrust force are calculated from the
equation (2.5.16) as follows:

F',=——L ’[BE~B§] __dz  [N/m] (2.5.45)
2“0 Z1 7= Tgap
27rrgap 2,
F, = I [B,-Bz] iz [N] (2.5.46)
y l‘l‘O 23 T=7‘,¢,
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The primary voltage is calculated from the figure 2.11. (b):

E %4
8= 758 [V/m]
aUp
V = N“Eo'27rrp = —“27er at [V]
-30-
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2.6. Control volume method (3): two- dimensional general irregular triangular ele-
ments

The mathematical formulations on rectangular coordinates based on the Control
Volume Method were described in the previous sections: it is also applicable to
irregular triangular elements like the finite element methods with a sophisticated
mathematical technique [2-8], although the procedure is a little more complicated.

In this section, a conventional FEM formulation will be introduced in the first
place for a comparison, which is followed by the description of the direct applica-
tion of the Ampere’s law and the control volume methods with the linear- and the
exponential- interpolating functions.

2.6.1. Conventijonal method: finite element method

2.6.1.1. Formulation based on the Galerkin method with linear shape- and
weighting- functions

The basic equation is named R*(A) for applying the Galerkin method as follows.

o a4] o o4 9A 04| o4
R*(A) = —|v,— |4+—|pv. | = - J 2.6.1
A =% "o By "’ay] 71" s Ty | T T (26.1)

The linear interpolating function in the triangular element illustrated in the figure
2.12 is defined as follows.

Ainner = @ + Bz + 7y (2.6.2)
The coefficients are determined by the following simultaneous equations:
4, 1 %1 Y| |«
4; 1 T3 Y3 Y7
where A;, A4, and A; are the vector potentials on the three corner nodes of the ele-

ment. Although it can be easily solved as follows:
-1

«a 1 21 % 4,
Bl = |1 z, y, A, (2.6.4)
v 1 Z3 Y3 A,

the following relation is also well known by using the local area coordinates as fol-
lows.

3
Ainner = E C.g A, (265)
s=1
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Si=1,...,3= (o, + B,z + 7,y) (2.6.6.a)

. 1 T .
S = Py det (1 =z, y, (2.6.6.b.)
I3 Ys
N | (2.6.6.c)
Q1 = TU3—T3Ys Q= T3y —T1Y3 Qaz = Z1Y2—2Z24
Br=Y2—¥; _ B2 = y3—y, B3 = y1— ¥,
71 = T3— T T2 = Ty, T3 = T9—Ty
(2.6.8)
a Ay + agdy + oA,
Q= 2.6.9
Y (2.6.9)
BiA, + BrA, + 3.4
g = 1411 249 343 (2.6.10)
28 ,
1A + 144 + 7,4 ‘
7= -1 252 3 (2.6.11)

The original x- and y- coordinates are expressed by using the local area coordi-:

nates as follows.
T = Cl.'l:l + szz -+ C3$3 (2.6.12)
Y =G+ Gus + Gy; : | (2.6.13)

The shape- and weighting- functions in the FEM with linear triangular elements
based on the Galerkin method are written using the local area coordinates as fol-

lows.
Nl = Cl) N2 = 42) N3 = C3 (2.6.14)

The residual of the basic equation is written in the following form.

* 0 dA a 04 0A a4 04
G, = N{—|v,—|+— v —|- - Jot dzd 2.6.15
: '['[S ’{é)z Yy 62:J+6y Ve dy a[vx Oz +y ByJ 7 ot + 0} .z v ( )

where the magnetic potential A4 is assumed in the following equation with the
interpolating functions:

By applying the formula of the integration of parts to the equation (2.6.15):
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0 0A d 0A
Gt = [[{—|Nw,~—| + =|No. 25|} dzd
i fS{Bz[ e +8y 'V“c'?y”dzy
ONi | a4 |  ONi| a4 dod
‘fs oz | ¥ oz dy V”By e
0A 0A 0A
+ f-[q [—~N, [vm—5;+vy*5y— ——Nia“ét——{-NiJO] drdy (2.6.17)
in addition, according to the Green’s theorem, the following relation is derived:
0A 0 0A
[The 1st term] = ff[ ['”8 +—; NVB ]d:cdy
= f N, [V 94 —dy — Vz?—é-dx]
Oz 5]

=0 (2.6.18)

under the assumption of the natural boundary condition. Hence, if the new resi-
dual G; is defined as follows:

G, = -Gt (2.6.19)

ON; | 94| ON;[ o4 , 04 04 A '
= N, —— | 4+oN~=—N.J,} dzd
ffs{ oz ["” oz | oy oy | TN % ar Ty | TNy Mo dedy
ON;. | 94| 6N, | 540 8A1®)  ga@ | . 54
B % [fj;(){ Oz [ g " + Oy . Oy N % Oz Fty Oy ] ot _N"JOJ dIdyJ

and the potential in an element is assumed:
3 .
Ale) = E el = (A, (2.6.20)
j=1

then by applymg the following relation to the integral of the residual:
ON; 3 ON; 0¢, 1 3 aN; B;

oz 2, 0¢ o 257 "hag, 28
61V; 3 6]V' 3Ck 1 3 BJVi 7{

S— S S

Y
dy El a¢, By 25,?;31 *oc, 28

i

the integral can be formulated as follows.

) 2 : i N O Ny —— 1V T
f'l‘.s(‘),l az y + By V, By +0o il V2 8z vy 81{ 7 8t 0 )
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Figure 2.12. A triangular element.  Figure 2.13. Triangular elements and a control volume.,

ANaw ds=4/(d0*+ @y)
X dX

Figure 2.14. Line- and surface- integrals.
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Figure 2.15. Three-phase circuits as multi- terminal system.
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[ 31 1 1 64
= E ffs(')z [[FVﬁ,’ﬂ:’FFV{h’)’j*‘EUC{ [v,ﬁ;+vﬂj} ]AJ‘*-UCJ-ET—-CIJO] dzdy] (2.6.21)

& | J=1

=Y ff uf-i-+av( ifi-fi--l- V-li*-i-av(,’ 233*:/—]‘,4 CJ+0§J(CE§1 dzd
w |70 P28 T as T Mgs TN L gg Aot Ty v

The simultaneous linear equations in an element is consequently derived by apply-
a! b! ¢!

ing the formula [[ ¢&¢¥¢S dzdy = 28 to the integral.
& f'[s 162€3 u(a+b+c+2)! 8
(11 1% DS
4 6 12 12| O 3
K A s|L L L||84a] %S (2.6.22)
_ Bi3,Bi+2500,)+,(3v,vi+280u,) || 72 AAA ETIECETY | el el i e
128 43 111 ||e4, 1§
(12 12 6 )| 5 | 3

2.6.1.2. Formulation based on the Ampere’s law [2-7]

The same discretization is also possible by applying the Ampere’s law directly to
the analyzed region, e.g., illustrated in the figure 2.13. The Ampere’s law with the
form of integration is:

jCH-dl =§j;'iH-dl

=X [J: dS (2.6.23)
5 ,

The input current consists of;

Ji = Joi + Joi + Jy |  (2.6.24)

where Jy, J,, and J; are current densities forced, and induced by velocity- and

transformer- effects respectively. According to the linear interpolating (or shape-)
function:

3 ON; A +y,A5+734
B, =24 _ T _NAmfatsfs (2.6.25)
y o 0y 28
3 AN, A{+B,A,+6,4
By=—~iA-= )y J =_'61 1P Az P = -0 (2.6.26)
Oz D Oz 25

Hence, the left hand side of the equation (2.6.23) in the first element is:

j;_*RH.dl = ‘[;_'R(szx+Hydy)
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L
2

[Hz(“’a"'zz) “'Hy( Yo ya)}

1
-1, (33“%)2 y (yg—y3)2 4
- xi 4S|' yi 45,- 11

[ (z4—z,)(2,—2 Yg— —y) |
" Vzi( 3~ %) (2, —3) Y i( 2~ Y3)(¥3~v1) Ay
4S; v 45;
- -
(23— 2,)(2,~2 Y2~ ¥s) (1~
+ |, 3~ ) (23— 14) Vi( 2= Y3) (V1 92) A, (2.6.27)
4S; v 48S;
On the other hand, the right hand side is:
1
ffs.,Jo dedy = “5‘5;‘70; (2.6.28)
04 cfvﬁ
Jf 2 dedy = [fmvopr = B =4,
1=
Y2~y Ys—y U1~y
= — [va 2 = Ayi—|vo : I}AZ,- [vo - QJA&- (2.6.29)
6 6 :
1 t+AL 1 i+At 8A
v jt'fjsli.ft,- dzdy dr = ——A—-t- A f_[g‘a—a—;-d:vdy dr
Sy 0 : '

The discrete equation (2.6.39) in the next section is obtained by substituting the
equations from (2.6.27) to (2.6.30) into (2.6.23), and if one sums up all the ele-
ments around the node one — in this case 1 = 1, ...,5, one obtains completely
the same discretized equations as (2.6.22).

2.6.2. Formulation based on the control volume method

2.6.2.1. Merits and demerits of the method

The following method is more complicated than the C.V.- methods in the previous
sections for the following reasons.

(1) A coordinates transformation is necessary on every point in a moving region
so that the X axis may be in the same direction as the speed.
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(2) An exponential calculation is necessary on every point in the moving region
for defining discretizing coefficients.

(3) The linear- and the exponential- interpolating function should be applied to
points in standstill- and moving- regions respectively in order to avoid the
numerical division by zero, where the zero-division was automatically avoided
in the previous formulations on the rectangular coordinates with the modified
exponential interpolating functions: one needs some attentions to it during a
numerical programming.

The complexity is, however, not much larger than the conventional finite element
methods. In addition, it is a strong point of the following control volume method
that the false diffusion is always avoided thanks to the coordinates transformation.

2.6.2.2. Assumptions
(1) The integrated basic equation is:

0 0A 0 0A 0A 0A 0A
= [y, == ||, 22 | - oL~ g 2.6.31
oz |V oz + By [Vz Oy ] 71" bz oy Oy "ot ° ( )

where the term of v, is omitted from the equation (2.6.1) because of the coor-

dinates transformation. ,
(2) The velocity v, the force current Jo and the conductivity ¢ belong to each

corner nodes, i.e., each control volume. On the other hand, the magnetic

reluctivity v is defined at each boundary of control volumes, i.e., each tri-

angular element. That is to say, the reluctivity v, in a triangular element is

defined with the values at the corner nodes v, v, and v3 as follows:

1 V1VoV3

- - - . (2.6.32)
1/vi+1/vy+1/v, V1V VoVt A

Ve

The control volume is surrounded by the lines connecting central points of sides
and the weighting point of a triangle as illustrated in the figure 2.12. The sub-
scripts of the nodes are defined counterclockwise, where the point 17 is the node
representing the control volume. The basic equation is integrated in the control
volume, which has been originally proposed by Winslow [2-9], for deriving a
discrete equation. A triangular element contains parts of a control volume and its
boundaries. (See the figure 2.12.) The discretized equation is derived by summing
up the contribution of each element to the integral in a control volume, as
described in the following subsections.
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2.6.2.3. Formulation with linear interpolating function

For applying the Weighted residual method, a basic equation is defined as follows:

0 0A 0 ﬁA BA
A)=-R*'(A) = —|v,—- Al ——v,— 2.6.33

The equation (2.6.33) is multiplied by the same step- weighting function as in the
equation (2.5.18). The complete implicit method will be applied concerning the
time differential also in this case.

1 t+At
~ ft f[ R(4) dedy dr=0 (2.6.33")
ina C.V,

When the following vector ‘l,bE(tﬁx,T,/)y)t is defined:

Y, = Vy“a—; =,
__ 0A
by = Vaoy C UeT

the integral is written by supplying the Gauss’ divergence theorem as follows:

1 tHAt 0A| 0 04
a4 Il [ Vos | oy "oy }dxdydT
ina C.V. Y )
= ff V- dzdy
ina C.V.
= ..fc ¥n dC (2.6.34)
See the figure 2.14. Hence:
_f neog¥ B 0= _f ~G—R dy_-/},_aa_.jzi/)y dz
Y1ty, z,tz,
iTh Rt}
= _fy1+yz v, dy+ [ v,y dz
2 2
v - vy(zy—z
_ oy (3/23. ) N n(; 2) (2.6.35)
LT 1 Loty dayar= [f ovpas
—(o, zay dr = oV 0 azay
At tmaCV Oz ina CV.
- avzﬁ'g' | (2.6.36)
t+A A,—AY)
LTI oA gy ar = oA S (2.6.37)
At e Bt At 3
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LY g dedy ar = 5,
At tm a C.V. 3
The following relation is obtained by substituting the equations (2.6.35), (2.6.36),

(2.6.37) and (2.6.38) into the equation (2.6.34).

4, yﬂlﬂz VY172 4 o0, A, + Vyﬂlﬁs + V1173 + ovfs
45 48 8 45 45 6

v, 87 i L ovp L8
45 45 ' 6 | 3Af

JoS
- 3"A5t,4‘1’+ : (2.6.39)

The same equation as (2.6.22) is obtained by summing up all the elements around
the node one. The global coefficient matrix can be obtained in the same way as an
ordinary FEM.

2.6.2.4. Formulation considering effects of the velocity terms

2.6.2.4.1. Coordinates transformation

It is impossible to formulate directly the eddy current problem in which conductors
have speeds in arbitrary directions. On the other hand, the flexibility of the
analysis is required for general applications. With the contradicting requirement
into mind, the local coordinates transformation is introduced so that the X- -axis in
an element may always be in the same direction as the local speed.

When the speed on the central node of a control volume is v = (vm,vy) the ampli-

v v
tude and the angle are defined: vf + vy2 =V, cosf = -—I—j-, and sinf = -—5—, in the

case of V0. The local coordinates [X, Y]’ is defined as follows:

X cosf sinf| |z ' _
Y| T |—sinf cosf| |y ' | (2.6.40)

The reluctivity tensor is also transformed as follows:

, rcos@ sinf| |V 0 cosf —sind
v.o= _—sin9 cosf 0 v sinf cosé

v
[ 2
v,cos 0+Vysin29 (vy—v,)sinfcosd Vy Vyy
= . = 2.6.41
(v,~v,)sinfcosh stin26+vycos29 vyy Vy ( )

With the transformed reluctivity tensor, the following basic equation in the new
local coordinates is derived.

BA
6t

oA
Yoy

= —J, (2.6.42)

o o4 9A] , o
pus —oVA-2
ax{ Yox 7 "’“’ay} "oy

-39.

(2.6.38)



2.6.2.4.2. Exponential interpolating function
In the same way as the equation (2.4.24), the following differential equation is
introduced.

oVA - Vy'—g'% = (2.6.43)

The solution of this is used for the following definition of an interpolating function
in an element.

oV

—X
A=A45e™" ‘ (2.6.44)
The following interpolating function is assumed.
Ainner =a’' + ﬂ'expg—KX + '}'l Y (2645)
Vy

In the same way as the subsection 2.6.1.1., the following relations are derived:

3
Ainner = ZC'JA'J (2646)

s=1

’ ? V ’
o B e+ 7Y
Y

L 2.6.47)
¢, — (26.47)
2S' =a'1+a'2+a,3 (2.6-48)
S = (2.6.49)
2
S#S’ when V #0
E—KX, EKX; EXX;; .Z,Y..‘X] _‘Z_KXI ‘U‘KXz
a'1=e” Y,—e" Y, a',=e”" Vi-e”" Y, a';=e”" Y,—e” Y,
:3'1=Y2“Y3 ﬂ'2=Y3—Y1 :3'3= Y,-Y,
_-a’_‘,.X'3 o’_V_X'2 ﬂxl E.sz E_KXZ 'q‘Y‘X1
711=el/y _.el/y 7,2=el/y _evy ’)"3':6”,’ “el/y
(2.6.50)
a' A+a’ Ata’ A
' = ——1 22 3 (2.6.51.a)
.25
"JAHB LA E A
/3”=ﬁ1 oH atatd s | (2.6.51.b)
28’
LAY Aty A
yoo= 1 72;,2 Y a7 (2.6.51.c)
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2.6.2.4.3. Discretized equation in the C. V.
In the same way as the section 2.6.2.3., the following basic equation is integrated:

0 04 0A 0 0A 0A
R'(A) = ———|vy——0VA-20XY- - —_— 2.6.52
W= —ox | ox VA~ X0y |~ ov oy | t ool (2652
as written in the equation (2.6.53):
1 t+AL
— [ [[ R’(4)dedydr=0 (2.6.53)
At tin a C.V.
When the following vector ¢ = (y,, 1/)y)lE is defined as follows:
0A 0A
Yy = Vy*é"f——d VA——QI/XYE-)-;
= — [a Va' + 2vyyy’ ] —-oVy'Y (2.6.54)
0A ,
the integral is calculated with the following simple form.
t+A¢
At t "oyl Oz Oz ay | oYy Yy
=— [[ VydXxdy
ina C.V,
-7 L—fG-—+R¢'n d¢
Y1+Y3 X1+X3
2 R
= _.le+Y2 {—- [cha +2uxyy ]—aV’y Y] dY + fX,+X, vyr' dX
2 2
Y.—Y. 2Y1+Y2Y3 Ya'—Yz V)()” Xa—Xg
= [aVa'+2uxﬂ'] 32 2+0'V'y' [ 4][ ]+ [2 ] (2.6.56)

The magnetic reluctivity in ordinary conductors is often homogeneous, therefore,
Vy=vy=v and vyy=0 are assumed in the following discussion. Hence, the following

simpler expression is obtained from the previous equation.

[ Y,~ YZ]JV av[z Y+ Y, Y3] [Y3-—— Y2]+21/[X3—~X2}

o + . v (2657)

The other terms can be calculated in the same way as the equations (2.6.37) and

(2.6.56) =
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(2.6.38).

t+AL [APA?]
LT 1 A axavar g8 (2.6.58)
At %t Yo, Ot At 3
1 t+ Al S
— [ [[ -JydXdY dr= —J;= (2.6.59)
At tin a C.V. 3

Finally, the following discrete equation for a node in an triangular element is
derived by substituting the equations (2.6.57), (2.6.58) and (2.6.59) into the equa-
tion (2.6.53).

where
ch[ Yi— Yz} {2a "1+ [2 Yi+Y,+ Ys]'y' 1}+2u [Xa—Xz]’y' 1 |
a, = ‘ +-25 (2661)

85" 3At
aV[Y3-— Yz] [2(1 "9t [2 Yi+Y,+ Y3]7' 2]+2V [Xg“Xz]’)" 2
2= | 85" M 3GASt (2.6.62)
aV[Y3- Yz] [ZQ "3t [2 Yi+Y,+ Y3]’y' 1]+2V [Xg—Xz]’Y's
ag = = ' + 3"; (2.6.63)
b — _‘@.“L_"‘_:_f_/ﬁfg | (2.6.64)

The global coefficient matrix can be composed in the same way as an ordinary
FEM.

2.6.2.5. Stationary state

For a stationary field analysis using /%, the following parts are substituted in the
previous equations.

d114..1 + 02A2 + asAa = b. (2660’)

LR | A PR R R B I

Jwao

1, = S (2.6.61°
a, YL + 3 ( )
. J.S

b=_§_ (2.6.64°)



2.7. Multi-terminal modeling of an asymmetrical LIM with a finite length

2.7.1. Basic principle

In order to investigate a relation between terminal voltages and line currents of a
- n-phase motor with asymmetric impedances generally, discussions based on a 2n-
terminal network system is necessary, considering remarkable electromagnetic
interferences between each phase.

For instance, a behavior of a three- phase motor on an operating point with a neu-
tral point connection is modeled as a six- terminal network system shown in the
figure 2.15. (a). Terminal-voltage- and line-current- vectors are defined as follows:

L] . . . t
v = [Vl, Vz 3 0. ey Vn] (2.7.1)
. . T
I= [11, iy v e, in] (2.7.2)
With the impedance matrix defined in the equation (2.7.3),
Zl,l Zl,n
7 = (2.7.3)
.Zn,l o Zn,n.J
the voltage equations are written as follows: _
V=2-1 (2.7.4)

where the motor’s characteristics are ideally linear and a constant velocity of the
secondary plate is given. '

For a numerical simulation of a voltage source drive using a field-analysis program
with current sources, the field distribution should be calculated with the following
input-current vectors.

