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1. Introduction

The material damping can be easily incorporated
into the finite element analysis of dynamic
problems by representing the material behavior
through appropriate mechanical models, i.e. gener-
alized Maxwell or Voigt (Kelvin) models®.

This procedure is featured by the fact that it
does not necessarily involve the assumption of
damping property which is proportionate to
velocity and has been successfully used in the
analysis of transient wave in the bar®. The
present paper aims to extend the procedure to
the frequency response of flexural vibration of
beams under sinusoidally varying loadings. Gen-
eralized Maxwell model which includes simple
Voigt material is assumed. The relevant stiffness
matrix as well as force and displacement ampli-
tudes are complex, and these are divided into
real and imaginary parts in the process of solution.
Frequency responses of simple Voigt, three and
five element models of generalized Maxwell type
have been studied.

The practical application of the method concerns
with the reconsideration of the well-known Onogi’s
method® which has long been used for assess-
ment of model constants principally of the simple
Voigt material.

In the last part, a comparative study of
consistent and lumped mass formulations will be

made, as applied to frequency response analysis.

2. Basic Equation

In the analysis of frequency response of
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viscoelastic materials, the relationship between
stress 0 and strain € can be written as
5=D(jw) (1)
Note & and £ denote complex amplitudes and
D(jw) is corresponding complex modulus. By
applying the complex constitutive equation (1),
the governing equation of lateral vibration of

beam can be derived as

Do) P28 —atpav(e)=g,(x)  (2)

where
w=angular velocity
p=density of beam material
A =cross-sectional area
I =geometrical moment of inertia
7(x)=complex amplitude of lateral deflection
gy(z)=complex distributed load.
In equation (2), the Bernoulli-Euler postulate of
beam theory is adopted and so the shear defor-

mation is neglected.

3. Finite Element Formulation

By following the standard procedure®, we can
obtain the finite element equivalent of (2) as
—w’[M] {Vp} -+ [K] {17?} = {@p} (3)
where
{V »} =displacement vector whose components
are lateral deflection and angle of inclina-
tion at nodes
{Q,} =force vector whose components are shear
force and moment at nodes
[KJj=element stiffness matrix
[M]=element mass matrix.
We write the complex stiffness matrix and

force vectors as
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[K]=[K:]+JIK:]
{VP} = {Vpl} +7 {VFZ} (4)

{@P} ={Qn} +j {Qz}
Then, by comparing the real and imaginary
parts, we obtain from (3) the two sets of simul-

taneous linear equations as follows:

—@*[M1+[K.] —[K:] ] {Vpl}}
[ [K:] —o’[M]+[K,] {{sz}
_[{pr} }
Qs
(5)

When cubic shape function is assumed to
describe the lateral deflection of beam element of
length L, the element stiffness matrix [K] is

12/L3

6/L* 4/L
—12/L3 —6/L* 12/L°

6/L2  2/L —6/L? 4/L

(6)

The corresponding consistent mass matrix [M¢]

SYM.
[K]=D(jo)l

is given by
[Mc]
13/35
11L/210 L2105 SYM.
=pAL

9/70 13L/420  13/35
—13LJ420 —L¥140 —11L/210 L%/105
(7)
Alternatively, the following lumped mass matrix
[My.] can be used for the beam flexural defor-

mation

[Mi]=pAL (8)

al?
The ceefficient o of gradient mass in equation
(8)1s dependent on assumption. Thus, & =0 corre-
sponds to the case when we neglect the rotatory
inertia as in the [M¢] of equation (7). a=1/96,

when we assume the centers of rotatory inertia

:

e ¢

v

i i I j j

Fig. 1 Beam Element.
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at element nodes i and j of Fig. 1, and a=1/24,
when we devide the element into two parts and
place the centers of rotation at mid points i’ and
i’ of Fig. 1.

In passing, we refer here the resonant frequen-
cies of cantilever beam which is excited by the
constant amplitude external force or displacement
at the fixed end. The frequencies are given in
the ascending order as

w1=(1875/1)2V E¥p
w2=(4.694/1)*V Er?[p
ws=(7.855/1)*V' Er/p

or

©:=0.267 @, w3=17.5510;, ©:=34.390w; (9)
where E, £, p and ! are respectively Young’s
modulus, radius of gyration of area, density and
length of beam. Note, however, that the results
above neglect the effects of rotatory inertia and

shear deformation.

