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1. Introduction

In the investigation of various types of elastic
instability phenomena, it is an important and
fundamental subject to construct both pre- and
post-buckling equilibrium paths, which provide
us the basis for assessing not only the buckling
load but also the influence of imperfection.

In many cases the analysis of the critical points
belongs to an eigen-value problem considering
nonlinear pre-buckling deformation.

Especially in the construction of equilibrium pa-
ths through a bifurcation point, we face more diffi-
cult and complicated problems as this point does
not satisfy the uniqueness condition of solution.

The principle for the post-buckling analysis has
been presented, for example by Koiter” and
Thompson®, mainly by means of static perturba-
tion method in which the diagonalization process
of coefficient matrix of the equilibrium equations
were introduced to make the discussion simple
and clear.

However, as an actual process of numerical
analysis of bifurcation problem, this diagonaliza-
tion scheme becomes a serious drawback, because
it requires the whole set of eigenvectors of the
original coefficient matrix®.

Thompson® proposed a method to avoid this
difficulty by introducing “sliding coordinates” in
which the analysis is fixed in a prescribed load
level in the vicinity of the bifurcation point.
This method has been applied by Mau and
Gallagher® to the stability analysis in the form
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of finite element method.

The present paper gives a new approach of
constructing post-buckling paths beyond bifurca-
tion point without diagonalization technique for
nonlinear structural systems represented by dis-
crete variables. A characteristic of this approach
is a direct derivation of branching paths depend-
ing exclusively basing on the condition of solution

at the point of bifurcation.

2. Construction of Post-Buckling Curves

The fundamental equations to be solved are
ones introduced by applying the perturbation
technique to nonlinear equilibrium equations.
The derivation is fully presented in reference(3)
and hence let us begin with writing down the
first and the second perturbation equations of the
load-incremental type expressed in matrix form:

Fourt foe o foun|[di] [ o 0]

 fon || de

+
fon,léfon,Z"'fon,n dﬂJ fon_" 0

Forrt foe e foon |) de

f°1,1§ SOz fn a?'ll R

il gid o0 Son il d i el p 2 ) 0
fon.ii fon,ix fon,xx 0
(2)

where
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gooo® &
d;i: increment of nodal displacement
A . increment of load parameter
¢ : perturbation parameter in Egs. (3 )and (4)

fi ¢ i-th equilibrium function

and
:i 0. —_% 0. _af"'
—dt f ”’—ad,- z:o’ f BT 0 =0
Once the derivatives, d:, A, di, A, - , are

obtained from the above equations, the increments
of displacements and load parameter are represen-

ted in a parametric form as follows.

di(t>:d.it+%d"ilz—|— ...... (3)

CORTIRE SEERs (4)

The first equation of the displacement-incre-
mental type which is obtained by the exchange
of the locations of &1 and A in Eq. (1) becomes

[f%,l]
SO di=
0

(5)
At the bifurcation point, the determinants not
only of the coefficient matrix £ :) for {d:}
in Eq. (1), but also of the matrix given in Eq.

(5) become zero®. This means that the exchange
of the column vectors {f%,} and {f%.} does
not recover the rank of the coeflicient matrix.
This is a difference of a bifurcation point from
the case of limit point corresponding the non-
uniqueness of solution at the bifurcation point.
Now let us consider the case where only the
smallest eigenvalue of the matrix (f°,:] is zero,
ie. the rank is n—1. Then we have the follow-

ing non-zero minor determinant of the matrix

[for,i]-

PAVARIES (6)
in which
. 22 0 0%,
[Af()m]: : : (7}
SOz fOnn
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In the actual process, the row and the column to
be deleted can be sought by Gauss-Jordan elimi-
nation procedure.

Though, taking d; as the parameter ¢, the
displacement-incremental process is explained here-
after, the similar formulation is possible for the
load-incremental process, because the matrix in

Eq. (7) is common for both the cases of Egs.