. [ . t

I, = [1.0¢0,0, ..., o] (2.7.5)
. [ , ¢

L, = |0,1.0¢°0,0,..., 0] (2.7.6)
. i Rt

I.=10,0,0,0,... ,1.0e1"] (2.7.7)

Using resultant induced terminal voltages, the impedance matrix (2.7.2) can be
determined. The admittance matrix is calculated by inversing the impedance
matrix. Finally, the line currents corresponding to the given voltages are derived,
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Figure 2.16. Impedance measurement with a single phase signal source.
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and the field with voltage sources is calculated again much faster than the first
analysis based on the superposition principle of a linear system.

In the case of impedance measurements, the same procedures should be applied
with a single phase drive as shown in the figure 2.16.

If there is no neutral point connection like the figure 2.15. (b), i.e., each line
current is constrained by the Kirchhoff’s first law, the motor should be treated as
a four-terminal network — generally, as a 2(n-1) terminal network — due to less
system freedom.

2.7.2. Physical meaning of the impedance matrix — Energy flow in a single phase
drive
The energy flow in a motor is written as follows.

Pl ='Pmech. + Ploss (278)

Since the voltage between the terminal i and the neutral point is written from the
equation (2.7.4) as follows,

. n . .
V" = 2 ZIJ'ZJ (2.7'9)
j=1 .

where i = 1,2, ... ,n. The average power put into the primary windings is writ-
ten as follows.

P, = —21~ Re |3 I'/,.-I;*J
i=1
-1 Re [Zij I 1‘] | (2.7.10)
2 00 ~ _

I define a factor in the impedance matrix as Z, = R;; + jwLy; here.

In a particular case T), where only a single phase AC current fl is applied, as
shown in the figure 2.16, i.e., corresponding to the cases of the equation (2.7.4),

T

1) T. Koseki and Hardo May have compared their calculations at the TU Braunschweig,
especially concerning a physical energy flow of a LIM, in the case of the equation (2.7.11).
The two calculated results have agreed each other quite well based on the equation
(2.7.12). The details will be described in the section 3.2.4.
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1 - .
) |1;]* - Re [Zn]
=, Ry | (2.7.11)

From the equations (2.7.4) and (2.7.6), the following equation is derived.
qurma ) Rll = Plou - Fbrakc ) (2'7'12)

In this way, it has been shown that the real parts of factors in an impedance
matrix represent the energy flow in a motor. Some of them can be also negative in
generator operations.

2.8. Three- phase serial- and parallel- connection

As written in the previous sections, impedances of a LIM can be described with an
impedance matrix as a multi- terminal network in general. With this in mind, a
concrete example is introduced in this section how to treat the serial- and parallel-
connections with a LIM of twelve slots. Results of the calculations will be dis-
cussed in detail in the section 6.4.3.; the connections are illustrated in the figures
2.17.

The current vector I, the voltage vector V and the impedance matrix Z of the 24-
terminal LIM of twelve slots are defined as follows:

’-il 1 F V.l - I~ . .
iy f/z‘ Zyy, ... 219
I= V= Z = (2.8.1)
i V) 2 Zi)

The voltage equations are written with the vectors and the impedance matrix as
follows:

V=21 (2.8.2)

In the same way, the current- and voltage- vectors and the impedance matrix of
the three- phase system are:

[ 111 [ I HT I I ]

41 Vi Z1,1 Z1,2 Z1,3

_ | | _ N pur o cm
IIII = 1.2 VIII = V2 ZIH = ZZ,I Z2’2 22,3 (283)

TIT “IIT I ST I

13 j Vs Zyy 233 Z3,3J
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Three phase serial connection

Three phase parallel connection

V4

Figure 2.17. An example of a three- phase serial- and parallel- connections.
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The voltage equations of the three- phase system are summarized in the following
form: ’

Vi = 2y Iy ‘ (2.8.4)

" The following connection 3x12 matrix is introduced for a description of the rela-
tion between the 24-terminal- and the three-phase- systems.

1 00-10 01 00-10 0
'=10 01 00-10 01 00 -1 (2.8.5)
0-10 01 00-10 01 0

Serial connection

The current vectors are transformed with the connection matrix in the case of the
serial connection illustrated in the figure 2.17 (a) as follows.

I=T1,, (2.8.6)
V=27ZL,;=2T1,, (2.8.7)

Hence, the three- phase impedance matrix is calculated from the 24-terminal
impedance matrix as follows:

V=TV =TZT Iy (2.8.8)
Zy=TZT (2.8.9)
. 12 12 , ‘
ZinH =23 tulyty . (2.8.10)
1<i<3 I=1k=1

1<j<3

The three- phase currents are calculated by solving the three voltage equations as
follows: '

I = Zpi Vo (2.8.11)
The current of each slot is consequently calculated as follows:
That is to say: '
5
=3 il (2.8.13)

(1€i<12)  j=1

Parallel connection

In the case of the parallel connection illustrated in the figure 2.17. (b), you must
solve the twelve voltage equations.
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Im=T1 (2.8.14)

V=TV, | (2.8.15)
I=27'V&z7' 1t vy, (2.8.16)
The following three- phase input currents are calculated finally.
Ly=TI (2.8.17)
il = 513 Ty i; (2.8.18)
Jj=1

2.9. Voltage source transient simulation — solution of voltage equations with a
transition matrix
For a transient analysis, the impedance matrix Z in the equation (2.7.3) is

separated into the real- and imaginary- parts: Z = R + jwL. The transient voltage
equation is written with them as follows:

V=1 +RIL (2.9.1)

L1
dt

The inductance- and resistance- matrices are ideally constant, i.e., independent of
operations, if the machine had no end-effect. On the other hand, in the case of a
real LIM of a finite length, which has a considerable end-effect, the impedance
depends strongly on the operation, especially, on the secondary velocity. The
matrices must, therefore, be written as time-dependent ones, i.e., as L(t) and R(t)‘

From the equation (2.7.4), the voltage equation can be written as a first order
ordinary differential equation of matrices: '

d

where
— _1-1.
Aw = —La - Ry
= I-1.
oy =Lo Vo
(A(y): System matrix; f;): Input vector)

According to the theory of linear systems, the input current I;y on a voltage
source transient drive is soluted using a transition matrix @y, 1) of a linear homo-

geneous differential equation x = A (1) %(y) and an initial time ¢, as follows:

t
Ity = 2 Ty + [ B0y Gy A7 (2.9.3)



It, however, is so complicated to calculate numerically the R(t) and L(t) in the con-

crete by iterative algorithm of mechanical- and electromagnetic- analyses, that I
assume a current- source drive in transient investigations of this research.
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Chapter 3: Application of the analysis to a machine

Introduction

In the chapter 2, we saw the theoretical formulations for calculating electromag-
netic phenomena in a LIM. To verify the theory, calculated results are compared
with results derived with a classic machine theory, anothér numerical analysis
based on the finite element method, and basic measurements. The studies were
pursued under instruction of Professor Herbert Weh at the Technical University
Braunschweig.

3.1. Model machine

I have built an experimental induction motor, whose secondary conductor is not a
cage bar but an aluminum reaction plate, at the TU Braunschweig to verify the
numerical calculations. The details of the measurements will be described in the
section 3.5. The principal data of the machine are shown in the table 3.1, and the
photograph is in the figure 3.1. The machine has totally 48 terminals; we can
select four kinds of drives: four- pole- symmetric/ three- pole- asymmetric and six-
phase/ three- phase- drives, by changing the connection from the outside. The
structure of the winding is illustrated in the figure 3.2. I intended to simulate an
asymmetric LIM drive with end-effects with the three- pole asymmetric operation,
but the trial was not as successful as expected for the reasons described in the sec-
tion 3.3.

For the comparison with a classic motor theory, the six- phase- four- pole sym-
metric drive is mamly discussed in the followmg section 3.2. The asymmetric drive
is described in the section 3.3.
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Table 3.1. Principal data of the experimental six- phase induction motor at the
Technical University Braunschweig.

[ STATOR ]

Phase number 6 (or 3)
Pole number 4 (or 3)
Conductors/ Phase /Pole 60 (or 120)
Outer diameter 340mm
Core width 240mm
Slot number 48

Pole pitch 188.50mm
Slot pitch 15.70mm
Slot width (exit) 2.3mm
Slot depth 27.7Tmm

[ ROTOR |

Core diameter 230mm
Rotor diameter with reaction plate 238mm
Mechanical gap length lmm
Thickness of the reaction plate 4mm
Total gap length between cores 5mm
Core width 240mm
Overhang of the reaction plate 55mm

Figure 3.1. Experimental machine built at the TU Braunschweig.



3.2, Six- phase four- pole symmetric drive

3.2.1. Primary current vector loci [3-1] [3-2]

The complex admittances between the neutral point and a terminal are plotted in
the figure 3.4 in the case of six- phase six- pole symmetrical drive where
f1 = 30.0Hz; it corresponds to the primary current vector loci where Vuoy = L0V,
It is generally known that the loci draw a circuit whose central point is on the
imaginary axis in the case of Rg = 0 according to a conventional A.C.-motor
theory. We can see that the calculated results are on a circle. Since the cross-
section of the secondary aluminum reaction plate is much smaller than normal
cage bars, the secondary resistance of the experimental machine is large, and the
critical slip s; is 1.0 (standstill state). We can identify constants in an equivalent
circuit of an induction motor from the current vector loci as shown in the figure
3.5.

3.2.2. Comparison with classic analytical theory based on the equivalent current
sheet method [3-2] [3-3]

In this subsection, I compare the calculated results with a simple conventional
analytical field calculation (the current sheet method) based on the Ampere’s law
for verifying propriety of them. Along the path shown in the figure 3.6, the follow-
ing basic equation is integrated:

OH .
E Yy = Aa + Ar (31)
where A, = —o-s-v;y;B. Details about formulations are neglected here [3-3], but

the exciting current (the primary current on the no load operating point) is writ-
ten as follows:

PXTXE" "X B0

1;0 =
msx‘NphxeaXl‘l’O

-3
_ _2x7mx5.13x107°%0.44 ~ 8.1 4] (3.2)

6x240x0.964x4wx10~"
where p is a pole-pair number, §’ * is an effective gap length, B hax|s=0 1s the max-
imum flux density in the gap in the no-load operation, m, is a phase-number, Ny
is winding number per a phase, £, is winding factor, g, is a permeability of the
space, Vyn|mm, is 354V, i.e, Vyyinmeg = 500V, and the maximum magnetic flux
density in the gap at the no-load operation is 0.44T from the figure 3.3.

On the other hand, the exciting current I, is calculated directly from the figure

3.4 as follows:

-

L, =0.016x4/2x354 ~ 8.0 [4]. (3.3)

The result agrees with the calculation in the equation (3.2) well.

-53-



—~—Part for the 4-poles machine

—~——FPart for the 3-poles machine ———pm

%

¥,
—— e

N~/

N
X
'x>
YYD
/
s
/7

—— s/
————

/

Y 4

AN

N
AN
N\

\\_

—

Figure 3.2. Structure of the windings.

o)

—_—
o

/

o
(3]

1715A const.

\(_,&Q--«:_.:

TV=354Y const.

~q“.q“_—:
~ N

o
(aw]
O
(2]

Maximum flux density [T]

Figure 3.3. Maximum flux density in the gap in the six-

drive (calculation).

-54-

phase four- pole symmetric



Re [1/7]

10.0C

' | z L L
0.0 {0.05 0.1 0.16 0.2 0.25

$=0.0 -Im [1/2]
_0.05 i
_O.]-— ]

Figure 3.4. Primary current vector loci in the six- phase four- pole symmetric drive

(calculation).

R
- R
}?S l-SF"C% L'1 L= 5k L'h S

o—{—TT —

~ 'f" o T

sl * WAL
N= N

( Lser=Lgre = 1OomH
lh = 322mH
Rs= 0w

\ Rr = 3.66un

Figure 3.5. Equivalent circuit determined from the current vector loci.

5"

L/lgﬁ%///% A (x.1) Slalor

y
%
I
/ Y §
X HiZO/O// 7
LSS AN v

X Xxe0x

Rechenmodell Feldgleichungen

A, (x.,t) Rotor

Figure 3.6. Classic analytical model of induction motor with current sheet.

.55-



— 10 T n T '
> Calculated with
8._equ1vq1ent P L
S circuit < -~ ,nr”'
e 6 //o/. ]
4+
5 _
.é 4_ f]—30.0HZ -
'_..
25 Calculated -
with Maxwell stress

0.0 0.2 0,4 0.6 0.8 1.0
Slip

Figure 3.7. Slip characteristics of thrust force in the six- phase four- pole sym-
metric drive with a voltage source (V=354V const.).

[9%]
O
T

i-—Calculated with
\ equivalent circuit

Thrust force [kN]

2.0F -
Calculated with
\ Maxwell stress
\
1.0 r 7
N
*“o=p-0
f1=30Hz

1 1 1 1 l
0.0 0.2 0,4 0.6 0.8 1.0
Slip

(a) Slip characteristics of thrust force in the six- phase four- pole symmetric drive
with a current source (I=15A const.).
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3.2.3. Thrust force and equivalent circuit

The thrust force of the four- pole symmetric machine without end-effect can be
calculated in the same way using the Thevenin theorem as the torque calculation
of normal rotary induction motors. [3-2] On the other hand, the forces can be cal-
culated directly from the results of field analysis by integrating the Maxwell’s
stress tensors. The thrust forces, driven by current- and voltage- sources, have
been calculated with the both of the methods and compared in the figures 3.7 and
3.8.

3.2.4. Comparison with other calculations by Mr. H. May

Hardo May and I compared our calculations of the same motor with different
analysis methods at the TU Braunschweig to verify the analyses.

An example of the results is shown in the figure 3.9.

Furthermore, we checked the energy flows in the analyses. In May’s analysis, the
inductance of a conductor in each slot was calculated; an example of the results is
referred in the table 3.2. He calculated also the secondary energy losses and the
thrust force. '

Table 3.2 Inductances of the primary conductors per one turn
(s= 0.1, f,= 30.0Hz )
Secondary loss=7.06e-3 [W/m] : Fx=3.09¢+3 [N/m]

Slot 1 2 3 4 5 8
Low 2.09e-5 8.31e-6 . 2.09e-5  8.31le-8 2.09e-5 8.31e-6
High 4.49¢-5 3.54e-5 4.49e-5 3.54e-5 4.49e-5 |  3.54e-5
Slot 7 8 9 10 11 12

Low 2.09e-5 8.31e-6 2.09e-5 8.31e-6 2.09e-5 8.31e-6
High 4.49¢-5 3.54e-5 4.49¢-5 3.54e-5 4.49¢-5 3.54e-5

From these data, the terminal impedance of a coil was calculated as follows:

n .
. 2 pole pair
jwl =27 fy Ny 1, [Ll,low + Ly pigh + Lojon + L12,high} X

parallel
2
= 2 mx30x30%x0.24 x [2.09e—5 + 4.49e—5 + 8.31e—6 + 3.54e—-5] x5 = 4.46(Q] (3.4)
an.m == -[P,m + F,x v} xlexnpo,ex-—-—
zprim CO!’I
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Figure 3.9. Comparison between the two calculations (fy = 30Hz, I, = 154, and

s = 1.0).



= ;%)—2—- [mese—a + 3.09e—3x0.9x2x30.0><0.188] x0.24x4x—;- = 8.5[Q] (3.5)

On the other hand, the thrust force per pole pitch was calculated on the same
operating point: F, = 3.11e4+3 [N/m], in addition, Z,, = 6.51]Q] and
Zimae = 4.59[02] with Koseki’s analysis. The both results agree quite well.

imag

3.3. Six- phase three- pole asymmetric drive

This driving mode was planned for the simulation of finite LIM drives with the
end-effect, as shown in the figure 3.11. The primary current vector loci draw, how-
ever, confusing spiral curves shown in the figure 3.10: there are some abnormal
points at the s = —1.0, (0.0,) 0.33, 0.5, and (1.0); we can see in the figures 3.12,
13, and 14 that the equivalent pole-pitch varies on those operating points because
of the resonance of the magnetic circuit with interruption through the “unused
part” of the yoke, which I did not intend. Consequently, the curves of thrust- and
normal- forces, shown in the figures 3.15, are also complicated. The abnormality
on the points s = —1.0 and 0.33 is especially conspicuous.

3.4. Transient analysis

Results of the transient calculation are shown in the subsection 4.2.2 or reference
[3-4], but the results were not compared with the stationary analysis; the both of
them should be in agreement, as described in [3-5].

3.5. Experiment

3.5.1. Purpose of the experiment

An experimental induction motor has been built at the TU Braunschweig as

described in the section 3.1. The purposes of the measurements, intended at first,

are as follows: | .

(1) the evaluation of propriety of the two- dimensional numerical program for the
calculation of a field with eddy-currents in comparison with the measurement
of basic characteristics of four- pole six- phase rotary induction motor with an
aluminum- plate as a secondary conductor,

(2) investigation on the difference between six- phase- and three- phase- drives,

(3) identification of constants in the equivalent circuit of an induction motor in
each case,

(4) comparison with the results calculated numerically,

(5) experimental investigation on three- pole linear induction motor using a half
of the windings of the four- pole rotary machine as described in the subsection
3.3., particulaﬂy concentrating on measurements of unbalances between each
phase and end effects, and

(6) experimental attempt to the application of the field oriented control scheme.
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Although the three- pole drives were measured, the purpose (5) has not been suc-
cessful because of the interference of magnetic flux through the yoke as mentioned
in the subsection 3.3. In addition to this, I had no time for the experimental
attempt for the purpose (6) at the TU Braunschweig.

3.5.2. Procedure of the measurement

The machine has been already explained in the previous section. The experimental
facilities for three- phase drive with a motor-generator and six- phase drive with a
pair of three- phase PWM inverters are illustrated in the figures 3.15. and 3.16. It
was impossible because of time harmonics with the PWM to measure the AC vol-
tage and the output real power directly in the case of the inverter drive, therefore,
the voltage and power were calculated from the DC- current I; and voltage V,
shown in the figure 3.16, where the energy loss and voltage drop in the inverter
were neglected, and the effect of asymmetry between phases could not be meas-
ured.

3.5.2.1. Three- phase four- pole symmetric drive with a motor-generator

The results measured and calculated with the two- dimensional analysis are shown
in the figure 3.17 in the case of f, = 30.0 Hz and in the figure 3.18 in the case of
f1 = 50.0 Hz. The two- dimensional calculations of thrust forces show good agree-
ments with the experiments under the assumption of current source drive. On the
other hand, the measured impedances are larger than the calculation because of
neglected impedances like primary resistance, primary leakage inductances at the
coil-end portions, and some additional leakages, especially, we can see that the
measured power factor is larger than the calculation on account of additional
losses [3-6] in the high slip region.

3.5.2.2. Six- phase four- pole symmetric drive with an inverter

For the purpose (2), the figure 3.19 should be compared with the figure 3.17. The
terminal impedance (magnitude) in the figure 3.17 is almost twice of the figure
3.19 owing to the serial connections. It is difficult to compare the two groups of
figures, since the measurements of the six- phase drive could not be accurate
enough for detailed discussions, on account of the difficulties of measurements due
to harmonic waves with the inverter drives. Anyway, there seems to be no conspi-
cuous difference between the two types of the drives in the measurements.