4. Numerical Examples

Numerical examples principally concern with
the cantilever beam of uniform cross-section
which is excited by the input with constant
displacement amplitude d, at the fixed end. The
number of element divisions is 10, and the data
in computation are

density of material: p=0.0001 (kg msec?/mm*)

length of beam: /=100.0 (mm)

geometrical moment of inertia:

I=5.0/6.0 (mm*).
a) Frequency Response of Multi-Element Me-
chanical Models

Fig. 2 shows and compares frequency response
curves obtained by the present procedure for
three kinds of mechanical models; the ratio of
free end amplitude 4 to excitation amplitude
do at the fixed end being given in relation to
frequency ratio w/wi, where w; denotes the first
resonant frequency of elastic cantilever beam.

It is seen that the effect of material damping
can be assessed reasonably by the present method.
Further, it should be noted that the seperate
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solution of eigen value problem which is rather
complicated can be eliminated, at least, in the
case of flexural vibration being studied.
b) Reconsideration of Onogi’s Method

In Onogi’s or so-called vibrating reed method®,
the material is implicitly assumed to be repre-
Voigt model. The actual

sented by simple

Ee =50. 0 (kg/mm?)
E: =10. 0 (kg/mm?)

g 15.01- 7, =10. 0 (kg msec/mn?)
5 E: =10.0 (kg/mn®)
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Fig. 2 TFrequency response curve of viscoelastic beams.

(A) Voigt model
(B) Three-element model
(C) Five-element model

and be represented, for example, by the generalized
multi-element Maxwell
studied the validity of the Onogi’s method by the

model. Therefore, we
following procedure.

(i) First, we compute the frequency response

curve such as Fig. 2 (B) or solid curve (A)

of Fig. 3 for the three element Maxwell

material behavior may not be of the Voigt type model.
10.0

50.0 (kg/mn?)
N —— model (A) (kg/mm?) 10.0
R L S — model (B) (kg msec/mn?)
~ model (A)
=
5 ﬂhy Onogi’s equation
£ 10.0-
E 51.830 8.512
3 5.0 - {kg/mn?) (kg msec/mn?)
g model (B)

57 6.0 6.5 7.0

frequency ratio (@/®;)

Fig. 3 Reconsideration of Onogi’s method.
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(ii) Then, Onogi's method is applied to the
response curve and determine the element
costants relevant to implicitly assumed simple
Voigt model, i.e. model (B) of Fig. 3.

(iii) The same procedure as in (i) is applied
to evaluate the frequency response for the
Voigt model determined in step (ii).

The resultig response is shown by dotted curve
in Fig. 3. The curve compares well with the
original solid one and it is concluded that the
Voigt model approximation or the Onogi’s method
is reasonable at least for the case studied.
¢) Consistent vs. Lumped Mass Matrices

It has been frequently argued that the choice
of mass matrices affects the numerical results as
well as the stability of solution in the computation

process®, The effects on resonant frequencies

A consistent mass matrix [ Mc]
X =0
® =45 lumped mass matrix [ M]
O a=%
L1
3
~
3
~ 10— g-—— N DS
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Fig. 4 A comparison of effects of consistent and
lumped mass matrices upon computed
resonant frequency.
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have been studied in the present paper. The
results are summarized in Fig. 4, where resonant
frequencies @ for lumped mass matrices [M]
with a:O,‘ a=1/96 and a=1/24 are given in
relation to ®o’s which correspond to the exact
resonance frequencies at each mode, ie. wi, s,
@3, ... in equation (9 ). Comment should be made
that the dotted line of Fig. 4 represents the analy-
tical solution which incorporates the translational

as well as rotatory inertias.

5. Conclusions

Besides the reasonable numerical results, it
should be emphasized that the analysis of
frequency response can be a promising substitute
for eigen solution which requires the rather
complicated procedure and is different, in many
respects, from the conventional finite element
formulation.

(Manuscript received March 31, 1973)
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