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1. Introduction

The preceding work! in which we treated the
combined loading of axial force and torsion of
uniform beams is.- extended to include the pure
bending and/or coexistence of the bending mode
of deformation. When the bending predominates,
it is appropriate to incorporate the quadratic shape
function with respect to the coordinates x, ¥ which
are being taken in the cros-section of the beam
or bar. Expository examples are concernd with
the pure bending and its combination with torsion.
The secondary stress inherent to the elastic-plastic
deformation as well as the development of plastic

enclave are studied in detail.
2. Finite element formulation

(1) displacement function

We take the x and y axes in the plane of the
cross-section and z axis to the axial direction of
the beam similarly as in the preceding paper (see
Fig. 1). We base our formulation on the follow-
ing expressions of displacements u, v, w which
have been shown to be obtained by the semi-
inverse method® for the uniform beam under the
combined loadings of axial tensile (or compressive)

force, bending and twisting moments :
1 )
u=f(z, y)—!-?/fyzz—ﬁyz |

v= [z, ?/)—%KzzzwLOzx (1)

w=f3(x, y) —Ky2T + K2yz+ €02
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where €, 0, £; and £, denote the longitudinal
strain in the central layer, the angle of twist, and
the curvatures in the yz and =z planes respec-
tively. The symmetry of the transverse cross-
section is assumed and the bending moments M .
and My are applied respectively in the planes yz
and zz of symmetry. It is known that the func-
tions f1 and f2 of Eq. (1) are given for the

elastic deformation
filz, y)= —vEzzy +% ky(2?—y?) —veox l

Sz, )= —%/fx(yz_rz)-i—wcyxy—ugoy J

(2)

The function f3 represents the warping of cross-
section due to the twisting moment 7. Note
from Eq. (1) that we are concerned with the de-
formation which is not dependent on the axial
coordinate z. Therefore, we can assume only unit
length along z-axis.
(2) triangular element and shape function

Generally, the displacements u, v and w within
each element shown in Fig. 1 are expressed as

Eq. (1), and we assumed in the preceding paper

k

z iQ
]

|

Fig. 1 Triangular element.
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that functions f1, f2 and f3 are all linear with —|—4§,~ij,,—01(1—z)—t—ih‘x(l—zz)
respect to the z, y coordinates. It was found, 2

however, that this assumption lead to the results w=Liwi+{jwi+ L

seriously in error when applied to the problems +oy2(1—2) —kay(1—z)—eo(1—2)

where the bending deformations prevail. Further, (3)
Eq. (2) indicates that the quadratic expresions of The suffixes denote quantities associated with the
f1 and f: give the exact solution for the elastic corresponing corner nodes 7, j, k and/or mid-side
problem which accompanies the bending modes nodes £, m, n.

of deformation. Thus the shape function adopted (3) stiffness equation

in the present formulation is, for the triangular The strain components within each element are
clement, in terms of the area coordinates (i, {; derived from the displacement functions of Eq.
and ¢ as follows: (3) as follows

{e} =[B1{d} (4)

where LE|=|Ex €y €2 Tyz Tz Txyl

u=Ci(l =L =i+ G — G —Couy
A L Ce— i — C)un+ AL G + 40 ittm

AL L un+0y(1 —-z)——%—/fy(l —2?)

v=0i({ == Cvi+ LG =G~ vs
+ Gl —C — Coa+ 4800+ 48 ivm

L |=|u:i vi wiin; v; Wjitg Vi Wi

[B1=GLB: 1+ LB+ GIB]