3.5.2.3. Three- phase three- pole asymmetric drive with the motor-generator

This experiment has not been successful for the reasons described in the subsection
3.3. We can see confusing torque curves in the figure 3.20, in particular, it was
almost impossible to drive the motor faster than s = 0.33; the reason is supposed
with the figures from 3.11 to 3.14. On account of the problem, I gave up the
further measurements concerning the three- pole asymmetric drive, i.e., a purely
"linear” machine is necessary for evaluation of the end-effects.
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Figure 3.15. Equipment for experiments with a three- phase motor-generator.
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Figure 3.16. Equipment for experiments with six- phase inverters.

Switching frequency = 3.0kHz
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Figure 3.20. Thrust force in three- pole three- phase asymmetric drive:
Measurements with a motor-generator.

-79.



. Summary of results

The calculations with the control volume method have been compared with
some theoretical calculations based on classic machine theory and measure-
ments; their agreement has been verified. This agreement is an essential con-
dition of the further investigations described in the chapter 5.

The calculated terminal impedances were, however, a little smaller than the
real ones because of the two- dimensional modeling, which contains neither
transverse edge-effect nor other additional leakage impedances.

The calculation with the control volume method has been compared with
another one based on the conventional finite element method; they have also
agreed well with each other. In addition, a physical meaning of factors in the
impedance matrix were investigated considering the energy flow in a machine.

There was no substantial difference between the symmetric three- phase- and
six- phase- drives.
It was not successful to try the experimental simulation of LIMs with finite

length with the asymmetric three- pole drives, since the interference of mag-
netic flux through the iron yoke in the non-active portion was not negligible.
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Chapter 4: Structure and switching scheme of FSLIMs

Introduction

A novel concept of the "flux synthesis” is introduced in this chapter. After intro-
ducing the concept and fundamental structure of the motor, results calculated
with trial- and error- method are shown in detail in the sections 4.2. It will be sug-
gested that a modified structure with multi- turn windings is necessary for con-
structing a test machine in reality, according to the calculation. We then proceed
a discussion on mathematical scheme for deciding switching patterns based on the
same idea as the impedance calculation in the section 2.7.

4.1 Flux synthesizing linear induction motor (FSLIM) [4-1]

A LIM is being used in public transport systems and automated factory lines. As a
typical application of direct drives, LIMs are used in molten metal production
processes, e.g., pumping, stirring and braking. A sophisticated control of forces
are required for high quality of the product in these processes. ‘

In a conventional LIM, the power factor and the energy efficiency are low, and it
takes long time to produce intended forces. Furthermore, the LIM has the end
effect. Strategies against the effect are unfortunately limited because of the con-
ventional three-phase construction. On the other hand, high speed power switch-
ing devices are available with reasonable costs at present; it is possible to use
many switching devices as a part of an electric machine.

With the present technical situation in mind, "Flux Synthesizing Linear Induction
Motor (FSLIM)” has been proposed as shown in the figure 4.1. Each slot has a
conductor which carries bidirectional electric current whose magnitude is con-
trolled with current control units: the units are bidirectional PWM switches con-
nected with a pair of ideal DC-bus bars, whose capacity should be large enough to
supply the primary motor current corresponding to arbitrary current reference
values. That is to sa,y, any desired waves of magnetic flux can be synthesized on
the surface of the secondary conductive plate with an appropriate switching
sequence of the current control units. There are, consequently, no constraints of
three-phases windings.

With the FSLIM, we can precisely control not only the total force but also the dis-
tribution of it on the secondary conductor, e.g., molten metal. It is also possible to
produce forces for thrusting, braking, holding, and levitating the conductor with
an appropriate switching scheme. On the other hand, the current capacity of the
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switching devices should be much larger than those of conventional machines due
to the single winding number. In addition, the controlling- and switching- schemes
are inherently complicated; it is significant to investigate the appropriate switching
sequences. '

With this in mind, some basic characteristics with some switching patterns are cal-
culated and discussed with a trial- and error- method in the next section. In order
to synthesize intended magnetic flux in reality, mathematical formulation is, how-
ever, necessary to calculate the input- current or voltage corresponding to the
reference flux distribution. The method is proposed in the section 4.3 using the
principle of superposition of linear systems.

4.2. Basic calculations

4.2.1. Slip frequency characteristics of the thrust force for various switching pat-
terns '

The FSLIM model and the meshes for the numerical calculation with the C. V.-
method are shown in the figure 4.2; dimensions of the FSLIM are described in the
table 4.1. ’

Various primary currents’ patterns are possible for the FSLIM. The power supply
is restricted to multi-phase sinusoidal alternating current source for simplicity in
this subsection; the five patterns show in the table 4.2 are selected as examples for
basic calculations. Various pole pitches and phase numbers are tested. The
current amplitude in a conductor is assumed to be constant in a cross-section of a
conductive bar. ‘

We see the results of slip frequency characteristics of the thrust force calculated
with the five kinds of switching patterns and various secondary speeds in the fig-
ures 4.3 (a)-(e); the magnetic flux distribution in a case of the pattern I is shown
in the figure 4.4. The curves on a graph should be the same at any speeds based
on an ideal analysis model, e.q., described in the section 5.1. The reality is, how-
ever, that the higher the speed is, the smaller the thrust force is. The effect is
called "end effect” in general, and one of the purpose of the flux synthesis is to
suppress the effect. Further discussions will be described in the section 5.1.

4.2.2. Transient calculations

A result of transient calculation is shown in the figures 4.5: all the initial values in
the calculation were set to be zero, and the alternative current supply was
assumed to be sinusoidal during the calculation time. We can see the initial tran-
sient deviation followed by an almost constant force on account of the ideal



Table 4.1. Dimension of the calculated FSLIM.

Primary side

Motor length 385mm
Core height 70mm
Slot pitch 30mm
Slot width 15mm
Slot depth 30mm
( Core width 1.0m )
Permeability of core V, 500,
v, 1000,

Secondary side

Mechanical gap length 5mm

Reaction plate Thickness 3mm

Core height 12mm
Permeability of core 1000z,

Permeability of reaction plate

Ho
Conductivity of reaction plate 4.15x10'Q " 'm ™!

Table 4.2. Primary current patterns.

Primary conductor’s current pattern

Pattern Current in each primary conductor
No. pole pitch (m)
1 2 3 4 5 6 7 8 9 10 11 12
1 U -w Vv U w v U .w V .U W -V 0.090
2 U U w -w VvV VvV .U .U W W .V .V 0.180
3 u Vv w U vV W U vV W U V W 0.045
4 Uu U \4 Yy W W U u VvV V W W 0.090
5 U U U U vV V 'V vV W W W W 0.180
U V W : 3-phase alternating currents
Amplitude : 1414 A/conductor
]| 'I |
18
3 = = e
(HEREI
it | W
LAY

Figure 4.2. Example of two dimensional calculation of the FSLIM.
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(d) Pattern IV (three-phases, four-poles).
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(e) Pattern V (three-phases, two-poles).
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v= 32 km/h

Figure 4.3. Slip frequency characteristics of thrust forces.

calculated flux lines

Figure 4.4. Magnetic flux distribution (Pattern I, v, = 32km/h).
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(d) Input current wave form (sinusoidal and square) = 100
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L1y
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(e) sf- characteristics of thrust forces
(time average)

Forces—Time

[N] 400 . . . v . . . . T r ,
300 [ Q/\\/\B——/— B\J{\B/gvﬁ\a/\aJ B\/:
e b Attractive normal force
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R R . . . . .

=300 n .
0 .01 .02 .03 . 04 .08 . 086 .07 . 08 .09 .10 . 11 .12
(sec)

(f) Calculated forces from t=o to 4T
(transient state; sf=24Hz)

Figure 4.5. An example of transient calculations.
Current form = SINUSOIDAL
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sinusoidal current supplies.

4.2.3. Primary voltage induced in a conductor-bar

We see the voltages induced in the primary conductive bars in the case of the pat-
tern I and sf = 13.0Hz in the figure 4.6. The higher the speed of the secondary
plate is, the larger the primary voltages are, since the primary frequency is larger
at the higher speed. The voltage at the entry is smaller than in the central portion;
it is more remarkable at higher speed. In other words, the primary currents at the
entry portion are, conversely, larger than at the central one in the case of the vol-
tage source.

The fatal problem of this virtual model machine is that the induced primary vol-
tage is too small to design the power electronic switching units in practice: the
largest on-stage voltage in the figure 4.6 is only 1V for the current of 14414,
which cannot be practically accepted. Some revisions of the motor structure are
necessary; a tubular LIM will be used for the measurement in the chapter 5

4.2.4. Summary of basic calculations

The FSLIM is free of the restriction of the three- phase winding, therefore, an arbi-
trary magnetic flux wave can be synthesized in the air gap with appropriate
switching sequences. The possibility to improve the motor characteristics will be -
verified with the basic calculation in the chapter 6; it is important to switch the
current units so that the flux distribution may be as sinusoidal as possible.

From the basic calculations in this section, the following two problems have been

noted: ,

(1) the so called end effects are serious especially for short FSLIMs like the model
machine investigated here, since the effect depends substantially on the physi-
cal structure and dimensions of the machine itself, and '

(2) the primary voltage is too small of the FSLIM with the single turn structure
to design a realistic current supplying unit. |

With (1) in mind, I will describe further calculations in the chapter 6. Although
the FSLIM’s structure with windings shown in the figure 4.7 could be attractive to
avoid the problem (2), the analytical modeling will be difficult especially to con-
sider the transverse edge effect, i.e., remarkable leakage fluxes at the coil-end por-
tions: the tubular FSLIM will, therefore, be calculated and measured in the next
chapter as another practical alternative in spite of its limited possibilities of appli-
cations. Another merit of this type is that we need to consider neither compensa-
tion nor suppression of the normal force for a mechanical support in the gap.
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Primary side

Induced Voltage
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Figure 4.6. Voltage induced in primary conductors in each slot.
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Anyway, such a trial- and error- investigation cannot be accepted for further con-
crete research, i.e., a mathematically systematic approach is necessary for syn-
thesizing the intended magnetic flux in reality. The method will be described in
the following section using the principle of superposition of linear systems.
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4.3. Decision scheme of switching patterns

4.3.1. Basic concept of the flux synthesis

First of all, the structure of the primary conductors of a FSLIM, whose neutral
point is connected with the current source, is considered for simplicity. In this
case, the freedom of the system is 2n where the 2n is the number of the indepen-
dently controllable primary conductors. The distribution of the y- component of
the magnetic flux density on 2n- points in the gap:

Byay By(ays - - -5 By(an

or B, and B, on n- points:

B,y By - - -5 Bugn)

Byays Byzyr -5 By(my

can be arbitrarily decided, for instance, as shown in the figure 6.18 later. Consid-
ering that the thrust force of the motor is calculated with the equation (4.1) from
the Maxwell’s stress tensor, the latter alternative of point selection may me better.

(t) = L [ BB, dz - (4.1)
Ho

If the neutral point of the primary conductors is not connected with the current -
source, the freedom of the system is 2n—1, because of an extra constraint to the
primary current on account of the Kirchhoff's first law. There is, however, no
intrinsic difference in the following mathematical formulations also in this case.

4.3.2. Stationary state with sinusoidal time dependency
Quasi- stationary state with the following assumptions can be analyzed with com-
plex variables. ( e’“‘- method ) | ‘

(1) Currents and all the dependent variables vary sinusoidally with an angular
frequency w.

(2) The velocity of the secondary conductor is independent of the produced
thrust force. ‘

The current in each primary conductor and the magnetic flux density on each
point are expressed with the complex vectors, which represent both amplitudes
and phase differences, as follows:

. . . . t
i- [il’ by - i (4.2)

. . . . t
B - [Bl, By, . .. ,BZn] (4.3)
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The relation between the two vectors is formulated using a complex effect-
coefficients-matrix P as follows: '

Pl,l et P1,2n

P2n,1 to P2n,2n
B=P-I (4.5)
- That is to say,

. 2n .,
B,‘ = 2 P,Jlj t=1,2,... ,21?,] (46)
j=1
where the dots (-) above the symbols mean complex variables.

If the electromagnetic field is calculated as shown in the figure 4.3 with the follow-
ing input- current vector I;:

°* . t

I, = [1.0ef°, 0,0,..., 0] (4.7)
then the calculated magnetic flux density vector }.31 is as follows:

. . . . . t

B, = [Pl,lv P2,1» P3,1: R PZn,l] (4.8)

In the same way,
. ' t
I, = [o, 1.0, 0,0, . . ., o] — B,

. . t .
I, = [0, 0, 1.0¢%°, 0,...,0] = B, (4.9)

. : Tt
I2n=[0, 0, 0, 0,...,1.0e10] — By,

all the factors of the matrix P can be calculated.

With the inverse matrix Q = }5—1, the input current, to synthesize the intended

flux density distribution B designy ar€ calculated as follows:

I=0Q - Bdesign (4.10)

It is also easy to calculate induced electromotive forces in primary conductors with
the equation (4.11).

84,
5 (4.11)

E, = -
ot




™5

Necessary input voltages in the case of a voltage source drive can, therefore, be
calculated easily, too.

The mathematical algorithm is applicable also to a tubular LIM without intrinsic
change.

4.3.3. Quasi- transient state
The quasi- transient state is defined here as follows:
(1) Currents and all the dependent variables vary unperiodically.

(2) The velocity of the secondary conductor is given independently of the pro-
duced thrust force.

The relation between the input currents and the magnetic flux densities is
represented with a first- order time- differential equation, as written in the basic
equation (2.2.3’). Hence, if Ps in (4.4) are separated into its real- and imaginary-
parts as follows,

P =P, + jwP, 4.12
T 13

the basic equation of the quasi- transient state corresponding to (4.5) is written as
follows:

B(t) = PI(t) + P,--i%%ﬁ- (4.13)
That is to say,

-%(tﬂ— = AI(t) + f{¢) , ' (4.14)

A =-P7'P.  (System matriz) | - (4.15)

f(t) = P7'B(t)  (Input vector) (4.16)

According to the theory of linear systems, the input current vector I(t) in the
quasi- transient state is calculated using an initial time t; and the transition
matrix $(¢,t") in (4.18) of the homogeneous first order linear differential equation
(4.17), as written in (4.19).

jidgﬂ- = Ax(t) (4.17)

B(1t') = exp|A(t-t') | (4.18)
1) = 2(tt0) 1(tg) + [ () £(7) dr (4.19)
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4.3.4. Transient state
The pure transient state is defined as follows:
(1) Current and all the dependent variables vary unperiodically.

(2) The velocity of the secondary conductor depends on the produced thrust force
and mechanical loads.

In this case, the velocity v in (2.2.3’) must be calculated from produced forces, i.e.,
a numerical iterative procedure between electromagnetic- and mechanical- equa-
tions is inevitable. On account of this complexity, it will not be any more discussed
in this paper.
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Chapter 5: Application of the field-coordinates oriented con-
trol scheme to the FSLIM

Introduction

The field- coordinates oriented control scheme has been developed and comprehen-
sively applied to speed controls of induction motors, whose structure is inherently
simple, and whose hardware and maintenance are, accordingly, cheap, on the basis
of present improvement of power electronics, micro electronics, and modern control
theories. On the other hand, conventional controls for LIMs have been quite sim-
ple at present; the on/off- control is applied to almost all the industrial transport

“lines, in addition, we can find some examples of the slip- frequency constant con-

trols with VVVF inverters for vehicle propulsions. Although an accurate position-
ing and speed control are required to LIMs’ drives these days, especially in indus-
trial applications, responses of LIMs are unfortunately unsatisfying, since we can-
not substantially know the exact state of the machines in the slip- frequency con-
trol without detection of the flux in the gap; responses to thrust force references
have always delays due to the time constant " Tp” determined by the motor’s
inductance and secondary resistance, as described in the following subsections. The
main purpose of this chapter is to establish a theoretical basis for applying the
field-coordinates oriented control scheme to LIMs.

5.1. Modeling a linear induction motor for applying the field- coordinates oriented
control »

It is easy to accept the physical image of the field- coordinates oriented control
model in the cases of rotary machines based on the coordinates transformation
from the fixed a- and (- coordinates to the rotating d- and q- ones, but such a
modeling based on the rotating space vector is not directly applicable to "linear”
machines. In the following subsection, I will denote the formulations, not based on
the physical image of the space vector, but the mathematical meaning of the com-
plex expression of electromagnetic variables.

The frame work of the following formulation is based on the classic theory for
rotary machines described by Prof. W. Leonhard [3-1] at the TU Braunschweig,
who is the doctoral supervisor of F. Blaschke [5-1], with the following assumptions.

5.1.1. Physical model and assumptions

Assumptions for the analytical model illustrated in the figures 5.1 are as follows:
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(a) Cross-section of a three- phase symmetric two- pole induction machine [3-1].
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(b) The analysis model of an ideal LIM with infinite length corresponding to (a).

Figure 5.1. Basic model for calculations.
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(1) the longitudinal end- and transverse edge- effects are neglected, since only the
middle part of 27, length of a sufficiently long LIM is treated for simplicity;

(2) the permeabilities of the primary- and secondary- iron cores are infinitively
large;

(3) the hysteresis- and eddy-current- losses in the cores are neglected;

(4) effects of the primary slots are neglected;

(5) distributions of the magnetomotive force, i.e., 3-phases- windings are ideally
sinusoidal and spatially symmetric; and

(6) there is no mechanical movement in the y- direction (up and down), i.e., the
gap length is constant.

The original point of the primary side (stator) locates on the central point between
the primary windings 1 and 1’; in the same way, also the secondary original point,

which should be in the region 05-75-1:&<27r on the primary coordinates, is set on
T,
JJ
the secondary side, as illustrated in the figure 5.1 (b).
5.1.2. Mathematical formulation of LIM’s equations

On account of the symmetric 3-phases circuits, the stator currents ig(t) have the
following relation.

ig1(t) + iga(t) + igs(t) = 0 (5.1)

According to the assumptions, the primary magnetomotive force in the gap is writ-’
ten as follows:

r 3
Og(z,, t) = Ng |ig(t)cos -ZL:L'G + igy(t)cos I—xa-zw :
Ty : kTP 3
+ igs(t)cos -E—:ca—-ivr (5.2)
Tp 3 :

where Ng is the primary winding number per one pole. The sinusoidal functions

. . 1( . .
should be expressed with the complex forms, e.g., cosa = -Z—[e"" + e_J"]. The
equation (5.2) is then written as follows:

PL.aN P
1 - o a

Os(ze t) = >N ig(te " +ig(t)e (5.3)

where the boldface characters mean complex variables and the * means complex
conjugate. ig(t) corresponds to the space- and complex- vector in the theories for

ordinary rotary machines.



is(t) = [iﬂ(t) + isz(t)ejgx + iss(t)ejgw]

= ig(t) - () (5.4.a)

where ((t) is the phase angle of the ig seen from the original point of the primary
side.

ig(t) = [is1(t) + igy(t)e 3" + isa(t)e_j;r} (5.4.b)

Oy is a real value, i.e, it is physically observable. When ig is expressed with the
magnitude and the phase angle ((¢):

is(t) = ig(t) - &0 (5.5)

i5(t) corresponds to the instant maximum value of the spatial wave of the magne-
tomotive force, and ((t) is the phase angle of the maximum point of the magneto-
motive force along the stator (see the figure 5.1.(a)).

O5(t) = Ny i(t) (5.)

In the same way, we can describe mathematically the magnetomotive force pro-
duced by the fictitious secondary windings, which are moving with the speed v(t)
along the x- axis, seen from the secondary original point.

f

. s . T 2
Op(zg t) = Np [zm(t)cos [-T—xﬂ + ip,(t)cos e
P L 'p
n w 4 |
+ ips(t)cos (;—xﬂ—-*ﬁr ] (5.7)
L P J

where Np is the winding number of the fictitious secondary windings per one pole.

.2
==

[iRl(t) +ipy(t)e ° + "Rs(t)e]?r]

1l

ig(t)

= ip(t) - &30 (5.8.a)
and

.2

in(t) = [z’m(t)-i-im(t)e +i33(t)e*’3'] | (5.8.b)

where £(t) is the phase angle of the iy seen from the original point of the secon-

dary side.
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. T .
e =3
] (5.9)

1 ° T, (Y] T
@R(wﬁ, t) = E-NR [IR(t)e ? + 1R(t)e P

Op is a real value, too. The coordinates of the primary- and the secondary- sides
have the following relation.

