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FINITE ELEMENT ANALYSIS OF LOAD CELL RESPONSE
IN HIGH SPEED TENSILE TESTING
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Summary

Load cell response in high speed tensile testing
is analysed by the finite element method as an
elastic and visco-elastic wave propagation problem.
Types of load measuring system studied are the
conventional load cell-chuck assembly and the
proposed one which is similar to that used in the
split Hopkinson bar compression test. Various
combinations of chuck mass and stiffness ratio
of load cell to specimen have been examined.
It is found that the proposed tensile load measur-
ing system which is characterized by the small
mass and the improved stiffness ratio follows
faithfully the behavior of the specimen under
dynamic loadings. The analysis concerns mainly
with one dimensional wave, but a preliminary
result for two-dimensional plane problem is given

in the last section.

1. Introduction

Stress wave as well as vibration disturb the
load cell output in high speed tensile testing.
Such noises prevail when the testing speed in-
creases or the duration time of testing from the
instant of loading to specimen rupture decreases.
Consequently, beyond a certain limit of loading
speed, it becomes practically impossible to obtain
the true material response to the applied load.
To overcome these difficulties, we designed and
built a new load measuring system. It consists
of a long stiff load measuring transmit bar with
a grip of small mass attached to it. To verify

the usefulness of the proposed system, its chara-
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cteristics are analyzed and compared with those

of the conventional load cell-chuck assembly.
2. Method of Solution

The outline of solution procedure which is
described in the preceding paper? and succeeded
by this article is as follows.

The equation of motion of the whole system
is written as

[M]{46) +[K1{do) = (4F} (1)
where [ M ] and [ K] denote the mass and stifiness
matrices of the system respectively. Chuck mass
is concentrated and contained in [M]. Vector
{4F'} corresponds to external force increment, if
exists, at the nodes including both ends of the
system. Assuming the linear variation of accel-
eration within the time interval 4¢, we can re-
place the differential equation (1) by the following

linear algebraic equation
- 6
(ESESenIIE

= (4F) +[M112626+36‘} (2)

The material damping relevant to visco-elastic
materials can be incorporated into the equation
of motion (1) by adding the apparent force vec-
tor {Fa}, thus yielding

[M {46} +[K]{46} = {4F} + {Fa} (3)

{Fa} consists of contribution {F,}¢ from con-
stituent elements in mechanical model which is

expressed, for example in the case of simple

Aa{—ll}

Maxwell material, as

AT -

1
= AT,
1+ 5 At/

{Fa}¢=
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where T'» denotes the relaxation time, ¢ and A

are the current stress and the sectional area.

3. Numerical Results and Characteristics
of Load Measuring Systems

Figs. 1 and 2 show the models used in the
numerical analysis of conventional and proposed
measuring systems respectively. The stress in the
specimen is represented by that of the central
element distinguished by solid circle. The mea-
suring point of stress in the load cell or transmit
bar is indicated by open circle. It must be noted
that the effect of reflection of wave in the load
cell of the stress measuring system is not detri-
mental in the case of the proposed system, since
the specimen breaks before the reflected wave
comes back to the measuring gage station in high

speed testing.
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Fig. 1 Conventional system.
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Fig. 2 Proposed system.

Parameters or data in the computation, if other-
wise stated, are as follows.
load cell:
number of element divisions
5 (for conventional system)
50 (for proposed system)
length of individual element
4i=10mm
Young’s modulus E=20 000kg/mm?
0=0. 0008 kg+ msec?/mm?*
A=100mm?

density
sectional area
specimen :
number of element division
5 (standard specimen)
length of individual element
Al=10mm
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Young’s modulus E=2000kg/mm?
©0=0. 00008 kg -msec*/mm*
A=100mm?

tensile testing speed

density

sectional area

V=10 mm/msec

Specimen data given above represent the plas-
tics which are assumed, in the examples studied,
to have the same sectional area as the load cell.
It must be noted, however, that the numerical
results are applicable to metal (e. g. steel) specimen
whose sectional area is approximately one-tenth
of the load cell.

Figs. 3 and 4 compare the response of the
conventional and proposed load measuring sys-
tems. It can be seen that in the conventional
method, the vibration of load cell superposes on

the stress wave which propagates and repeats
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Fig. 3 Response of conventional system with
relatively heavy chuck for gripping

specimen.
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Fig. 4 Response of proposed system with chuck
of small mass for gripping specimen.
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reflections in specimen and load cell; thus the
record of the stress being deteriorated. Moreover,
the conventional system is not suitable for the
stress measurement under very high speed test
conditions, since the specimen breaks under the
influence of the stress wave reflection which dis-
turbs the true record of the material behavior.
Fig. 5 exemplifies the effect of the mass of
chuck in the case of the conventional system.
It is concluded that the mass shoud be kept as
small as possible. Also important is the ratio
of stiffness between the load cell and specimen
under test. As shown in Fig. 6, the stress in
the specimen dose not increase monoctonously,
when the stiffness of the specimen is increased

and made, for example, equal to that of the load
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Fig. 5 Response of conventional system. The
mass of chuck is ten times of the actual

one.
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Fig. 6 Response of conventional system. Stiff-
ness of the specimen is increased ten
times and made equal to that of the
load cell.

cell. This fact should be accounted for in the
test intended to obtain the true work-hardening

characteristics of materials.
4. Two Dimensional Wave Problem

The method of analysis can be easily extended
to the two dimensional case by employing appro-
priate mass and stiffness matrices [M ], [K] and
apparent load vector {I";}. Care should be taken,
however, of the relative mesh sizes between spa-
tial element division and time interval for the
temporal integration. This problem has been
discussed by Fujii®.

The rectangular element of Fig. 7 and mesh
division of Fig. 8 are used and the plane elastic
stress wave is analyszed. The ratio of time inter-
val At and the length 4! (=2a=2b) of the rec-
tangular element is taken as

At=A1]c, (4)

. _ [K+4GJ3_ 1—v E
with 1= o ’\/<1-2»><1+D)Jp

(5)

where ¢ corresponds to the velocity of longitu-

dinal elastic wave®.

Figs. 9 and 10 depict the effect of Poisson’s
ratio on wave form. In the case of Fig. 9 with
»=0, the problem degenerates essentially to one
dimensional problem, since the transverse reflec-

tion of wave from the side wall does not occur.
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Fig. 7 Rectangular element.
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Fig. 8 Element division of plane model.
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Fig. 9 Two-dimensional stress wave
propagation (»=0).
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Fig. 10 Two-dimensional stress wave
propagation (v=0. 3).

In contrast, the transverse wave superposes on
the longitudinal one, as can be seen from Fig. 10

for the case of elastic wave with v=0, 3.

5. Conclusion

By introducing a new measuring system, it has
become possible to pursue the true characteristics
of response of materials to the high speed loadings.
To verify the effectiveness of the proposed meth-
od, propagation of one dimensional wave in the
system of load cell, specimen and chuck mass
is analysed by the finite element procedure. Fur-
ther, the method is extended to cover stress waves
in the two dimensional continuum media.

(Manuscript received March 26, 1973)
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