[ Ui Viilm Umilln Uni€o 0 Kz Ky
(
\ and [B:], [B;]1, [B:] are

8bi 0 0ii—b; 0 0i—be 0 0:004be0 145;0 0 0 0 0
0 3,00 —c;0i0 —ce0000 4,0 4,0 0 0 0
L oo 0 00 0 0 ooio 0 o 0 i1 0 gy —a
0 0 0 0 ¢i0 0 000 03i0 0 0 2 —1 0
0 0 &0 0 b0 0 5000 00 00—y 0 1
(8 8bi 0 i —c; —b; 0 i—cx —bs 010 0idcy 4beide; 45510 0 0
=00 0086;0 0:—6,0 0460 100460 (0 0 0
0 —ci 010 36,00 —cx0i0 4cei0 00 4c;i0 0 0
51 ° o‘%o 0 00 0 00 0000 0 10w
o cii0 0 ¢;i0 0 0 0 {000 0 0 =z, —1 0
0 b0 0 b0 0 Hi0 0 000 0 0 —y 0 1
—¢i —bi 0 i8¢; 3b; 0 i—cp —Dby 0 idce 4b10 Oider 4510 0 0 0
;0 0i—b;0 035, 0 0:4b;0 45,0 000 0 0 0
;030 —c; 010 B3¢, 0 0 dc;i0 46,000 0 0 0
L oo 0 00 0 00 0 0 0 0 01 0 7 —a
0 cii0 0 c;i0 0 ¢i0 0 0 0 00i0 2 —1 0
b0 0 b0 0 50 0 0 0 000 —y 0 1
et —bi 0 i—c; —b; 0 3¢y 3by O idcs 4bjidc: 46,000 0 0 0
with ai aj a (ZiYr—ZrYi TrYi —ZiYr Til)i—XiYi
bi b; by Ii Yi— Yk Yr—Yi Yi—y;
Ci Cj Ck |l zr—xj Zi—Xp Lj—Xi
where xz;,yi, -, y» are the coordinates of corner {o} =[D]{e} =[ DI B1{d} (5)
nodes and A is the area of the element triangle. where L0]=|0z Oy 0z Tyz Tzz Tay]
By using the stress-strain matrix [D]"-®, the The strain energy U in each element can be ex-
associated stress field is expressed as pressed by Egs. (4) and (5) as
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1
U—785L0 e} dx dy
1 1
=14 ([ BYLDI Bldz dy{d} = L4 |[£1{d)
Then follows the stiffness matrix [k] which is
expressed as, by integration over the area of

element triangle

rk1=\\rBrCDIBIdz dy

=2 (B TDIBI+ (BT [DIB]

+[BIDIB I+ [ B[ DI[B.]]
where [B:1=[Bil+[B;1+[B:]
The stiffness equation of the relevant beam ele-
ment connects the displacement vector {d} with
the force vector {F} and can be expressed as

(F} =[K]1d)

where
LF]=10000005000:00{00i00iF; TM, M,
The subsequent procedure follows the standard

pattern of the finite element displacement method.

3. Numerical examples

As numerical examples, we solved the beams
with square cross-section under pure bending and
the combination of bending and torsion. In the
computation, a quadrant of the cross-section is
considered, by taking account of the symmetric
nature of the problem. Material constants are
E=2x10" kg/mm? Y (yield stress)=25 kg/mm?
H'’ (strain hardening modulus)=0kg/mm? and
v (Poisson’s ratio)=0.3. The side length of the
square cross section is 20 mm.

(1) pure bending

The numerical results for the elastic range have
been found naturally to correlate well with the
exact solution, since the shape functions relevant
to displacements # and v are quadratic in z and
y and precise in elastic case. From this it is ex-
pected the reasonable accuracy of solution is main-
tained for the elastic-plastic realm of deformation.

Fig. 2 shows the displacement increments Au
and 4dv between stages 4 and 5 in an example of

elastic-plastic bending, and Fig. 3 shows the stress
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y, dv
stage 4—5 Au} 500
dv
plastic region
elastic region
z, du
0 S,

Fgi. 2 Displacements increments Ju and Av.
Distance measured from the surround-
ing square section indicates the dis-
placements % 500.

stage 1= stage 10

03 a2

-0.1 =0.1{-0.1 -0.1 at (8 ~o.1|  rlasue
—0.1 —u.1]-01 e o los X fregmu

-01 o6 0.5

0.9 —o.8]-0.6 -0l

—0.4 -0.4]-0.3

a (K

Fig. 3 Stress increment do. (kg/mm?). Values
in the elements which are left blank are
less than 0.05kg/mm?

increment Jo. from stage 1 to 2 and 4 to 5.

The stress state of the element of nonhardening
material treated here is not affected practically,
once it becomes plastic, by the later displacement
increment. Therefore, the deformation in the
plastic region is considered to be nearly incom-
pressible (i.e. »=0.5). On the other hand, the
deformation of the elastic region is compressible
(v=0.3). Noting these features, the displacement
increments du and dv in Fig. 2 agree well with
the following expectation. In the vicinity of the
elastic-plastic boundary, the plastic side is pulled
in z direction by the elastic region. Conversely,
the elastic side is contracted by the plastic region.
In conformity with these, the stress increments
Aoz of Fig. 3 are positive in the plastic side of
the elastic-plastic boundary and negative in the

elastic side. The other secondary stress increments
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Aoy and dtzy were found to exist, but they are
considerably small, compared with doa.