Tg =T, — T, (5.10)

"'J.L(Ia"'zr) J.‘W—(xcx" zr)
(5.11)

1 . .
Op(zy,2,,t) = -2-NR [1R(t)e T +ip(t)e
These primary- and secondary- magnetomotive forces are superposed as follows.
@(-’Ba,.’l}ﬁt) = OS(za?t) + GR(zmmrat)v (512)
Since the permeabilities of the cores are assumed to be infinite, and the end-,
edge-, and slotting- effects are neglected, the relation between the total magneto-
motive force and the gap flux density depends only on the gap length ¢:
Ho
2g
where 1, is a permeability of the space, k is an effective coefficient of flux linkage

By(z,a,,t) = [@S(xa,t) + KG)R(:ca,zr,t)] (5.13)

between the primary- and the secondary- side considering flux leakages.

When we assume the ideal sinusoidal distribution of the windings, the average flux

linkage (per a pole pair 2’TP) of the primary winding of the first phase is calculated
with the following double integral form:

;L z,+ 3

A .

bsi(t) = =N, [ . cqs—}mA. [ W Bs(TarTnt) dzg| dry (5.14)

::A=———2— 4 :n,,=:c,—-—2—

where [, is an effective transverse width of the LIM. The integral with xa is due to

the spatial distribution of the gap flux density along the x axis, and the other one

with z, is owing to the spatial sinusoidal distribution of the winding illustrated in

. the figure 5.3. (Since the total winding number integrated in a pole pitch is Ny

1
turns, the distribution of the windings is written as Ng(z,) = —2-~7LNScos-—7-r~a;A,
Tp 'rp
when the point A is the original point.) By substituting the equations (5.3), (5.11)
and (5.13) into (5.14), 9 is written as follows.

Nglyuofrp

bault) = = [ig(t) + 5500

(5.15)
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If the primary self inductance Lg and the mutual inductance between the primary-
and secondary- windings M, which are average values per 27,, are defined as fol-

lows:
N2 por
Syolp 1 Lg (5.16.a)
89 3
and
KNgNpl p,1,
TRy e Ly (5.16.b)
8¢ 3

then the equation (5.15) is written as follows.

bor(t) = 5-Ls is(8) + 150

1 i —ie |
+ "é“M ip(tye * +ip(t)e ™ (5.17.a)
The same formulations are applied to the second- and third- phases.
L liine 3" wine s
bsy(t) = 3 Ls ig(t)e +ig(t)e
1 i(Ea=2n) —i(Ea-2n)
+ -?:-M ip(tle +ip(t)e ™ (5.17.b)
1 . —)—x . -3-1!‘
bs3(t) = —Lg|is(t)e ° +i5(t)e
(Le2m) ~(Za=2n)
+ —Mlig(t)e ™ +ip(t)e 7 (5.17.c)
Y4(t) is defined here using the symmetry of the equations (5.17):
";W '-5-7r
Vs(t) = bsy + Ysae ° + dgze (5.18)
i
= Lgig(t) + Mig(t)e ™ (5.19)

On account of:
.2 4
r—= ——r

1+e3 +e? =0

the terms of complex conjugate are eliminated by themselves. The amplitude of
Ps(t) corresponds to the instant maximum value of the spatial wave of the flux,
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and its angle is the phase angle of the maximum point of the flux along the stator
from the original point of the primary side.

The flux linked with the secondary fictitious windings is calculated in the same
way. The equation (5.3) is written using the equation (5.10) as follows:

—j(zg+z,) = (zgte,)
(5.20)

HERER) =-§-Ns[is<t>e T (e

This term makes a flux wave corresponding to the equation (5.13) on the surface
of the secondary side together with secondary currents; the secondary flux density
is as follows:

o
Bp(zg2,,t) = Eg—[@R(mﬂ,t) + n@s(zﬂ,zr,t)] (5.21)

By integrating sinusoidal distribution functions on the surface of the secondary
conductor in the same way as the equation (5.14), and with the following defini-
tion of the secondary inductance per a pole-pair,

Nleyuorp
89
the fluxes linked with the three- phase secondary fictitious windings are calculated
as follows:

¥m(®) = +La [ia(8) + i3(0)]
+ %—M[is(t) e_JT_’I'. + ig(t)ejzz’] - (5.22.2)

Vadlt) = ~ 1Ly [iR(t)e_rf” + it -}

) HEam2n)
+ —Mlig(t)e 7 + iz(t)e 7 (5.22.b)
1 . o i " =
Pra(t) = '3_LR ip(t)e ® +ip(t)e® }
- ) i(La-3m)
+ E—M ig(te ™ + if(t)e ™ (5.22.c)

The primary current vector seems to move backward in the equations (5.22), since
it is observed from the moving secondary side.

-98-



The secondary magnetic flux is summed up in the same way as the primary cir-
cuit:

f—% "ir
Yg(t) = ¥p, + 1/’1{2‘313 + 1!’123‘3]3
= Lpip(t) + Mig(t)e ™ (5.23)

Voltage equations are written based on (5.17) and (5.22) as follows; see the figure
5.3:

. d g

Rgig + di = “s1(t)
. dipg,

R5152 + dt = Usz(t) (5.24)
. dgg

Rgigy + PP uga(t)

where Rg is a line resistance per one phase, and forms of the voltages can be arbi-

trary.
.2 4 :
n %
ug(t) = ug(t) + ugy(the * + ugg(t)e ® (5.25)
With the equations (5.4) and (5.19):
Ric + —— = Rgic + Le—— + M—|ige ” | = 5.26
sls o sls S 4t + it lpe ug (5.26)
dz

With the following instant velocity of the secondary conductor v = —2{-‘, the equa-

tion (5.26) is written as follows:

: dig dip i7% o 97w |
Rsls + LS it + M i e’ + j—leRe 4 = uS (527)
. ™p

The secondary current is separated into two terms in the equation (5.27); one is
from the transformer electromotive force through the mutual inductance, and the
other is from the speed electromotive force of the secondary conductor. By substi-
tuting the equation (5.17) into (5.24) and taking the equation (5.1) into account,
we can obtain the following symmetrical relation among the primary voltages.

ugy(t) + ugy(t) + ugs(t) =0 | (5.28)

The secondary fictitious windings are short circuits and three- phase currents are

balanced:

ip1(t) + ipa(t) + ips(t) =0 (5.29)
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dips,

Rpip, + =0
Rt
dy '
Rpipy + d:2 =0 (5.30)
dt)s3

Rpips + =0
RR3 dt

Voltage equations for the secondary side are written in the same way as the equa-
tion (5.26), using (5.8) and (5.23) as follows:

Roi dpp B L dip Y. [ _jTL"}
1 + e i ——n — ? = 0 5.31
RIR o plp + Lpmpm + M=o |ise (5.31)
Thus:
. dip dig —i== ~i 7z,
Rpip + Lp + M—e 7 + j7—uMige T =0 (5.32)
dt dt )

The following calculation of the thrust force is also important to connect the elec-
tric equations above with mechanical equations. The flux density on the surface of
the secondary conductor, which is produced by the primary currents themselves, is
derived from the equation (5.21) by seeing only the terms concerning Og as fol-
lows:

. T . T
polN —j—(zgtz,) j—(zgtz)
:gs ige ™ +ie™ | (5.33)

There is no force corresponding to the ”reluctance torque”, on account of the con-
stant gap length, i.e., the term of the currents has no contribution to the calcula-
tion of the thrust force by themselves. The secondary current is calculated as fol-
lows, when the distribution of the secondary windings is assumed to be sinusoidal.

.BRs(l'ﬁ,.'Er,t) = K

. (z t) _ l@@(xﬁ,t)
R a 2 3:1:ﬂ

. .
—-j—z —z
_NRW [ I JT, ﬁ}

= —j ipe 7 —ipe (5.34)
4"rp
The thrust force per pole-pair 27, is integrated as follows:
2T
FT(t) = y.é . BRS(zﬂrxmt)'aR(xﬂ,t) dmﬁ (535)

By substituting the equations (5.33) and (5.34) into (5.35):
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Fr(t) = —32—[-5'—] MIm [is( t)- [iR ej?'] ] (5.36)
P

By assuming Np = Ng, the inductances are represented using the following leakage

factor as follows:
Lg = (1 +0g) Ly
Ly = (1 + 0p) L, (5.37)
M=1L,

where L is a main inductance in an equivalent circuit of an IM, o¢ and op, are the
primary- and secondary- leakage factors respectively.

Finally, the electric- and mechanical- basic equations are as follows:

. . '__L '..1
dlS le s >z,

Rgig + Ly— + Ly——e ”  + j—uMige ” = ug | (5.38)
dt dt ™
R o R d [ "JT%] 5.3
e e | 3 b 4 = { .39
rip + Rt 07 Uise (5.39)
=z,
m3E Fp—F = 2| LyIm [is(t)'[iﬂe 7 ] — Fp(z,v,t) (5.40)
dt 3 T .
dz,
o 5.41
it (541

where a mass attached to the mover is m, and an outer mechanical load is Fy.
Since the equations with complex variables (5.38) and (5.39) are separated to their
real- and imaginary- parts, the equations from the (5.38) to the (5.41) are six
simultaneous nonlinear differential equations for one- dimensional mechanical
movement.

5.1.3. Derivation of equivalent circuit of a symmetric IM

In order to derive an equivalent circuit of an ordinary induction machine, a sym-
metric. three- phase ideally sinusoidal voltage source is assumed to be connected to
the primary terminals in this subsection:

ug(t) = x/EUScos(wlt+¢1) = Re [ﬁUs'equ‘-ej“’”}

=-é£ [Us'ej“’t + U}'e_j""tJ (5.42.a)

where Ug = Us'ejd”, in the same way:
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jwi——g-w - jwt—--?-‘ir
2 L 3] * 8
Ugo ‘——-T _Us'e + Us'e i (5.42.1))
[ ( b
2 j“"t-%rj . - jwt—%w
Usy =g [Us'e + Use | (5.42.c)
J=x =

- %ﬁUs-e"“’" (5.43)

Terms of complex conjugates are eliminated by themselves. Since the primary
currents are also symmetric, by substituting currents for

V2

ig(t) = —E—[Is-ew’t + Ig'e—jw’t] and so on, the primary current complex vector is

simply written as follows:
is(t) = %ﬁls-e"‘”" | (5.44)

On account of the stationary state, the secondary speed v is constant, and when
the secondary angular speed is expressed as:

w=-"—v: const. (5.45)

Tp

the secondary slip angular speed is defined as follows:

. .. . R ) ﬁ J'[Wrw]i . —j[w;—w]t
With this in mind, by writing i, = 5 Ip-e + Ige and so on,

the secondary current complex vector is written as follows in the same way: ‘
. 3 J|wi—w i
IR(t) = "'2—'&/5112'6 [ ' ] (547)

The following two voltage equations for a stationary operation are derived from
the equations (5.38) and (5.39):

The slip is defined as follows:
w wy — w

s = — = (5.50)
W1 Wy
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4

By dividing both hand sides of the equation (5.49) by the slip, the following equa-
tion is derived, hence, the equivalent circuit of an induction motor in the figure 5.4
is illustrated considering the equations (5.48) and (5.51).

Rp
+jwyo g Ly
8

5.1.4. Application of the field- coordinates oriented control theory

In this subsection, theoretical investigation on the following purposes is described

with the basic formulation in the previous subsections:

(1) to supply asymmetric currents to n- conductors of the FSLIM so that the flux
distribution in the gap may be sinusoidal, and

(2) to control instant value of thrust forces by applying the field- coordinates
oriented control scheme to the FSLIM under the condition of the (1).

Concrete examples with simulations will be described in the next chapter, where

also some basic measurements are compared with the calculations of a tubular

LIM, normal forces of which need not to be considered.

The electrical and mechanical basic equations from (5.38) to (5.41) are based on
the ideally symmetric LIM model without any end effects; the inherently signifi-
cant assumptions are as follows.

O The stator gap-flux distribution is sinusoidal in the active region for the -
representation of the ig(t) as a complex vector: ”the stator flux” is defined
here as the gap flux which were produced only by primary currents if the
secondary conductivity were zero, i.e., with no secondary current.

O The rotor gap-flux distribution is sinusoidal in the active region for the
representation of the ip(t) as a complex vector: "the rotor flux” is defined
here as the gap flux which were produced only by secondary currents without
any primary currents; it is a completely fictitious and unobservable value in
reality, since the ‘secondary currents are always induced by the primary alter-
native current.

It is difficult to control instant values of real LIMs properly, for the assumptions
above are not valid in reality, but either the stator flux- or the total flux- distribu-
tion can be sinusoidal with controlling the FSLIM by supplying appropriate asym-
metrical currents based on the scheme described in the chapter 4. We can never
control the rotor curreht, i.e., rotor flux. However, also the rotor current may be
considerably sinusoidal in low speed operations by controlling and forming the sta-
tor flux sinusoidal. The application of the field- coordinate control scheme is possi-
ble under such conditions, though calculations for determining the current patterns
are much more complicated than of ordinary induction motors, since we cannot
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use simple calculating procedure based on the equivalent circuit in the previous
subsection and 2¢ — 3¢ transformation.

The control of instant values is substantially a transient phenomenon; a transient
analysis program is necessary for simulating it in general. In the field- coordinates
oriented control, however, transient phenomena with a large time constant are
suppressed by keeping the field excitation constant as described in the following
formulations. We can, consequently, make some basic investigations on the con-
trol scheme with a stationary simulation.

The thrust force per one pole-pair is quoted from the equation (5.40) as follows:

. *
, 2| . . T
F motor(t) = —5- - LOIm IS(t)' 1pe (552)
In the equation (5.52), the secondary current ip is an unobservable value; the term
o
igre * should be expressed with other values. The following magnetizing current

i,,g is, hence, introduced on the stator coordinates, by dividing both hand sides of

.
I %

the equation (5.23) by the main inductance L, and multiplying it by e K4

LK
Iz, s
ba(t) = is(8) + [L+op)ia(t)ye 7 = ipp(t)e) (5:53).
By substituting the equation (5.53) into (5.52), the force is written as follows:
2[x] Lo
P ) = 2B tafi i - 1]
motor( ) 3 \Tp J 1+ on S ( m‘R 5’)
2 f T \ Ly I [ i ]
=27 L, s g
3 L'ij 1 + GR m
2fn] Lo [ ]
= —|—|————i 5-Im|i;e” 7" 5.54

where p(t) means a position of the maximum total flux wave linked with the
secondary conductor seen from the primary original point. With the figure 5.5 in
mind:

igre™iP = is.e(C*P) = ig-eft (5.55)

where the angle 6(t) is defined: §(¢) = ((t)—p(1).
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ig; = Re [is'e—j”] = igcosé (5.57)

isq = Im [is'e—j”] = issin5 ’ ' (5.58)
2 [_1. I,
Tp
With the coefficient k = (5.59), the force is written simply as follows:
[1 + UR]
F,motor(t) = k.imR'iSq (560)

This i, is controlled by adjusting the primary current component ig;, the
response of which has a relatively large delay with the time constant
_ (140p)
R= ""RR"""“
component ig, is expected to be fast, i.e., it has no delay as described below. i p
and ig, correspond to ﬁeld-‘and armature- currents respectively in an analogy of a
DC machine. Mathematical basis of these characteristics are described below.

Ly. On the other hand, the response of the other primary current

From the equation (5.38),

. d
Rpip + Lo“};

—j—,
[1 + aR]iR +ige 7

= RRiR + Lo‘g;'imﬂ'e = { (561)

By using the following time constant,
L, v
RR

the equation (5.61) is written as follows:

di_p
Tp

Angular speeds of i, and ig are as follows:

d

2 = wn(®) (5.64)
d¢ dé

_Et_ = ws(t) = wy,p + ’;t" (5'65)

By multiplying both hand sides of the equation (5.61) by e™’#, on account of:

d . d . —; _ip d. . —ips
—Elmﬂ = E[lmR'e Jp] =€ JPEImR — JWnmR'€ Jp'lmR
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4

—jp 4 . o
=€ JPEImR — JWmRmR (566)

~jp dimR dimR . .
e at - dr T IYmRimR

the following relation is derived consequently.

dsz

TR + ]me TRimR + 1'-]“1"UTR = iS'e_jp (5.67)
T,

P

By separating this equation to the real- and the imaginary- parts:

di_n
TR——TZ—— + inp = igg (5.68)
dp g
=t = =+, (5.69)
dt TR’mR

i
where w(t) = lr—-v(t) and wy(t) = S_q :
TP TleR

As a result, the basic equations for the field-coordinates oriented control scheme
consist of (5.38), (5.39), (5.50), (5.68) and (5.69).

With the control procedure illustrated in the figure 5.6 in mind, We can calculate
the relation between the concrete currents references to each conductor and the
components of the primary current vector ig; and ig, using the phase angle of the

* gap flux p(t) based on the method described in the section 4.2..

As shown in the figure 5.6, the most important in the control scheme is to separate
igg and isp and to control them independently: igy can respond primary input
currents immediately while i, is compelled to follow the input current ig; with
the delay of Ty, which is determined by the hardware of the motor. In other
words, the control of ig, means a precise control of the slip frequency with keeping
iRy 1-€., igg constant, as written in the equation (5.69).

The constant 4,5, therefore, is assumed in the following discussion. From the equa-
tion (5.68) of the field excitation,

inp = isg:  const. (5.68’)

(5.69) of the synchronous speed,

dp Isq
welt) = —- =w+ 5.69’
(0= o s, (5:69)
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Figure 5.6. Block diagram of a speed control based on the field- coordinates
oriented control scheme.

3-phases symmetric current

Thrust force

Figure 5.7. Operating points of a LIM — speed and primary frequency.

-107-



and the figure 5.5,
iSq = ‘iSd tan5
the thrust force is written as follows:

F

. .2 .2
motor = k an‘Sq =k ted tand = k'TR"lSd‘wz (570)
The thrust force, consequently, is in proportion to the slip frequency w, in the case
of that ig; is kept constant, as shown in the figure 5.9. The adequate condition for

the field- coordinates oriented control scheme are summarized as follows.

O The spatial distribution of the gap flux density in the active region is
sinusoidal.

[0 The thrust force characteristics is — or can practically approzimate to be — a
single-valued function of the ”slip frequency”.

Operation of real LIMs depends on both the primary frequency and the secondary
velocity as shown in the figure 5.7 due to the end effect. With this in mind, I
should draw the force — slip frequency characteristics on several lines of sf-
constant in the figure 5.8 in order to verify the practical propriety of the assump-
tions. It can be verified, owing to the equation (5.70), if the curves like the figure
5.9 are drawn under the condition of B, = const..

For transient simulations and design of the controller, it is necessary to identify
the constants k and Tp: they can be easily calculated from the equivalent circuit
in the case of the ordinary rotary induction motors. There are, however, no
equivalent circuits of asymmetric LIMs with finite length; it is impossible to decide
the constants analytically. They should, hence, be determined based on results of
numerical analyses as follows. '

From the equations (5.68’) and (5.69’),

o '2 . kiZsin26
Frotor = k is4ig, = k i5c0s6 siné = — (5.71)
1
Wy = tané (5.72)
R

Hence, when ig = const., the phase difference angle 6 is § = 45° at the point of
F_.x in the figure 5.10.

m
2 F |
k= —— (5.73.a)
-2
s
Tp = — (5.73.b)
W2 max
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Figure 5.8. Systematic view of the operating points: sf- constant lines on the speed
— frequency plane.
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Figure 5.9. Expected sf — thrust force characteristics in the case of i,p = const
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Figure 5.10. Expected sf — thrust force characteristics in the case of ig = const.:
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e

F

motor = kiSd = ki.%dta‘nﬁ = kingR(ZW)‘Sf (5730) .
The current reference values are calculated with the 2¢ — n—¢ transformation by

applying the scheme in the chapter 4.
5.2. Qualitative discussions on:

5.2.1. Terminal voltages

It is important to check amplitudes of terminal voltages to construct the machine
drive system illustrated in the figure 5.6 with a realistic inverter. With the leakage

factor defined as o = 1 — L and equations (5.38) and (5.53), the fol-

lowing equation is derived.

di d_p
us(t) = R5+UL5'EZ"+(1*U)LS it

In the case of the stationary state driven with sinusoidal inputs,
w,p = w; = const., ig = const. and i, = const., the equation (5.74) is:

(5.74)

dl

It is essential to keep the margin of the voltage corresponding to oLy for con-

trol, so that we can change ig,. Since the inductances Lg of LIMs are larger than
of ordinary rotary induction motors, the trade-off relation, between the response
speed and the rated voltage of converters, is a problem in practice.