(1) and (5).
By the definition, we have
t=d, :Lzlzl, 0.,7.1:0’ ...... (8)

Eqgs. (3) and (4) take the following form in view

of the above equations.

di(d1)=d,-d1+%d',-dlz+ ...... (i#l) (9)
z(dl)zlidl’*—%zdlz—l— ...... (10>
The final goal is to determine d;, 4, ds, 4, -+

without diagonalization process.
Introduction of Eq. (8) into Eq. (5) leads to

the following two equations:

ds
FUnAE(Fo e foa) © =0 (11)
dn
foz,x f02,2"'f02,n Jz f°2,1 01l
VSN : Py b =y 1
ACRY fonz e o n ) dn AR 0)
1z2)
From the above equation, we have
afz fOZ,Z"'f02,n -1 foz,x f02.1
N N S )
ai" fon,z"'fon,n fon.x fon,l
(13)

By substitution of Eq. (13) into Eq. (11), the
following linear equation of 4 is obtained.
al+p=0 (14)
where
a=f°1,>~
f02,2 b f02,1l —1 foz,).
= (2 fOLn) : :
fon.z“'fon,n fon,n
(15)
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S s s 5 %% % M
,3=f°1,1 f02,2“’f02,n -1 foz,ij
Fy e FO Y f1 — (O O ) : ] d i Ydid;
—(fOnz - fOra) : : oz e [0 i
Fona fOnn 1 FO, i FACRYY
(16) 420 1 adddHlr A udads
As the determinant of the coefficient matrix in SO in Sl
Eq. (5) is zero, 4 is indefinite in Eq. (5) and +2/ %, nd i+ foL =0 (21)

accordingly in Eq. (14). Therefore, in order that
the bifurcation point satisfies the first perturbation
equations (11) and (12),

a=p=0 amn
must hold in Eq. (14). A proof of Eq. (17) in
mathematical form is presented in Appendix.

In other words, the first perturbation equation
(5) does not yield an unique solution of A, giving
only relations between coefficients expressed in
Eq. (17).

is necessary to make use of the second perturba-

In order to obtain the values for 4, it

tion equation.

Introduction of Eq. (8) into Eq. (2) leads to
ds
Foun At (forz - fou i foiidids
dn
+2f01,i>\aii/i+f°1,n/iz=0 (18)
and
f2n FO2z o fo2a) (d2 S5
oAl : PoH o pdid;
N Fouzo foun)\dn ARy
foz, ix fOZ,KX 0
vol i e te=l:
FOn,in RS 0
(19)
From the above equation, we have e
f°22 f02n -1 foz,x
{ {7
[P,z f°nn AR
SO 200
didi+2 dil
{fon fon,ii
SRS )
oo by (20)
Fonan e

Substitution of Eq. (20) into Eq. (18) in view of
Eq. (9) gives

It is to be noted that the term of A has been
eliminated in Eq. (21).

Finally, the following quadratic equation of A
is obtained by substituting Egs. (8) and (13)
into Eq. (21).

al?4-bi+c=0 (22)
where
a=g% 1 fOh 15 g% % 2 +20% & % in g%
F0%, & % a0 ot 0,05 g% g%
+2£0%, i g%
b=0% (% 1i+ %, i1) g%
40% & f %, (g%, % 9%, 5+ 0%, 7 9%, x)
+20%, 1 % 1x+29%, £ /%, in g%, i
(O, i1+ £01,10) @0 a2, i g0, ¢
A 0,000, £ g% 9% 8 901, 1) 2%, 1n
c=g", O 11+ 0% 2( O i+ 0%, 11)9%, i
+ g%k SO g% 9% L
H (O %, 10)0%, i+ 0,1 0%, i g%, 5
(i, 7, k=2~n) (23)

in which
gol,zw S22 - f°2,nl_1jf°2,1]
e == %2 fOhnl ¢ fO%1 %
g°1,J ) fon,Z "fon,rj [fon,IJ ‘
goz,x] S22 - fOn _l}foz,x]

o (== i oua| Aty 29

gii,n = i2 " R ,
g"n,xJ fon,z“‘fon,n {fon,xJ

Eq. (22), obtained without diagonalization process,

(24)

corresponds with Eq. (37) in reference (3].
It is apparent that the root of Eq. (22) is given
in the form

M —b+Vbi—dac
[zz}——Za @

By introduction of A into A: into Eg. (13)
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Wt % #
respectively, two sets of (dz -+ d,) are obtained.
Further, by substituting A and d: obtained
above, into higher order perturbation equations,
X and d; can be determined, if necessary.
Upon using Egs. (9 ), (10) and the above results,
we can construct post-buckling curves beyond

bifurcation point without diagonalization process.