The stress increment of the element generally
reverses its sign as the elastic-plastic boundary
traverses the element. Therefore, it is difficult
to elucidate the general tendency of the secondary
stress (not the stress increment at each stage of
deformation), particularly by the rather coarse
element division used in this article. So, it is
only remarked here that the absolute value of
secondary stresses Oz, 0y, and Tzy is the order of
3 kg/mm?, whereas the primary stress o in axial

2 at

direction is between 23.1 and 25.3 kg/mm
the limit, i. e. fully plastic state of deformation.

The secondary stresses do not appear in the in-
compressible elastic-plastic material. Fig. 4 shows
the secondary stress 0. as well as its increment
vanish, as the Poisson’s ratio v approaches to 0. 5.
(2) combined loading of bending and

twist

For this combination, the numerical solution of
Steele® is available for the square bar of the
plastic-rigid material. In order to compare with
Steele’s solution, computation was carried out for

two cases where the value of strain ratio d0/dkx

o, . staged

do, | stage 3—4

0.6
0.5k o element2
Ng - e clement4

f

E‘J y
0.4k
&
<
5
w 0.3F
wn
Q
5
w
-
5 0.2+
=
3
Q
(3]
s do,

0.1f

.

1
0.3 0.4 0.

Poisson’s ratio v

(&3]

Fig. 4 Relation between secondary stress o
and Poisson’s ratio .

is kept constant (d0/dkz=V"3 and 1V 3/2
respectively) during the whole process of loading.

Tig. 5 depicts the development of plastic region
for the case of strain ratio d0/dr==1"3. The

plastic yielding starts at the extreme boundary

y T Yy T
N ‘ ~N
¥ \\T
14 x
0 <
df/dk, =
(d8/dx,=[3) 5 < N < .
stage 1 M, 0 stage 3 ) M,
Yy
\T ! ‘\T y ‘\T
¢ ( = a
N * X o x
© stage 6 M, © stage 9 \Mx stage 11 \Mx

Fig. 5 Development of plastic region (combined loading of bending and twist)
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element on y axis where both stresses due to bend-
ing and twist predominate. Subsequent yielding
occurs in the element at the extreme of z, and
then the plastic region expands to cover the whole
cross-section as the loads increase.

Fig. 6 shows the axial stress distribution o in
the ratio to the yield stress oy of the material at
the fully plastic state of deformation. The stress
at the centroid of the element is given. The
relation between bending and twisting moments
M, T at the fully plastic state is illustrated in

Steele’s solution
y T
—— (plastic-rigid material) \

s/
(d0/de,=[3) M,

Fig. 6 Distribution of o./oy.

T/ T,

1.2

1.0 upper bound

0.8

0.6
present solution{r=0.3)

0 df/de,=J3
0-47 A do/de,=]/3 /2

Steele’s solution(v=0.5)
0.2 @ gg/dk, =3
A df/de,=[3/2

1 ] 1 1
0 0.2 0.4 0.6 0.8 1.0 1.2
M/M,
Fig. 7 Interaction curve (combined loading of
bending and twist).
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Fig. 7 where a comparison with the interaction
curves of plastic-rigid analysis is also made.

It should be emphasized that the present for-
mulation facilitates the analysis at every stages
of deformation, not merely at the limiting fully
plastic stage. Moreover, it is of interest to note
that the M-T relation at the limiting stage ob-
tained for the compressible elastic-plastic material
lies between the upper and lower bounds of in-
teraction curve for the plastic-rigid material.

As for the features of the secondary stress, it
can only be said that its maximum absolute value
is 0. 33 kg/mm? at the fully plastic state of the

material whose yield stress is 25 kg/mm?.
4. Conclusions

The finite element solution procedure is for-
mulated for the elastic-plastic deformation of uni-
form beams subjected to combined loadings which
consist of axial tensile (or compressive) force,
bending and twisting moments. In the case where
the bending deformation predominates, the use of
the quadratic displacement function is imperative.
Presesnt formulation facilitates the pursuit of the
development of the plastic region. Further, it
has become possible to make evaluation of the
secondary stress which could not be assessed so far.
An extension of the present formulation is at-
tempted towards the problems which accompany
the shear load and/or non-uniformity of cross-
section, i.e. the cases where the deformation and
stress are dependent -on the axial coordinate z.

(Manuscript received March 6, 1973)
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