The larger w; corresponding to the speed of the motor is, the smaller the voltage

" margin for the control is in the equation (5.75). The field weakening with smaller

igy may, therefore, be inevitable in a high speed drive, where the steady thrust
force is smaller.

5.2.2. Normal force

The control of only the thrust force has been investigated in the subsections above:
perturbations of the normal force, which is substantially larger than the thrust one
in general, can be a large disturbance for suspension systems. In the equation
(5.69), the field- coordinates oriented control scheme, where i.p is kept large and
constant, means a precise control of the slip frequency near the no-load operating
point s=0 — the braking is always a generator-brake in the operation. The nor-
mal force is a strong attractive force, in addition, even a small change of the thrust
force, i.e., an instant value of the slip frequency may cause a relatively large per-
turbation of the normal force. In order to keep the gap length constant, a stiff
suspension system is required for a single sided LIM. I will; therefore, investigate a
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tubular LIM in the following sections, in order to avoid the problem.

5.2.3. Detection of gap flux

It is almost impossible to design a flux observer of a LIM, the equivalent circuit of
which cannot be identified. On the other hand, it is much easier to attach flux
sensors in the surface of the primary side of a LIM than rotary machines. The flux
detector in the figure 5.6 should, therefore, be based on a direct measurement of
the gap flux distribution. Though the precise detection of the flux phase angle p(t)
is important in the control scheme, a real gap flux distribution is not very
sinusoidal on account of spatial harmonics of slots as illustrated in the figures in
the next chapter; it is practically important technical issue to investigate how to
detect p of the basic wave of the gap flux, considering both arrangements of the
flux sensers and signal processing techniques.

5.3. Algorithm for a simulation of controlling a transient state of symmetric nor-
mal LIM — based on a numerical field analysis

We will see concrete iterative procedures for a transient simulation of a LIM under
the field- coordinates oriented control based on the numerical analyses in this sec-
tion, where no mechanical load but a mass is assumed for simplicity. The model
and definition of coordinates in this section are shown in the figure 5.11, and an
example of time diagrams for the simulation is illustrated in the figure 5.12.

5.3.1. Preliminary excitation mode

It is required to prepare field excitation before the controlled drive at first, on
account of the time constant Ty of the field current i, in the equation (5.68);
this procedure is called as a preliminary excitation mode here. In the figure 5.12
(a), in,p is increasing to Ig;: const. from ¢ = 0 to t,, while p is kept zero. The basic
equation during this mode illustrated in the figure 5.13 is: '

di, g
T
Bgt

where ig; = Ig;: const. i.e., i

+ g = Igg (5.76)

¢ = 0 and the initial condition is ¢,5(0) = 0. The

solution is:

i o) = ISd[l - e_—T—R—J (5.77)

When ¢, is sufficiently large, i,,(f,) is closed to Ig;, for instance,
i,r(4Tg) = 0.982 I;,. Further simulations for the controlled mode can be exe-

cuted with this initial condition.
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The input currents are concretely calculated according to the procedure described
in the section 4.3.: in a special case of the symmetric three- phase drive, the initial
condition is realized considering ig; = Ig4, ig, = 0 and p = 0 as follows.

. 2 . ; 1
oy = ’é‘fsw tsy = 5y = _—E‘ISd (5.79)

5.3.2. Thrust control mode
In this mode, the field current is always kept constant, i, = Ig;. It is essential to

identify the position of the maximum flux p(t) at any steps for deciding input
currents. It is calculated by integrating the following equation in the simulation.

—ﬁf—)—ddtt = Too(t) + ——i (5.80)

v 1 S
q
Tp Trlg,

From the equation (5.60):

}wlbou(t)
o (1) = ~————— 5.81
i) =~ (581

With p(t) =0 from ¢ = 0 to ¢, in mind, the equation (5.80) is integrated as fol-

lows:

1 |
Fp,y dt (5.82)
kZUngd l; Tsoll

p(t) = l-j: o(t) dt +
’TP 0

where 0<p<27 in the figure 5.11. It is not required to consider the change of the
secondary resistance due to high temperature, in this calculation for simplicity.

In a special case of no mechanical load, the equation (5.83) is written as follows.

™ 1 1
p(t) = g (t) + (1) (5.89)

Since the both Ig; and ig,(¢) are known, the input current can be determined with
the 2¢ — n—¢ transformation described in the section 4.3. In the special case of
the symmetric three- phase drive, the line currents are calculated as follows:

. 2 2. .
ig, () = ?Isdcosp(t) - E-zsq(t)smp(t) (5.84.a)

ig,(t) = ISd[——%-cosp(t) + {isillp(t)] + ig(t) [%—sinp(t) + ?cosp(t)] (5.84.b)

igu(t) = Isd[w-g-cosp( t) — —é—isixlp(t)J + ig,(t) {—;—sinp(t) - {icosp(t)} (5.84.c)

All the algorithm is summarized in the figure 5.14.
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5.3.3. Calculation of terminal voltages

After determining the input currents, the primary terminal voltages can be calcu-
lated according to the procedures described in the subsection 2.4.6. referring the
figures 2.7.

In the special case of the three- phase symmetric induction motors, the primary
terminal voltages are calculated from the equation (5.38) as follows. Since ip can-
not be measured, it should be calculated from the equation (5.53).

ez, 1
ipe ™ = i — 1 5.85
1pe 1+op [lmn ls] ( )
. dis LO d . .
us = Rels + Ly + 140y dt [l"‘R_IS]
Ly d Ly 4 :
= Reig + |Le— — i ()+7 1 (t — 1 T..ert)
sls S IHop | dt {1&;( )+ ish )] atoq dt 5d¢

= Rs{isa(t)+j iSb(t)} + ULs”g”t“[isa(t)+j is&(t)}

+ [1—0] LSISd—i- [eff’(‘)] (5.86)
The time differential operator —dd? is expressed with ”-”:

d . o : .
-&-t-(tsa(t)) = —Igysinpp — ig 'sinp — ig,COSP"p

d, . - .
—d?(sz(t))= Iggrcosp p + igyrcosp — gy -p

-Edt-(ej”(t))= —psinp + j-prcosp

With this in mind,
usa(t) = RSISG. - LSISdbsinp - O'LsisquOSp - ULSt:SqSinp (5.87.&)
ugy(t) = Rgig, + Lglggpcosp — o Lgigpsinp + O'le:SqCOSp (5.87.b)

The primary resistance Ry is assumed zero in the example shown in the next sub-

section. The terminal voltages are derived as follows:

Uyy = %USa (5.88.a)

By (5.88.b)

1 ‘
Upy = ——Us, +
VN 3 Sa 3
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3 iSq( "‘) =

kI,

:

Calculation of the input terminal currents

Numerical transient field analyses with the following input:

v(n—1), p(n—1) and terminal currents

%

p(n), Fp(n), Fy(n), B, max(n) and terminal voltages

i

v(n)=v(n~—1)+-j-' [FT(n)+FT(n——1)]/2

At?
x(n)=x(n—1)+Atn'v(n—-1)+—~A}—' [FT(n)—{-FT(n—-l)] /4

Figure 5.14. Flow-chart of the simulation with the numerical field analysis.
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1 V3 (5.88.c)

Upy = ——=Ug, — ~=U
WN 3 'Sa 3 s
and the input power is:
W(t) = Uyyisy + Uyyigy + Upn'isw (5.89)

5.3.4. A calculated example

A calculated example of the algorithm is shown in this subsection with the test
machine at the TU Braunschweig described in the chapter 3. From the calculation
in the chapter 3, the equivalent circuit in the figure 5.15 (a) has been derived for
three- phase four- pole drive in the case of f; = 30Hz const..

Ly = Lg = 3.2x107[H]
og=o0p=19.7/310 = 3.13x1072
7, = 1.885[m]
T = 3.1416

L
Tp = — = 9.14x10~[s]

Rp
tand = 2nTpf,'s = 17.25

1 -2
o=1-— = 5.98x10
(1+op)(1+0y)
and
L
F= 2T 0 3 34(N/AY - (5.90)
3 'rp 1 + UR ’

The thrust force in the case of Ig = 30[A],,., const. 15 calculated in the following
form from the equation (5.71):

£ sin26-I2

kf.g 2tané
2 1+ tan?

5
_ 1.0344x10%s N] (5.91)

1 4 295.84s7
The forces calculated from the equation (5.91) are compared with the direct
numerical calculation in the chapter 3 in the figure 5.15 (b). The results of the
transient simulation are shown in the figures 5.16. The references of the speed and
the thrust force illustrated in the figures (a) and (b) correspond to the figure 5.12.

-116-



The preliminary excitation mode is in the first one second in this simulation. The
magnetizing current converges to the reference value sufficiently well in the figure

()

Since a current source converter is assumed as a power source, the terminal pri-
mary currents are constant during the preliminary excitation mode as shown in
the figure (d), while the primary terminal voltages are zero because of Rg = 0.
The primary electrical input power in the figure (f) was calculated by summing up
the multiplication of the currents and the voltages. The input power is propor-
tional to the speed, for the thrust force is kept constant. No input power, i.e., no
loss is calculated during the no load operation from ¢ = 2 to 3 [s] due to the ideal
modeling and Rg = 0; we should naturally consider additional losses in a real
operation. The resultant position was calculated and drawn in the figure (g)
under the assumption of no mechanical load.
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[5-1] F. Blaschke: "Das Verfahren der Feldorientierung zur Regelung der Drehfeld-
machine”, doctoral dissertation at the TU Braunschweig, 1974, FR Germany
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Figure 5.15. (a) Equivalent circuit of the test machine in the chapter 3 in the
three- phase four- pole drive determined with the numerical field analysis.

(b) Thrust forces calculated with the field analysis directly and with
the equivalent circuit from the equation (5.91)
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=
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. An example of the transient simulation.
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Chapter 6: Investigation with a tubular test machine

Introduction

We will check all the theories prepared in the chapters 2, 4, and 5 by applying
them to a tubular test LIM in this chapter. The numerical field calculation on the
cylindrical coordinates is verified by comparing the analysis with measurements
with a three-phase power source. Key points in the results are:

(1) comparison between characteristics with- and without- end effect,

(2) difference between three-phase serial- and parallel- connections,

(3)

(4) possibility of the field-coordinates oriented control scheme with the flux syn-
thesis.

energy efficiency with- and without- the flux synthesis, and

6.1. Test machine — tubular LIM

As described in the subsection 4.2.4, a tubular FSLIM was used for the numerical
and experimental studies in practice. The test machine was borrowed to me by Mr.
Karita in the Shinko Electric Mfg. Co.. The motor and the peripherals for meas-
urements are shown in the figure 6.1. Important technical data are noted in the
table 6.1.

Table 6.1 Investigated tubular LIM

Slot width 13.0 mm

Slot pitch 19.5 mm

Slot depth 11.4 mm

Slot number : 12

Winding number 150 turns/slot
Inner diameter of the primary 29.2 mm
Secondary plate Copper
Thickness of the secondary plate 0.4 mm
Secondary core height 2.5 mm

Gap length between cores (0.440.6) mm
Measured Ry 1.192

The cross-section of a primary winding is 3.18x10"1[mm2]; the normal current
Iln,m has been decided as 24 by assuming the maximum current density approxi-

mately 8.0[A/mm?.
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(b) Photograph of the power amplifier.
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.6.2. Preliminary calculation (1) — with current sources

I calculated the cases with current sources of amplitude of 2A, . and phase differ-
ences of 60°, in order to decide the capacities of the power supply unit and of a
load cell for sensing the thrust force. In these cases, three slot pitches equal to one
pole pitch.

The both of the cases with- and without- end effect were calculated for basic com-
parisons; examples of the calculations are illustrated in the figures 6.4 and 6.5. We
can see from the figure 6.2.(a) that we need a voltage source of approximately 10V
for each slot at the standstill drive. A clean sinusoidal wave form of the input vol-
tages is required for a theoretical comparison between calculations and measure-
ments, on the other hand, the capacity of the power source needs not to be large:
a linear power amplifier will be used in the experimental study in the section 6.4.3.
The maximum phase difference between the current and the voltage is approxi-
mately 80° in the case of a symmetrical drive without the end effect as shown in
the figure, but it is larger than 90° in the case of asymmetric drives with the end
effect in some slots as we will see in the figure 6.3 (f).

Characteristics of the thrust force in a standstill drive with the current sources are
shown in the figure 6.2 (c). The maximum thrust force is produced at sf = 35Hz;
the secondary time constant of the motor is calculated on account of the equation .
(5.73.b): Ty = 4.55x107% sec. The short time constant is due to the thin secon-
dary plate, i.e., the large secondary resistance and the small gap length. We can
see also the end effect on the thrust force: the force is reduced to approximately
eighty percent by the effect of finite length of the LIM in comparison with the case
of the infinite length. From these calculations, I decided the capacity of the load
cell as five kilogram-weights. The gap flux density with end effect seems larger in
the figure 6.2. (d), but it is due to local concentration of the gap flux caused by
an asymmetric magnetic path; it does not mean that the average magnetization is
stronger with the end effect.

The running characteristics of the f; = 20 Hz const. are shown in the figure 6.2,
where the synchronous speed is 2.34m/s. In the figure 6.3 (a), the less the slip is,
the smaller the thrust force is, since the secondary resistance is large. The curve of
the force, prognosticated from the ideal model with a sinusoidal current sheet in
the chapter 5, is also illustrated in the figure; the thrust force at the synchronous
speed should be zero in the ideal model, but the forces calculated numerically is
much less than the model. We should pay attention to that the difference between
the cases with- and without- end effect is much smaller than the reduction from
the ideal model, in other words, the harmful effect of slot harmonics may be a
dominant factor of the deterioration of the running characteristics. In fact, we can
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see in the figures 6.4 and 6.5 relatively large harmonics of the secondary current,
which does not contribute to the drive but causes energy loss in the secondary

plate. We can expect some improvements with an appropriate flux synthesis

against the end effect, but the compensation of the slot harmonics is inherently
impossible. The test machine, unfortunately, has relatively large slot harmonics
and the field distribution in the gap, hence, is not clean on account of small slot
numbers, open slots and small gap length. It should be emphasized here that
sophisticated and careful design of a motor itself is anyway important also for an
effective application of the flux synthesis. A drive with a longer pole pitch is a
solution for forming a clean gap flux distribution, e.g., the two- pole drive dis-
cussed in the section 6.6, but for the long pole pitch, we need a thicker yoke. The
pole pitch is not only the issue of the current supply, but also of the design of
motor’s hardware. It should also be enphasized here, that the drag force with the
slot harmonics would be much smaller if the secondary conductor were cage or
windings, which would constrain the path of the secondary current, as in ordinary
rotary machines.

The deterioration of LIM characteristics was considered to be simply due to the
end effect hitherto, but we must also pay attention to the effect of the continuous
secondary conductor and spatial harmonics of the gap flux distribution.

It is difficult, unfortunately, to verify the merits of the flux synthesizing schemes
using the test machine investigated in this chapter, because the slot harmonics
cannot be compensated by any flux syntheses inherently and we cannot, therefore,
have the no load operating point on account of the drag force at the synchronous
speed, but we will — or must — try further discussions with it.

The input- and output- powers, and the energy efficiencies are plotted in the fig-
ures 6.4 (b) and (c) respectively. The maximum energy efficiency is achieved at
low speed: s = 0.6, and it is anyway low because of the large secondary resistance
and the end effect.

Terminal voltages, amplitudes and phase angles of the impedances are illustrated
in the figure 6.3 (d), (e) and (f) respectively on a couple of operating points. The
terminal voltages are exactly proportional to the impedances in this case, since the
terminal currents are assumed constant. The impedance at the entrance is small,
and vice versa at the exit; we can see power flows from the motor to the power
source in the twelfth winding due to the end effect. In the third graphs of the fig-
ures 6.4 and 6.5, we can see effects of the slot harmonics. The end effect is conspi-
cuous especially in the fourth figures.
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Figure 6.1. Equipment for the experiments.
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Figure 6.2. Standstill drive I, = 2.04 const.
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Voltage (rms) [V]
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(d) Voltage in each winding.
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Figure 6.3. Drive with current sources (f, = 20Hz const. and I,,, = 2.04 const.).
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6.3. Preliminary calculation (2) — general comparison among current-source-,
voltage-source-, and flux-synthesizing- drives

The three kinds of the drives — current-source-, voltage-source- and flux-
synthesizing- drives — without end effects are compared in this section for a pros-
pect of further discussion.

The currents, the voltages and the gap flux density on the sampling points (see the
figure 6.18 (c)) are kept constant 2.0A 8.8V, and 0.68T,,, in the current-
source-, voltage-source- and flux-synthesizing- drives respectively. Since an infin-
itely long motor without end effect is assumed in the calculations, there is no sub-
stantial difference among the three types of drives: in the case of asymmetric
drives of the motor with finite length, discussed in the following sections, the three

are inherently different, conversely.

rms?

We can see in the figure 6.6 (a) that the primary current flows too much at low
frequencies in the drive with the constant voltage on account of low impedances. It
should be noted that the voltage- and the thrust-force- curves of the flux synthesis
are straight in the figures 6.6 (b) and (c) as prognosticated from the equation
(5.73.c); the power source must raise the primary currents with the increase of the
slip frequency to keep the gap flux density constant against the secondary reaction
as shown in the figure 6.6 (a). The flux synthesis should be realized in low slip fre- -
quency region anyway, since the input power increases rapidly with the raise of the
slip frequency as we see in the figure 6.6 (d).

The results in the figures 6.2 (c), 6.6 (b) and (c) will be used to decide the coeffi-
cient k in the equation (5.71) in the section 6.7.
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Figure 6.6. Comparison among the three kinds of drives.

-135-




6.4. Voltage source drive

6.4.1. Comparison between LIMs with- and without- end effect

The calculated thrust forces are plotted in the figure 6.7: ‘there is almost no differ-
ence between the standstill drives with- and without- end effect, but the reduction
of the thrust force on account of the end effect is larger than the case of the
current source drive in the figure 6.3 (c) when the secondary side moves.

6.4.2. Comparison between three- phase serial- and parallel- connections

6.4.2.1. Experiment

The tubular machine shown in the figure 6.1 (a) was tested by using the three-

phase power amplifier in the figure 6.1 (b) with the serial- and parallel- connec-

tions in the figure 6.8. The purpose of the measurements is as follows:

(1) to verify the calculations of the tubular LIM with the control volume method
on the cylindrical coordinates, and

(2) to compare the serial- and parallel- connections.

The results measured at standstill tests have been plotted on the figures 6.9 and
6.10. '

6.4.2.2. End effect and the connections (1) — force, impedance and efficiency

From the figures 6.9 and 6.10, we can see that:

(1) the agreement between the measurements and the calculations is much better
than the case of the LIM calculated with the two- dimensional analysis dis-
cussed in the chapter 3, and that

(2) there is no remarkable difference between the serial- and parallel- connections
if we see only the resultant forces or the three- phase impedances.

Running characteristics were also calculated: examples of the calculations are illus-
trated in the figure 6.11 and 6.12. The distribution of the Maxwell stress tensor is
more rugged with the serial connection, but no one recognizes a substantial differ-
ence between the two kinds of connections either by seeing the results illustrated
in the figures 6.13.

According to the serial connection illustrated in the figure 6.8 (b), the line currents
are the same every three slots in the figure 6.14 (a), e.g., the currents in the first,
fourth, seventh and tenth slots. The serial connection transmits the asymmetry of
impedances at the end portions to the inner part of the motor as we see in the fig-
ures 6.14 (c) and (d). Conversely, the end effect stays locally at the end portions
in the case of the parallel connection: the impedances from the second- to the
eleventh- slots are almost homogeneous in the figures 6.15. On the other hand, the

-136-




»

end effect is concentrated in the first and the last slots: the sudden change of the
magnetic circuit at the end portions is harmful to motor characteristics.

6.4.2.3. End effect and the connection (2) — input power

The tendency discussed in the previous subsection is more obvious if we see the
input power into each slot illustrated in the figures 6.16. That is to say, the drive
with the parallel connection is not better than with the serial one due to the harm-
ful effect concentrated into the both end portions, if the homogeneous voltages are
applied to all the slots. We can, however, relux the sudden change of the mag-
netic characteristics at the end portion by applicating an appropriate voltage to
each slot independently with the structure illustrated in the figure 4.10; an exam-
ple will be introduced in the next section. In this case, we could improve the motor
characteristics remarkably, because the impedances, i.e., electromagnetic charac-
teristics in the inner part of the motor are inherently homogeneous in a LIM with
the parallel connection, i.e., with a voltage applied independently to each slot as
we saw in this section.

For comparison, the LIM with doubled length was calculated and the results are
illustrated in the figures 6.16 (c) and 6.17. On account of the doubled length, the

ruggedness of the input powers among the slots is relaxed but not completely, in -
the case of the serial connection. Conversely, the projection of the input power at

the first slot is the same as in the figure 6.16 (b). The suppression of the local pro-
jection, therefore, is important anyway for improving motor’s characteristics.
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Figure 6.7. Thrust force characteristics with voltage sources. (V = 8.8V/Slot)
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Three phase serial connection

————————

-

Three phase parallel connection

Figure 6.8. Three- phase serial- and parallel connections.
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Figure 6.9. Measured- and calculated- results with serial connection. (V = 35.2V)
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Figure 6.13. Comparison of running characteristics between serial- and parallel-
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Figure 6.14. Serial connection: values in each slot. (V =35.2V)
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Figure 6.15. Parallel connection: values in each slot. (V = 8.8V)

Input power (time average) [W]

1 2 3 4 5 6 7 8 9 101112
Slot number

8=0.0 §=0.6 Bl -0
£f1=20.0Hz £f1=20.0Hz f1=20.0Hz

(a) Serial connection.(V = 35.2V)

-148-



Input power (time average) [W]

7 77 77 7 7 7 77
1 2 3 4 5 6 7 8 9 101112

Slot number

777 8=0.0 i 8=0.6 Bl =10
£f1=20.0Hz f1=20.0Hz f1=20.0Hz

(b) Parallel connection.(V = 8.8V)

Input power (time average) [W]

A AN S A A AN A A A SN A B A A A A A

1 3 5 7 9 11131517 19 21 23
Slot number

Bl serim . Parallel
connection connection

(¢) Comparison between serial- and parallel- connections with doubled length.

Figure 6.16. Input power into each winding.
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6.5. Various flux synthesizing methods

The following three kinds of flux synthesizing method will be calculated, verified
and compared with the case without end effect in this section. The gap flux distri-
butions are synthesized, so that the flux density B, may be spatially sinusoidal on
the sampling points illustrated in the figure 6.18. Since the test machine has
twelve independent primary windings, there are twelve degrees of freedom for con-
trol. The twelve points of the flux synthesis (1) in the figure 6.18 (a) were selected
by rote, therefore, the arrangements of the points are asymmetric. To avoid the
asymmetry, two points were set on the central slot in the flux synthesis (2) as we

see in the figure 6.18 (b). On the other hand, eleven sampling points were set and
12

the last freedom was used for fulfilling the constraint of ¥} i, = 0 in the flux syn-
n=1

thesis (3) illustrated in the figure 6.18 (c).

Flux lines, gap flux density, secondary current and distribution of the Maxwell -
stress have been calculated and illustrated in the figures 6.19-21. Zero phase
current is conspicuous in the flux synthesis (1) as we see in the figure 6.19 (c).
The curves of the thrust force for (slip) frequency are straight lines as prognosti-
cated with the equations (5.73). The thrust force of the flux syntheses (2) and (3)
are approximately eighty percent of the case of no end effect. If we see the energy
consumption and running characteristics illustrated in the figures 6.22 (b)-(e), it is
immediately recognized that we can accept only the method (3). It should be
emphasized that the energy efficiency is improved with the flux synthesis (3) as we.
can see by comparing the figure 6.22 (e) with the figure 6.13 (b).- .

Also the figures 6.22 (f)-(h) support the previous arguments. The spatial rugged-
ness of the method (1) must cause energy loss and requirements of redundant
power supplies, hence, it is not acceptable. Conversely, the remarkable projection
of the input to the first slot in the figures 6.15 has been reluxed and the spatial
distribution has, accordingly, been much improved by applying the flux synthesiz-
ing method (3). )

We will, therefore, always assume the method (3) for flux synthesis in the follow-
ing discussion.
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(b) Input power in standstill drive.

-157-

Without
end effect

Flux synth.
(1)

Flux synth.
(2)

Flux synth.
(3)

Without
end effect

Flux synth.
(1)

Flux synth.
(2)

Flux synth.
(3)



Thrust force [N]

Power [W]

 —
o 3 g 1 1m
N g
al, ®
R,
A
-35 F Q\‘\A‘ﬁ‘” . e
\b\nt
R
..70 [
0.00 1.17 2.34

Speed [m/s]

(¢) Thrust force at f, = 20Hz.

o v T e

e e e

1.17

Speed [m/s]

Without
end effect

Flux synth.
(1)

Flux synth.
(2)
Flux synth.
(3)

No endeffect
Input

No endeffect
Output

Flux syn.(1)

Input

Flux syn.(1)

Output

Flux syn.(2)

Input

Flux syn.(2)

Output

Flux syn.(3)

Input

Flux syn.(3)

Output

(d) Input- and output- powers at f; = 20Hz

-158-



Without
end effect

Flux synth.
(1)

Flux synth.
(2)

Flux synth.
(3)

Energy efficiency [%]

0.00 1.17 2.34

Speed [m/s]

(e) Energy efficiency at f; = 20Hz const.

Current (rms) [A]

107
8 L

» / %/ "///

4 % ’;.‘ 2
2 »

1 2 3 4 5 6 7 8 9 101112
Slot number

Bl riux syntn. B Flux synth.{ 7] Flux synth.
(3) 2) (1)

(f) Current in each slot (rms value, B, = 0.68T const., s = 0.6 and f, = 20Hz).
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Voltage (rms) [V]

1 2 3 4 5 6 7 8 9 101112
Slot number
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(g) Voltage in each slot (rms value, B, = 0.68T const., s = 0.6 and fi = 20Hz).
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(h) Absolute value of impedance in each slot (B, = 0.687T const., s = 0.6 and
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-160-



Phase difference [deg.]

210 1
180 1
150 1
120 1
30

0

1 2 3 4 5 6 7 8 9 101112
Slot number

_ Flux synth. Flux synth. Flux synth.
(3) (2) (1)

(i) Phase angle of impedance in each slot (B, = 0.68T const., s =O.6 and
fl = 20HZ).

Figure 6.22. Comparison among the three kinds of flux syntheses.
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6.6. Effects of pole pitch

It is well known that the longer a pole pitch is, the better motor characteristics we
have in general. The pole pitch is, however, not only an issue of driving but also of
a hardware of a motor itself: a thicker yoke is necessary for longer pole pitch, and
the longer pole pitch requires low frequency of a power supply, which reduces
power density per weight, for the same speed, Hence, decision of the pole pitch is a
quite important and complicated issue of motor design.

We will, however, try to calculate motor characteristics with the doubled pole
pitch as an conceptional experiment for comparison with the previous sections
here. The applied frequency was assumed ten hertz for the condition of the same
speed. The gap flux density B, = 0.814T and the voltage V = 10.14V were
decided so that the input energy in the standstill drive may be approximately the
same as the former calculations.

The harmful effect of the slot harmonics is reluxed with a longer pole pitch as
shown in the 6.23, hence, thrust force without end effect can be kept positive in
the higher speed region than the former calculations, as shown in the figures 6.24
(a) and (b). The energy efficiency in the figure 6.24 (c) is also improved in the
case of no end effect. However, the difference between with- and without- end
effect is larger than the former calculations due to the structure with only one pole
pair. We can see in the figure 6.25 that the spatial ruggedness cannot be reluxed
effectively even with the flux (3) in this case. Consequently, we cannot expect a
good behavior anyway with the short structure with two poles.
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(c) Energy efficiency.

Figure 6.24. Two- pole machine with doubled pole pitch: comparison between the
drives with- and without- end effect (B, = 0.814T const., and f, = 10.0Hz).
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Impedance [ohm]
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Figure 6.25. Two- pole machine with doubled pole pitch: comparison between the
voltage constant- and the flux synthesizing- drives.
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6.7. Possibility of the field- coordinates oriented control with the flux syntheses
The argument in the chapter 5 will be verified in this section: from the equations
(5.73), the following relation is derived. -
[1] From the figure 6.2 (c):

F ax = 50N (without end effect)

F_ox = 42N (with end effect)

at f.. = 35Hz.

[2] Hence, the k and Ty are defined with the equations (5.73.a) and (5.73.b)
respectively as follows:

2F
k, = —— = 2x50 _ 25 (without end effect)
2 2
Ig 2
2F
k, = —— = 2x42 _ 21 (with end effect)
I 2?
s
Ty = L o1 4ssx10-? [s].
Wy max 2X7x35

(3] From the figure 6.6 (a)
B, = 0.68T, f, = 35Hz — I =3.1A

hence, when B, = 0.8T: Iy = 3.1x 0.8
0.68

in the case, Ig; = 3.65xc0s45° = 2.58A

= 3.64A

By substituting these k,, k,, Ig; and Ty into the equation (5.73.c), we can draw
the curves illustrated in the figure 6.26 (a).

On the other hand, the thrust forces with the flux synthesis (3) (B, = 0.8T const.)
have been numerically calculated as illustrated in the figure 6.26 (b): the curve of
v = 0.0 is almost the same as the curve of "with end effect” in the figure (a),
where other curves are shifted below on account of the secondary loss caused by
the slot harmonics. It should, however, be emphasized that the curves are straight
lines with the same gradient. That is to say, the the drive scheme fulfills one of the
fundamental conditions of the possibility to apply the field-coordinates oriented
control scheme in low speed operation, where the shift of the curves with speed
should be compensated with either a control scheme or a improved motor design.
In other words, although the slip frequency characteristics of the thrust force are
not one-valued function, the field-coordinates oriented control scheme can be
applicated also to an FSLIM in principle with some modification of a controller.
The input power and the energy efficiency have been also calculated and illus-
trated in the figures 6.26 (c) and (d) respectively. Since there is inevitable energy
loss for keeping the magnetization, the energy efficiency is not good with a small
thrust force i.e., with a low slip frequency.
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Normal force can be neglected in the tubular LIM, but it can be a remarkable
interference to a suspension system of transport lines composed of ordinary LIMs,
as mentioned in the subsection 5.2.2. The normal force depends on operating
points as shown in the figure 6.26 (e-1), however, the absolute value of the attrac-
tive normal force is anyway large in the test machine, and the perturbation of the
force, therefore, is negligible in this case, as we see in the figure 6.26 (e-2).
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Figure 6.26. Basic investigation on the field- coordinates oriented control with the
flux synthesis (3) (B, = 0.8T const.).
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6.8. Summary of results

O

O

Slot harmonics as well as the end effect are significant in deterioration of
motor efficiency.

End effect stays at the both end portions, i.e., impedances of the windings at
an inner part of the motor are kept homogeneous with a parallel connection.
The structure of the FSLIM illustrated in the figure 4.1 is inherently suitable
for suppressing the effect. The unhomogeneity condensed at the both end por-
tions, however, is often more harmful effect than the case of a serial connec-
tion. ‘

An appropriate flux synthesis relaxes the inhomogeneity: energy efficiency is
improved.

A fundamental condition of the field-coordinates oriented control scheme, i.e.,
the linearity of the Fy,_,,,—sf curves is fulfilled by applying the flux synthesis,
although some trivial modification of converters is necessary due to slot har-
monics.
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Chapter 7: Conclusions

A novel structure and a control scheme of the flux synthesizing linear induction
motor (FSLIM) have been introduced in the research.

An analysis method of eddy current problems, which is especially suitable for LIM
calculations, has been mathematically formulated based on the control volume
method, where the up-wind scheme is automatically introduced into the field
analysis. Mathematical compatibility of the method with the finite element
method (FEM) has been theoretically verified. In addition, it has been also
described how to formulate voltage equations of an asymmetric linear motor and
solve them in the chapter 2.

The theory has been verified by comparing calculations with measurements of a
rotary induction motor composed of a continuous aluminum secondary plate. The
results have been verified also by comparing them with a classical machine theory
and other results calculated with the FEM in the chapter 3.

Examples of basic calculations of an FSLIM have been shown, and it has been con-
cretely described how to decide input-current references corresponding to an
intended flux distribution in the chapter 4.

The ideal mathematical model of linear induction motors (LIMs) has been pro-
posed based on the modeling by W. Leonhard for applying the field-coordinates
oriented control scheme to a LIM. It is, in particular, important in the chapter 5,
how to decide parameters for the control without the equivalent circuit of an

induction motor.

Calculated results have been shown and compared with measurements of a tubular
test LIM in the chapter 6. With an appropriate flux synthesizing scheme, we can
improve electromagnetic characteristics, e.g., energy efficiency. Practical propriefy
of the theory in the chapter 5 has been verified. As a result, the possibility to
applicate the field coordinates oriented control scheme to a LIM has been proved.
Furthermore, it should be emphasized that the deterioration of LIM’s characteris-
tics with speed is caused not only by the end effect, as it is already well known,
but also by slot harmonics: the latter affects in some cases more than the former.

In this dissertation, the possibility of the flux synthesis has been investigated based
on a stationary numerical analysis in principle. A future assignment is to verify
the concept experimentally with a test machine, in which flux sensors are

-174-



implemented to detect the gap flux distribution necessary for the control scheme,
and with super multi-phase independent current supply units.
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Appendix I: Analysis of rotary electric machines with the C.V.- formulation on the
two- dimensional polar coordinates :

A.1.1. Basic equations
When one substitutes the following conditions:

Ar = Ao = O, JOT = 'IOO = 0, ’?69_ = U, v,. = 'Uz = 0 (A.l)
Z

into the equations (2.5.1), the following basic equation on the two- dimensional
polar coordinates is derived:

Vr 9A

r O

9A 19 9 94

r 06

+ J (A.2)

18
+r(99

ot  r or

Control volume

av= -1 4. ay- 4

= Yp 40 AY

Figure A.1.1. Grids and a control volume on the two- dimensional polar coordi-
nates.

A.1.2. Discrete formulation with a linear interpolating function

Firstly, a formulation with a linear interpolating function is introduced in this sub-
section. The two- dimensional polar grids and a control volume are illustrated in
the figure A.1l. The potentials on boundaries of the control volume are assumed as

the following forms:

A, = 1—)\8}AE + A Ap (A.3)
Aw = 1“’\w]AP + )‘wA w (A4)
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A, = [1-), |45+ 2,4 A6
8 S Pkl o

The equation (A.2) is multiplied by the step- weighting function, which is unity in
the control volume and zero out of it, and integrated as follows:

t+At w n
21_; L 24 L2 [u 6’4]——1«6-[”” 6A}+v”a‘2‘2~.fo rdrdd dr=0 (A7)

at r or or rod| r 68 r
[1st term] = op N N (A8)
" Ay—A Ap—A
[2nd term] = V07ﬁ4- Al = —VonTn Al P Al —VgeTy P 5 A8
61‘ 8 (‘5r)n (67‘)8
VonTn VosTs VouTn Vg,
= AOAp——2Tm NG Ay NG A9
[(mn @), |~ T (), N ey, S (A.9)
Ur ’ Vrw Ay—A Vie Ap—A
[3rd term] = — Ir o4 Ar = (Aw—A4p) | (Ap—Ag) Ar
r % ¢ Tw(59)w 7‘6(69)6
Vre Ve Ard Vye Ve a4 Voo At 10
- ,.e(ée)e“'" ro(60), rAp— ”e(ée)e rAg— T rA (A.10)

[4th term] = [vgdA]wAr= Vgul {(1 Ap)AptHA A4 ]Ar VgeO [(1 Ae) AE—*}—)\CAPJAT‘

= {Uowaw(l“‘Aw)‘"an)\e]A"AP“[ Vgu 0w ]rAw—van'e[l —A ]ATAE (A11)

[Bth term] = —J,AV = —JoprpAfAr (A.12)

The results are substituted into the equation (A.7), and the following discrete
equation is consequently derived:

apAp — agAp — ayAy — ayAy — agdg =D (A.13)
where
Vre
ag = {Te(59)e + vgeac(l-—)\e)]Ar (A.14)
Vry
ay= [m Vg A }A (A.15)
VonTn
ay= WAO (A.16)
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VgsTs

(67),
UPrPABAT
O — A.18
ap At ( )
b= JoprpAOAr + alAY (A.19)
and
ap= ag +ag+ ay + ay + a5 + [O'wvgw"'de‘l)ae]AT (A.20)
This discrete equation is proper only in the case of:
ovrp(66
L2 (A.21)
2v
1. T
where A\, = A = -2— is assumed for simplicity.

A.1.3. Modified exponential method

The following discrete equation for general transient field is derived by considering
the up-wind effect in the same way as the subsection 2.4.4.

v, AT ‘
ag = Maz[(), (1——0.1|Pe|)5] + Ma:z:[aevgeAr, 0] (A.22)
V€(60)e
V., Ar 5 '
ayy = -;——(—(—S—é-)——- Maz [O, (1-0.1|P,]) ] + Max[—awvgwAr, 0] (A.23)

where the Peclet numbers P, and P, are defined as follows:

o, Vg.7.(09), . '
P, = T80 | (A.24)
Vre
o, vy 1 (60 '
Pw - w 0w w( )w (A25)
er

If v4>>0, then ay = 0 and ap = o,vy,Ar, on the other hand, if vp<<0, then ag =0
and ay = —o,vy,Ar>0: the physical validity of the numerical procedure written
in the subsection 2.4.1. is always guaranteed.

A.1.4. Stationary analysis
The following discretized equation should be applied for a stationary field analysis

using e’**,

dPA.'P — GEAE - awAW - GNAN — asfis = b (A26)
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v, AT

“E = .(08),
VAT
W u(68),
Vanrn
= Ag
N ),
VOsrs
= Ad
T or),

ap= jwoprpABAT

6= joPT'PAGAr

. .0
ap= ap + ag + ay + ay + ag + [awvgw—UCUHe]Ar

Maa:[(], (l—O.llPEI)s] + Max[orevgeAr, 0]

Ma:c[O, (1——0.1|Pw|)5] + Maa:[——arwvgwAr, 0]
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In the last meeting in Boston, prof. Boldea proposed a new test method
~applicable to LIM, in relation with the discussion on the Working paper
#2. He promised to present it to the group and asked Prof. Masada to
assist him with experimental data obtained with a stand-still testrig in
the Univ. of Tokyo on the basis of the new test method.

This is a interim report of this joint work. Part 1. is the proposal of
the test scheme by Prof. Boldea. Part 2 is the experimental results of
test made on the basis of the proposal and the related consideration of
the Univ. of Tokyo group. Assuming the test to apply to practical linear
machines, the measuring method is modified from the original in the ex-
perimental studies.

In order to make measurements more precise and relate them with the dynam-

ic model, the test scheme should be revised. An intention to present the
interim report is to have review and suggestion of the group.
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The first proposal by Prof. Ion Boldea

Part I: Linear induction motor parameter identification
through non invasive standstill tests

Ion Boldea
(Polytechnic Institute of Timisoara, ROMANIA)

Abstract

Linear induction motors(LIMs) are being applied in various fields from short travel low
speed industrial applications to urban or interurban transportation. Consequently consider-
able efforts have been made to model their behavior. LIM theories to account for longitudi-
nal end-, transverse edge-, skin- and saturation- effects have been developed. Most theories
rely on analytical or numerical field distribution analysis for steady state. However, also a
few lumped circuit theories have been proposed to deal with steady state and transients. To
measure the lumped parameters thus defined, standstill tests or a specially built cage secon-
dary have been proposed. The present paper proposes a double row of fictitious secondary
loops (cages) to account for longitudinal, transverse and skin effects. Based on this model, a
set of noninvasive standstill tests using search coil flux sensors and hall sensors for secondary
fictitious loop current measurement are proposed in order to identify the multiple loop
secondary circuits. Tests are then performed or a laboratory model, both at standstill — to
identify the parameters — and at speed to prove the model validity for steady state and
transients.

1. Introduction

Field theories of LIMs have revealed specific phenomena such as longitudinal end- effect,
transverse edge effect, secondary skin effect, open slotting influences and stationary pulsat-
ing m.m.f effect in single layer windings, normal and lateral forces etc. However field
theories are more suitable for steady state. As linear induction motors are used for direct
variable speed linear motion drives, they undergo-frequent transients. Circuit theories have
been proposed for the scope. Experiments were performed mainly to prove the proposed
theories in terms of steady state performance (thrust, normal force, power factor, efficiency,
air gap flux density distribution and secondary current longitudinal distribution).

As an exception (Turner, 1981) presents standstill tests on a specially built cage secondary
to determine the mutual inductances and cage resistance and leakage inductance for the cir-
cuit theory of LIMs. The parameters thus obtained are then successfully applied to describe "
large transients such reconnection of the supply, loss of a phase and air gap sudden change.
However, the necessity to build a special secondary which can hardly be made equivalent
with the sheet on iron actual secondary where transverse cage, skin and saturation effects
may hardly be neglected, makes the procedure less suitable for parameter estimation. This
paper presents a generalized circuit model for LIMs valid both for steady state and tran-
sients. A set of noninvasive standstill tests are proposed to measure the defined parameters
(inductances and resistances) of the fictitious double cage secondary, equivalent to the
actual sheet on iron secondary. The double sided LIM is a particular case of the single sided
LIM treated in the paper.
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2. The generalized circuit theory (Nondahl, 1979; 1980)

In view of accounting longitudinal, transverse, skin and saturation effects the actual secon-
dary is assimilated to a fictitious double cage with saturable back iron. To assess correctly
the primary open slotting effect, the number of secondary fictitious bars should exceed two
to three times at least the number of short primary slots. Also to consider the primary wind-
ing type influence on longitudinal flux distribution (pulsating m.m.f etc. ) the model is
developed in phase coordinates.

The fictitious double cage secondary concept is introduced to emulate the secondary fre-
quency influence on transverse edge and skin effects (Figure 1.1). With inverters supplying
the LIMs, the current harmonics are almost inevitable. Frequency effects in the secondary
are argumented by the slow decaying longitudinal end- effect wave whose pole pitch varies
with speed. The two fictitious cages are considered coupled only through the main field.

Due to the finite iron length of primary the mutual inductances between each secondary fic-
titious loop and the primary phases do not vary sinusoidally with position as in rotary induc-
tion machines and in general exhibit a continuous component whose amplitude depends on
the type of primary winding type (single layer, double layer with half-field end slots), Figure
2a.

There are also self and coupling inductances between neighboring secondary fictitious loops
(Lyiy Lyii—1) which depend on position in the sense that they are smaller outside the primary
core and higher when below primary open slots (Figure. 2b).

The self inductances of primary phases Lg, Ly, Lg and their coupling inductances Mpy,
Mpp, Myg are independent of secondary longitudinal position x:

Lp = Lp, + Mg

Ly =Ly, + My (L1)

LB = LBG '+‘ MB
The primary phase leakage inductances Lp,, Ly,, Lp, are not necessarily equal to each
other, depending on the type of primary winding applied. The fictitious secondary double
cage loops are characterized by constant resistances and leakage Rg, Rs', Ls,, Ls, . By con-

stant here I mean independent from the longitudinal position. In matrix form the LIM equa-
tions are:

- VR_ -iR - - .iR g
VY iy iY
VB iB iB
is1 is1
. Y d . ?
0 = [R] ts1 + —;1? [L(z,g,z)] is1 (Iz)
iSm iSm
'0 - . ’ . ’J
“1Sm 7 - “1Sm
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The matrix inductance [L(m,g,z)] is a square (2m+3)x(2m+3) dependent on longitudinal
position z, magnetic air gap g and lateral displacement z of secondary with respect to pri-
mary ( Equation (I.3) and Figure 3).

The resistance matrix [R] is:
[R] = diag[RR, Ry, RB) Rs, . .. ,Rs, RS'] (14)

We should note that x means the position of a point on secondary with respect to primary
entry and that the primary equations are written in primary phase coordinates and the
secondary equations are written in secondary so, as x advances the first secondary loop
moves from the leftest position to the rightest position while a new one takes its place such
as all the time there are 2m active secondary loops, which extend well beyond primary core
length. Only the parameters referring to one secondary loop placed in all the m positions are
required. Moreover the dependence of parameters on air gap g and 2, in the absence of
saturation need be measured for only one longitudinal position of the secondary loop and dif-
ferent g, and Z,.

The equation (I.1) could be rewritten as follows:

] - 2] [ + [resn] [ +

Oz

2 [L(z,g,n]]-—‘ff

+%ﬁ@m”H%+ﬂ%gﬂH% (1)

So the forces along the three directions, F, (the thrust force), F, (the normal force) and F,
(the lateral force) are: :

F, - -;—.] T-a%[L(z,g,z)]-[i] (L6)
F, = —;—rz] T-—(%[L(x,g,z)] : [z] o | (L7)
F, = -;-1] T'%[L(z,g,z)]' H ' | (1.8)

Accounting for saturation is a very difficult task as the level of saturation varies along the
machine length x due to longitudinal end- effect. One way to account for it is to calculate
the flux level in each of secondary loops:

Amsi = Mpgiig + Mygiiy + Mpg;ig + MSi[iSi + is."]

+ B, i {is,i—l + 151 '] + Mg i1 [is,i+1 + l's.i+1'] (L.9)

initial values of inductances would be assigned first and then, based on ), calculated and
assuming that for the secondary frequencies encountered the skin effect in the secondary
back iron does not vary, we may calculate the secondary core flux Agg;; 4

Acsiicl = Amsi — Ams,i-1 (I.10)

If the inductances in (1.9) are scaled identically according to A, ;_y measured and My, My,
Mg, Myg, Myp and Mpp are held dependent on the average core flux Ag



AC=

3 |-

Y Aesiieal : (L.11)
1

then an iterative procedure may be initiated with renewed inductance until sufficient conver-
gency is reached. It should be emphasized that we need determine through experiments A,,g;
with secondary loops different levels of primary currents.

3. Proposed noninvasive standstill measurements

The noninvasive standstill tests are directed toward measuring the resistances and induc-
tances occurring in the equation (I.1). Primary phase resistances Rp, Ry, Rp may be d.c.
measured. Also as a first approximation the primary phase leakage inductances Lgp,, Ly,
and Lp, may be considered equal to each other and equal to the homo-polar inductance L,
to be measured in a single phase a.c. standstill test with all phases in.series (Figure 1.4):

v4 7
1 Vo W, '
1 0 0

The primary phase and secondary loops self and mutual inductances are to be determined
from d.c. primary current decay tests and the secondary loop resistances and leakage induc-
tances from a.c. tests at two different frequences.

Primary phase self and mutual inductances require d.c. decay tests at standstill on each
phase while also measuring the induced voltages in the other two phases (Figure 1.5). °
Integrating the decaying current ip(t) and, respectively, the induced voltages Epy and Epp,
the initial values of flux linkages in the three phases are obtained:

Lgipy = [Ryig(t) dt (1.13)
LR = MR + L.Ru'

Mpyigy = [Egpy(t) dt ‘ - (I.14)
Mppipy = [Egg(t) dt ' - (L1y)

Thus we obtain Mg(igg), Mgy(ire) and Mpp(ipo).

The same test may be done for different air gaps and lateral displacements to obtain the
dependency on g and Z of My, Mpy and Mpp.

The same test could provide valuable additional information if three neighboring search coils
as wide as the fictitious secondary loops are placed on the secondary sheet (in the m-
positions, successively) together with two Hall devices or equivalent current sensors placed in
between to measure the overhang secondary currents (Figure 1.6). The whole set is moved
along z into m-positions.

By subtracting the currents of two neighboring overhangs, we obtained the current in the
fictitious for placed in between ig;. Recording Eg (in the search coil) and ig(t) during pri-
mary current d.c. decay for m-positions of the set, we may now integrate the recording of
Eg; to obtain:

;]Z'IESi(t) dt = Mpgi(z) igo (L.16)

-A.12-
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where the ng is turns of search coil.

The coupling inductance between neighboring secondary fictitious loops may be obtained
approximately if a current decay test is per formed solely on the search coil Si recording

i5i(2).

; 1 3
Mgiigio = ‘;‘f R ig(t) dt
0

[Egi iy dt
Mgy = o (1.17)
sic

f Egiiy dt

MSi,i+1 = .
tsic

The secondary loop self inductance Lg, + Mg; could also be obtained by recording Ig(t) dur-
ing primary phase current turn off from a.c. Neglecting the coupling between neighboring
secondary loops, the secondary loop current equation during primary current turn off from

a.c. is:

. d‘St
RS'S;' + [L&r + Ms,] dt =0 (118)
So ig; decreases with the secondary time constant T'g:
Lg, + Mg; .
s = e T S (L19)
Rs

Through curve fitting from ig(t) decay after primary current turn off T's may be deter-
mined. With Rg known (as will be shown later) Mg; will result. This latter test may be con-
sidered practical only if the frequency effects in the secondary could be neglected (one secon-
dary cage considered).

The secondary loop resistances and leakage inductances may be obtained through a three
phase a.c. standstill short circuit test at two frequencies by considering one ﬁctltlous cage for
each of the two frequen(:les (Figure 1.7)

The measurement will be performed only in one position of the experimental set-up. Again,
the coupling inductances of neighboring secondary loops are neglected for simplicity. As for
LIMs the air gap is large, the main flux may not be neglected during "short circuit” tests
and thus we have to measure the induced voltage Eg and the current ig; in the secondary
fictitious loop:

1 .
(1] s = (WEEF IR (i) e (1.20)

e
We may use a common point (connection) when measuring Eg; and ig; and thus measure
the phase-lag between them ¢g;:
wiLlgy
R
Form equations (I1.18) and (1.19) with Rg and Lg, are determined with w; known. For w;’

we obtain Rg’ and Lg,”. The frequency w; corresponds to about 2-8Hz and w;" to above
25Hz. Only for a.c. tests the inductive current sensor (Figure 6b ) may be used instead of

(L21)

tangg; =

-A.14-




Hall sensors.

It should be noted that as the total overhang current is measured, the transverse edge effect
in the active zone (below primary core is neglected. For many applications such approxima-
tion is practical. The tests may be performed for different air gaps g and lateral displace-
ments z to check it Rg and Lgo vary with g and z as the flux distribution and the transverse
edge effect change with g and z large.

Note

I have provided means to measure all parameters from standstill noninvasive tests. In what
follows experimental work on a laboratory model is described. Standstill tests we performed
to identify the parameters of the generalized circuit theory while running tests and digital
simulations with measured parameters were done to prove the validity of the proposed model
and parameter identification method. The tests at standstill are considered noninvasive as
the search coil — Hall current sensor set-up is placed easily in different positions along the
primary in the vicinity of the actual secondary.
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Part II: Investigations at the University of Tokyo based on the

proposal of Prof. Boldea — Revised Impedance Measurements

KOSEKI Takafumi & MASADA Eisuke
(The University of Tokyo, JAPAN)

1. Introduction

Based on Prof. Boldea’s idea written in the part I, we made a simplified plan of the
impedance measurements taking a theoretical consistency into account.

As you will read later, you must remove the secondary reaction plate at some measurements
for theoretical consistency; we have assumed that the purpose of this measurement is to
identify the impedances only of the primary active part, because such an experiment is basi-
cally impossible with a complete LIM with a specified secondary rail, in other words, you
need a special secondary structure only for the measurement, whose conductive plate is
removable. If you would be interested in the impedance identification of the complete LIM,
all the procedures of the plan should be fundamentally reappraised.

For practical reasons, we made the following assumptions and simplifications.
(1) In stead of his original measurement scheme of ”Decay D.C. Method”, we use a

transfer-function-measurement mode of an FFT spectrum analyzer and a VVVF signal

source. ~ :
(2) The fictitious cage is only a single one; the skin effect is neglected.
(3) The search coils were compelled to be much larger than those in his original idea ( c.a.

8.2¢mx5.0cmx0.5¢m, 10 turns ); the measured admittance of the coil itself, i.e. the.

transfer function V to I, is shown in the figure II.1.
(4) We cannot measure a current in the secondary plat directly.

2. Revised plan of the measurement

EXPERIMENT 1 :
First, the resistances in the primary windings ( Rp, Ry, Rg ) are measured by applying DC
currents.

EXPERIMENT 2

As shown in the figure 1.2, an AC voltage is applied to the primary windings connected seri-
ously; the primary leakage inductance, Lp,, Ly,, Lp,, are measured. In the ideal case, no
secondary current would be induced, but actually, some harmonic current flows in the plate.

EXPERIMENT 3

Self- and mutual- impedances of the primary- and the secondary- loops are measured.
Although it should be performed with the ”Decay D.C. method” (see the figure I1.3 (a) ) in
his original plan, we have proposed to use an FFT spectrum analyzer with a VVVF signal
source for measuring a transfer function of a loop.



V-1 Transfer function of the search coil
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Figure II.1 V-1 characteristics of the search coil
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Experiment 3.1

As shown in the figure II1.3 (b), the primary self inductances Lg, Ly, Ly and the mutual
impedances Mgy, Mgg, Myp are measured. In these measurements, the secondary reaction
plate is removed since no secondary current must be induced. The results will be compared
with the data measured with the circuit shown in the figure II.3 (a) afterwards.

Experiment 3.2

As shown in the figure II.4, a search coil is put on the secondary core also without the secon-
dary reaction plate. Mutual inductances between the primary- and the secondary- fictitious
loops Mgs;, Mysi, Mgg; are measured by appling a single phase A.C. signal into the primary
winding. You can measure the transfer function from the primary current to the induced vol-
tage Eg in the search coil, which should be equivalent to the secondary fictitious loop, in the
same way described in the previous subsection.

Experiment 3.3

You measure the self~ and mutual- inductances of the secondary search coils
Ms;, Mg; si_1, Mg; 51 by monitoring transfer functions from the current in the central search
coil Ig; to the induced voltages Eg;, Eg;_;, Egy1 as shown in the figure IL.5. Also in this case,
the secondary reaction plate should be removed, since induced secondary currents are sub-
stantial disturbances in the inductance identification.

EXPERIMENT 4

You measure a resistance Rg and a leakage inductance Lg, of a fictitious loop in the secon-
dary reaction plate ( not a search coil itself ), by monitoring a transfer function from the Fg;
to the Ig; shown in the figure I1.6, in the same way as the previous measurements.
Correction of measured data

Since the winding number of the fictitious loop has been assumed to one turn, the data,
measured with the search coils with ten turns illustrated in the figure II.6, must be corrected
as follows.

The measured inductances have been multiplied by 14.7/8.3 by assuming constant magnetic
flux densities in a search coil, and the mutual- inductances between the loops and primary
windings are calculated by dividing the measured values by ten. In the same way, the self-
and mutual inductances of the secondary loops have been calculated by multiplying the
measured data by 14.7/8.3/100. For the experiment 4, we have assumed the equivalent cir-
cuit of a transformer with the secondary short circuit illustrated in the figure I1.8 between
the search coil and the fictitious loop in the secondary conductor, where the primary leakage
inductance has been neglected; also the Rg and Lg, have been calculated by dividing the
measured values by one hundred on account of the one-turn assumed winding number.

Koseki doubts, however, propriety of this procedure. Anyway, it is impossible to measure the
secondary current in the plate with a normal rail and current sensors directly, as he pro-
posed in the original report.

3. Prof. Boldea’s comments to the revision and discussions

-A.18-
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3.1. Prof. Boldea’s comments

The following comments were sent from Prof. Boldea:

(1) I understand the difficulties in measuring the secondary current through a Hall sensor. So 1 sug-
gest here to draw two holes at the stack end in the secondary and connect them in counter series
to measure the current difference between two neighboring secondary overhang elements. The two
coils embrace the secondary overhangs and are placed in the transverse plane at the end of a
search coil which covers a secondary circuit element. The measuring (in AC) or the recording of
this current (in DC decay test) leads to the required data. The measurements strategy remains

the same.
[ i | \
/ Corren?
searck
/ caily

(2) I also fear that the procedure on fig. I1.6 to measure secondary impedance though acceptable is
too approximative. So I propose to check this aspect by considering that the secondary loop is the
secondary of a short circuit transformer whose primary is the search coil characterized by it resis-
tance R,y and proper inductance Lg measured in the absence of secondary. (The figure IL5)

(3) If the secondary back iron is solid the d.c. decay test should be used to determine the magnetizing
inductances of primary, and the mutual ones rather than the transfer function with an averaging
procedure of an FFT analyzer. With a laminated back iron the latter method may be however
safely applied.

3.2. Koseki’s opinion _

(1) The proposal of Prof. Boldea is right; the secondary current should be directly meas-
ured. In our test machine, however, it is impossible to attach the additional current
search loops, as is in ordinary LIMs in utility.

(2) His second comment is also right, however, we had no other alternative method for the
measurement unfortunately. ‘

(3) A half of his third comment is right, but the other half has no sense. If the eddy
current in the cores is not negligible, all the measurement procedure are anyway non-
sense. There is no inherent difference between his "DC decay method” and our FFT
method, since you can observe the electromagnetic phenomena, anyway, only in varying
field, i.e., if the eddy current in the core is not negligible, it cannot help having consid-
erable harmful effects also in his ”transient DC- method”. The substantial solution is,
hence, only using cores with no conductivity for ideal measurements.

4. Results of the measurements
The three- phase six- terminal impedance matrix in the appendix 1 is written again as fol-
lows:

0.57 + j(1.28) —0.095 + j(-0.33) —0.087 + 7(—0.30)

2 = |-0.095 + 5(—0.33)  0.57 + j(1.28) —0.092 + j(-0.32) (A.1.13)
—0.089 + (—0.31) —0.095 + 7(—0.33)  0.59 + j(1.27)

The following impedance matrix Z' has been calculated by substituting measured results
into the equation (A.2.4).

-A.20-



0.88 4+ j(1.60) —0.26 + j(—0.54) —0.31 + 5(—0.39)
Z' = [-0.26 + j(—0.53) 0.81 + j(1.68) —0.26 + j(—0.54) (IL.1)
—0.31 + j(—0.39) —0.26 + j(—0.54) 0.95 + 5(1.65)

This result is different from the equation (A.1.13’). The possible reasons for the difference
are as follows:

(1) Only adjacent loops are considered in the modeling of Prof. Boldea; there is no theoreti-
cal reason for the assumption.

(2) The measurement with the search coils could be incorrect.
(3) The impedance detection based on the equivalent circuit in the figure I1.8 was wrong.

The problems above are discussed in the following subsections.

4.1. Modeling with further loops
Although there is no theoretical reason, Prof. Boldea neglects all the other coils but adjacent
ones. The partial block of the impedance matrix Ly, in the equation (A.2.4) are written
approximately as follows:
1 01,
Ly =1L S + M, Lo

N
N

S (11.2)
1 10

where the L represents the self inductances of the loops, and the M; is mutual inductances
between the i- and (i+1)- loops. In fact, the results in the equation (IL.3) has been derived
with the Z’' written in the equation (II.2); the results are almost the same as the equation

(IL1).

0.90 + j(1.59) —0.27 + j(—0.54) —0.32 + j(—0.39) .
Z' = [-0.27 + j(—0.52)  0.84 + j(1.68) —0.27 + j(—0.54) (IL.3)
-0.32 + j(—0.39) —0.27 + 5(—0.54)  0.97 + j(1.65)

If the mutual inductances with the further loops are not negligible, the matrix Z’ are
approximately written as follows:

1 01.
L22 =L \\\ + M]_ 1 N

00
+ My |00 (IL.4)
10 ° 0
The resultant Z' with further loops are as follows:

In the case of considering from M; to M,,

0.87 + j(1.60) —0.25 + j(—0.54) —0.30 + j(—0.39)
Z'= [-0.25 + j(—0.53) 0.81 + j(1.68) —0.25 + j(—0.54) (I1.5)
—0.30 + j(—0.39) —0.25 + j(—0.54)  0.94 + 5(1.65)
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In the case of considering from M; to Mj,

0.85 + j(1.60) —0.24 + j(—0.54) —0.29 + j(—0.39)
Z' = |-0.24 + j(-0.53)  0.79 + j(1.68) —0.24 + j(—0.54) (11.6)
~0.29 + j(—0.39) —0.24 + j(—0.54)  0.92 + j(1.65)
And, in the case of considering from M, to M,,
0.84 + j(1.60) —0.24 + j(—0.53) —0.29 + j(—0.39)
Z' = |-0.24 + j(—-0.53) 0.78 + j(1.68) —0.24 + j(—0.54) (IL.7)
—0.29 + j(—0.39) —0.24 + j(—0.54)  0.91 + j(1.65)

Hence, you should have considered till M, at least in this measurement. The number of trun-
cation practically allowable is strongly depends on LIM’s dimension and search coils; it is
almost impossible to determine the limit generally.

4.2. Search coils

(1) It was checked that the search coils were not short circuit, with a DC-test.

(2) It was also checked that the measurement of the induced voltages was right, by measur-
ing magnetic fluxes in the search coils with flux meter.

No problems were, therefore, found about the search coils themselves.

4.3. Detection of the secondary impedances

In the experiment 4, we could not directly measure the secondary current, and guessed the
secondary impedances Lg, and Rg based on the equivalent circuit assuming the ideal
transformer without primary leakage; the modeling has no theoretical basis, especially, we
cannot know actual distributions of the secondary current in the secondary conductive plate.
For instance, the equation (II.8) is derived with Rg = 1.30x107* ©, and the result (II.9) with
Lg, = 6.0x107° H, where Rg = 1.37x107* Q and Lg, = 5.0%107° H are assumed in the pre-
vious calculations: the resultant small impedance matrix is remarkably sensitive to the
secondary impedances.

In the case of the Rg = 1.30x107* Q:

0.56 + j(1.44) —0.12 + j(—0.47) —0.14 + j(—0.31)
Z' = |-0.12 + j(—0.47)  0.53 + j(1.55) —0.12 + j(—0.47) (11.8)
—-0.15 + j(—0.31) —0.12 + j(—0.48) 0.64 + 5(1.51)
In the case of the Lg, = 6.0x107° H:
0.83 + j(1.57) —0.24 + (—0.53) —0.29 + j(—0.38)
Z' = |-0.24 + j(—0.52) 0.78 + j(1.66) —0.24 + j(—0.53) (IL.9)
—0.29 + j(—0.38) —0.24 + j(—0.53)  0.97 + 5(1.63)

In the case of the Rg = 1.30x107* Q and Lg, = 6.0x107° H, the following result is obtained,
which is in good agreement with the equation (A.1.13’).

[ 0.80 + j(1.60) —0.22 + j(—0.54) —0.27 + j(—0.39)]
7' =

—0.23 + j(—0.54)  0.74 + j(1.69) —0.22 4 j(—0.54) (I.10)

—0.27 + j(—0.39) —0.24 + j(—0.55)  0.87 + j(1.66)
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5. Concluding remarks

Consequently, the following two problems should be noted.

(1) Effects of not only adjacent- but also further- loops must be considered.
(2) The secondary impedances should be directly measured. '

For measuring directly the secondary impedances, however, you need a secondary rail of spe-
cial structure written in the comment from Prof. Boldea: the application of his proposal is,
hence, compelled to be quite limited.

Your technical advices and comments are cordially welcome.

Figure II.7 Dimensions of search coil and secondary rail
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Figure II1.8 Equivalent circuit of a transformer with short secondary circuit
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Appendix 1: Preliminary experimental results on the LIM

KOSEKI, Takafumi & MASADA, Eisuke
(The University of Tokyo, JAPAN)

1. Introduction

To compare with Boldea’s experimental scheme, we carried out preliminary measurements as

follows:

(1) measurement and calculation of thrust and normal forces driven by a three phase
sinusoidal AC current source,

(2) measurement of terminal impedance with the three- phase AC drive, and

(3) impedance measurement based on the multi-terminal linear network-system theory.

2. Calculated and measured forces

As the first step of the experiments, we measured thrust- and normal- forces with three-

phase drives. Measured forces are compared with theoretical analysis in the figure A.1.1.
> Fouriey eovies metliod
vith the pripayy (;‘%f.l"‘.(ll‘-:!?‘
o 1 . . cuprent sheef
3. Terminal impedance with three phases AC drive

With a normal three- phase connection, the terminal voltages and line currents were meas-
ured. The results are written in the table A.1.1.

Table A.1.1 Voltage, current and impedance of the U-phase

Frequency [Hz] 30.0 40.0 50.0 60.0 70.0
R [Q] 0.539 0.617 0.676 0.608 0.601
wl 1.04 1.33 1.62 2.00 2.24
L [mH] 5.49 5.28 5.14 5.30 5.11

4. Impedance measurement based on the multi-terminals network theory

4.1. Impedance matrix model

4.1.1. Discussion on the LIM as a multi- terminal network — idea from two- dimensional
analysis -

In order to investigate relations between terminal voltages and line currents of a n-phase
motor with asymmetric impedances, discussions based on a 2n-terminal network system is
necessary, considering remarkable electromagnetic interferences between each phase.

For instance, a behavior of a three-phase motor on an operating point with the neutral point
connection is modeled as a 6-terminal network system shown in the figure A.1.2 (a).
Terminal-voltage- and line-current- vectors are defined as follows:

t
V=[VI,V2,...,V,,]

t
I= [1'1’1.2,...,1'“]
With the impedance matrix defined in the equation (A.1.3),

(A.1.1)

(A.1.2)



Zyy - Iy,
=1 ... . (A.13)
Zony "7 Zpn
the voltage equations are written as follows:
V=2-1 (A.14)

where the motor’s characteristics are ideally linear and the velocity of the secondary plate is
given.

For a numerical simulation of a voltage source drive using a current source field-analysis pro-
gram, the field distribution should be calculated with the following input-current vectors.

r . t

1, = |1.0¢°0,0,..., 0] | (A.15)
r _ t

1, = |0,1.0¢°%0,0,..., o] (A.1.6)
- . t

t,=10,0,0,0,... ,1.0ef°] (A.1.7)

Using resultant induced terminal voltages, the impedance matrix (A.1.3) can be determined.
The admittance matrix is calculated by inversing the impedance matrix. Finally, the line
currents corresponding to the given voltages are derived, and the field calculation with a vol-
tage source is carried out again much faster than the first field analysis based on the super-
position principle of a linear system.

In the case of impedance measurements, the same procedures should be applied with a single
phase drive as shown in the figure A.1.3.

If there is no neutral point connection like the figure A.1.2 (b), i.e., each line current is con-
strained by the Kirchhoff’s first law, the motor should be treated as a four-terminal network
— generally, as a 2(n-1)-terminal network — due to a less system freedom.

4.1.2. Physical meaning of the impedance matrix — energy flow at a single phase drive
The energy flow in a motor is written as follows.

Pl = Pmcch + Ploss (AIS) .

Since the voltage between the terminal { and the neutral point is written from the equation
(A.1.4) as follows,

n
j=1
[i==1,2,...,n
the time average power put in the primary windings is written as follows.
n
P1="“—Re [2 V,I:]

=]

1 n n

-1 % B Re (2,1 1 (A.1.10)
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We define a factor in the impedance matrix as Z;; = R;; + jwL;; here.

In a special case where only the single phase AC current I, is applied as shown in the figure
A.1.2, i.e. corresponding to the cases of the equation (A.1.4),

p1=-;-Re [Zu-Il-I'{]
= =1L Re 2,

Brus * Ry (A.1.11)

]

From the equations (A.1.4) and (A.1.11), the following equation is derived.
Bms * Ryt = Proyy = Fruge " v (A.1.12)

It has been shown that the real parts of the factors in the impedance matrix represent the
energy flow in a motor. Some of them can be also negative in the generator operation.

4.2. Impedance measurement using an FFT spectrum analyzer

In this section,

(1) all the factors of n® in the impedance matrix must be calculated or measured, and

(2) behavior of a LIM always depends on the velocity of the secondary plate and the pri-

mary frequency, i.e., it is necessary to calculate or measure the impedance matrix on
many operating points.

For the two reasons, the experiments are compelled to be many; a simple experimental
scheme is desired.

Frequency dependency of the impedance of the standstill LIM in the Masada Laboratory
have been, therefore, directly measured using transfer function mode of a 2 channel FFT
spectrum analyzer and VVVF signal source, as shown in the figure A.1.4. An example of the
experimental results is shown in the figure A.1.5. The measurements with this ”small signal”
scheme have been in good agreement with the conventional experimental method. The
measured impedance matrix is as follows: '

23 21 213 | 1.405-€°57%0 34524038 () 316 254 4des.
2= |Zyy Zyy 23| = |0.346- 23749 1 405- S22 0,336 204400 (A.1.13)

When a symmetric three- phase AC current of 50Hz is applied, the terminal impedance of
the U-phase winding Zy; is;

= 1.405-£/65 749 1 345 ¢/1202deg. | () 37 14 4deg.

= 0.71145-50.0x27x 5.27x107° (A.1.14)
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We define a factor in the impedance matrix as Z;; = R;; + jwL;; here.

In a special case where only the single phase AC current I, is applied as shown in the figure
A.1.2, i.e. corresponding to the cases of the equation (A.1.4),

PI ”%‘RC[ZII'I]_'I;]

1

1
=1L Re 2]
= IfRMS * ‘Rll (A.lll)

From the equations (A.1.4) and (A.1.11), the following equation is derived.
Ifrma ’ Rll = Plosn - Fbrakc ) (A.1.12)

It has been shown that the real parts of the factors in the impedance matrix represent the
energy flow in a motor. Some of them can be also negative in the generator operation.

4.2. Impedance measurement using an FFT spectrum analyzer

In this section,

(1) all the factors of n? in the impedance matrix must be calculated or measured, and

(2) behavior of a LIM always depends on the velocity of the secondary plate and the pri-
mary frequency, i.e., it is necessary to calculate or measure the 1mpedance matrix on
many operating points.

For the two reasons, the experiments are compelled to be many; a simple experimental
scheme is desired.

Frequency dependency of the impedance of the standstill LIM in the Masada Laboratory
have been, therefore, directly measured using transfer function mode of a 2 channel FFT
spectrum analyzer and VVVF signal source, as shown in the figure A.1.4. An example of the
experimental results is shown in the figure A.1.5. The measurements with this. "small signal”
scheme have been in good agreement with the conventional experimental method The
measured impedance matrix is as follows:

iy Zip 2 1.405- 5740 345210340 316,254 4der
z = Z2,1 Z2’2 22,3 = 0'346'81253'7ng 1.405_6]522(165] 0.336'81.254'4&9' (A‘l.lg)
Doy Do Zaq|  [0:321-€0799 034520205 1 4050400

When a symmetric three- phase AC current of 50Hz is applied, the terminal impedance of
the U-phase winding 2y is;

2 (s
s

+ 2113'8

ZU = Zl,]_ -+ Zl,z'e
= 1.405-¢75579¢9- | (.345- ¢/120-2de9 0.316- 14-4des:
= 0.71145:50.0x27x 5.27x10™°  (See the table A.1.1.) (A.1.14)
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Figure A.1.1 Measured forces of the stndstill SLIM
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Figure A.1.2 Three phase connection
(a) 6-terminal network with the neutral point connection
(b) 4-terminal network without the neutral point connection
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Figure A.1.3 Single phase drive for the impedance measurements
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Figure A.1.4 Impedance measurements with FFT and VVVF signal source
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Figure A.1.5 An example of the measured impedances (Transfer function)
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Table A.1.2 Dimensions of the standstill single- sided linear induction motor in the Masada
Laboratory '

[Primary side]

Primary core width 120mm
Total width with coil ends  300mm
Motor length 1400mm
Pole number 8

Pole pitch 156mm
Primary core height 100mm
[Secondary side]

Mechanical gap length 10mm
Secondary core width 120mm
Reaction plate thickness S5mm
Secondary core height 30mm

Figure A.1.6 The test machine
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Appendix 2: Discussions on the Mathematical Formulations of

Prof. 1. Boldea

KOSEKI, Takafumi
(The University of Tokyo, JAPAN)

1. Introduction

In this chapter, we discuss following theoretical aspects in Prof. Boldea's plan described in
the part I:

(1) relation between his large impedance matrix in the part I and the 3x3 matrix explained
in the chapter II.2,

(2) doubt on his formulation of the forces considering the Lagrange’s function, and

(3) necessity of the reference-frame transformation for applying your theory to general run-
ning cases.

2. Relation between the Boldea’s large impedance matrix and the 3x3 matrix

In the part I proposed by Prof. Boldea, the volta;fre equations are: R
VR [ ir [ i 1 [ ir]
Vy Primary ly Ly ; L12 Iy 3
Ve . LT Y | L .18
o — | i d i i '
= d'as[ra,h, o, 1y, - .rnJ Fo | Sl e
! : ! ! i
i Secondary | Lar Loy : n
; ! { ! '
0 In : i — in |
~ -~ J

S L~
where Vg, Vy, Vgand ¢, ... ,i, are unknown variables.

When you assume steady state operation of a LIM whose structure is homogeneous along the

x direction: . - S AN
[ | ) ( ) . ’ . ] r 0 )
. Riw 1. hl ( { o
v1 *ij”E JWsz U.'] Z‘" = ij 3 ﬂ1 ‘
------ = || | = »ww%—v'fw---~»—~ N (A.2.2)
! Raz +r [ :
0 Jw Lz h_)uf)__n i, 221 = Zgz n Hz
| J . L \. | J \

The 3x3 m;trix Z' is defined here,
Vr 211 21y 235 [Ir
Vy| = |22 Zy; Zo3| |1y (A2.3)
Vs 231 Zyy Z33] |1p

By eliminating the currents vector 1, from the equation (A.2.2), the following equation is
derived.

Z =1In- Z12'Z';21'Zz1 (A.2.4)

This relation should be applied to verify his impedance-measurement scheme at the last pro-
cedure of our project.
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3. Derivation of the thrust force from the voltage equations

If his assumption is physically proper, there is no problem to the equation (I.3). However,
some theoretical corrections should be necessary concerning the force calculations from (L.5)
to (I.8) as follows. In his formulation, only the reluctance torque can be calculated; there is,
however, no reluctance force substantially in LIMs, i.e., you must consider the effect of the
induced secondary current.

Although Koseki does not believe that the virtual displacement principle is suitable for LIM
calculations, you should start from the following Lagrange’s equation (Weh) if you must,
nevertheless, calculate forces with the principle.

oP
——‘L[M] S A (A.2.5)

3¢y, 9 0k,

where ¢, means generalized coordinates, and the Lagrangian A is defined using the general-
ized motive energy E* and the generalized potential energy © as follows.

A=E" -0 (A.2.6)
Py is the Reyleigh’s loss function and I' is an generalized input force.
In order to apply the basic equation (A.2.5) to the calculation of a LIM,

=T + W, (A.2.7)

where T* is the mechanical motive coenergy and W, is the magnetic coenergy. Especmlly
in the case of a linear field,

E — 3] (A.2.8)

i=1
where m; is a mass of a massive point constructing the system and g; is an x-position of each
massive point,

n L
We=3 - ¢ (A.2.9)
=1 2 '

where L; is an inductance and Q; is an electric charge.
In our problem, the potential energies of springs and of the electric field is zero, hence,

e =0. (A.2.10)

Furthermore, the mechanic damping losses ( i.e., mechanic damping co-losses P} ) is also
negligible. '

PV = PI) + Pu

m ] no .
._.E___L.;,',?_*_Z_J_.QJ?
i1 2 j=1 2
n .
g 3. (A.2.11)
=1 2
According to Prof. Boldea’s argument,
A= E LA P 1‘ L (A.2.12)

L=l
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and
P, =1"R1. | (A.2.13)

Therefore, the thrust force is derived as follows:

aP,
d|oA) _9A - F, (A.2.14)
dt | 6z Oz 8z
hence,
F,=- -2 [—1— i)+ -4 |2 [—1— ||+ -2 [I‘-R-I]. (A.2.15)
Oz |2 dt 19z |2 oz

If the modeling would be ideal, the first term in the right hand side of the equation (A.2.15)
should be zero, because it expresses a reluctance force. Normal- and side- forces would be
formulated in the same way.

Koseki is, however, not sure if such formulations have sense, because it would be almost
impossible to derive the forces explicitly in this form. Furthermore, the impedance matrix L
must be not the original measured results, but be rewritten with a reference-frame transfor-
mation, for considering effects of the motor’s velocity.

4. Necessity of reference-frame transformation

The large impedance matrix is measured with standstill tests. Since LIM’s characteristics
depend on the slip, the voltage equations must explicitly contain the effect of the velocity for
a general use, especially in order to calculate forces as described in the chapter II.2; a proper
reference frame transformation is essential to the parts of the reactance matrix Z;, and Zy
in the equation (A.2.2), e.g., as written in (Kovacs, 1984).

5. Discussions between Prof. Boldea and Koseki

5.1. Prof. Boldea’s comment

"The forces expressions are correct in my manuscript (please check the reference (Tﬁrner, 1981)). Itis
the entire force not only the reluctance force (please see the reference (Nondahl, 1980)). The reference
system is attached to the primary. The equation of motion should be added for mechanical transients:

dz
Mx— = F,—F
dt foad

x- becomes a state variable while for F, and F, the small displacement approach may be used. An ini-
tial value of x for the front end (first) loop is assigned.

The number of secondary loops may be kept constant with the initial values of secondary current
given; for example zero before starting. After 1-2 loops length has passed, the current in the rear loop
in neglected and a new loop in the front end is added whose initial current is evidently zero.

It is well understood that the secondary loops extend well beyond the primary length.

For constant speed z = vxt v = const. and the above motion equation is dropped. With zero initial
currents for this case the computation will stop when the primary current will be steady state.”
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5.2. Koseki’s opinion:

Prof. Boldea’s formulation are quite similar to Nondahl’s: the formulations are theoretically
consistent with themselves in the paper (T.H. Nondahl, 1980). The authors do not, however,
apply the virtual displacement principle to the thrust calculation, although they use it for
calculating normal force; it seems right. On the other hand, Turner calculates the thrust
force with the virtual displacement principle in his paper (Turner, 1981), but he uses it in a
numerical iterative computing procedure for calculating transient characteristics of a LIM
with a cage secondary rail, where the (small) impedance matrix is rewritten at each step,
i.e., time dependent effects, e.g., slip and speed of the secondary conductive bars, are impli-
citly included in the numerical process. The two formulations of Nondahl and Turner are,
therefore, quite different. Consequently, Koseki's doubt on force calculation of Prof. Boldea
still remains.
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