3. Illustrative Example

In order to examine the validity of the present
method, model calculation was carried out on the
examples of a simple three-dimensional hinged
truss of dome type configuration having 21 degrees
of freedom. The stiffness matrices retaining the
complete nonlinear terms up to the third order of

4

—4
1oL (X107EA)

limit point

(perfect)

__geo-imp . . .
= 4., bifurcation point

D . L ST

DZZ
1 il 1 n i 1 { I
2.0 N\ 3-0(cm)
Fig. 1 Vertical displacement of the node 2.

4
(X10~4EA)
7 o)
6 I A"
5t geosimp bifurcation
q pomnt
4t ===}
(ii) ol load-imp /" (perfect)
21 7 '
W A
DI:
—0.2 ~0.1 0 0.1 0.2 0.3(cm)

Fig. 2 Vertical displacement of the central node.
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displacements® were used.

In Figs. 1 through 3, the bold linés are the
load-displacement curves of the perfect system,
where the post-buckling curves branching from

the bifurcation point were calculated by the

A4
D (perfect) (X10~‘EA)
7
6 geo: _imp
o NCifurcation 5 Node 2
______ o point s A
---- Il\?ad~ imp \"‘\ 4 , load:imp
odes b 13 Nodes
2,3,5 and 6 ’ “4 and 7
Lo ‘\‘
H
D,
S0z <o =01 —0.05 0 (cm)
Fig. 3 Horizontal radial displacement of non-central
nodes.
Table 1
(a) Coordinates of the Joints, in cm geo - imp
(perfect system) (imperfect)
Joint X Y z Z
1 0.0 0.0 0.0 0.0
2 25.0 0.0 2.0 1.8
3 12.5 —21.65 2.0 2.0
4 —12.5 —21.65 2.0 2.0
5 —25.0 0.0 2,0 1.8
6 —12.5 21.5 2.0 2.0
7 12.5 21.5 2.0 2.0
8 43.30 | —25.0 8.216 8.216
9 0.0 —50.0 8.216 8.216
10 —43.30 | —25.0 8.216 8.216
11 —43.30 25.0 8.216 8.216
12 0.0 50. 0 8.216 8.216
13 43.3) 25.0 8.216 8.216
9
(b) Mode of Load
10 8 Distribution
load « imp
—X A Z
1.0 1.0
11 13 2.0 2.0
« fixed joint 2.0 2.0
12 o free joint 2.0 1.5
ly 2.0 2.0
@0
[N = — X | 20 2.0
«° * 2.0 L5
2 em X=Y=0 for all
+—25—+—25— —r=Ulora
43, 3—+—43, 3—i types.

Goemetry of the Trussed Dome
Analyzed.

nlllllIIIIllllIlIIlllllIlllllIIllllllIIIIIIIIIIIIlIIIllllllllIIIllllllllIllIlllllllIlllIlllllllllHlllllllllllllllllIlIIIllllIllnlllllnllmll|IIIIIIIllIlIllllllllllIllllllllllllllIllIlIIIllIlIIlIIIIIIIlllllllllIIIIIIIllllllIlllllHIlllIlllIIIIIIIHlllIlllllllllIllllllllllllll

24



Vol. 24, No.12 (1972.12)

& B B % (SEISAN-KENKYU) 527

IIHIIIIIIIllllllllll|llllllllllllllIHII[IIIIIIIHIIIlIlIllIIIIHIIIIIIIIIIIIHlIIllIIlIIH[IIHIIIHII|lIllIIlIlIllIIlIIIlIIIlHlI[lIlIlIlIIIIlll|[IlIIlI|llII[lIIIIIII|IIIIIlIIlIIIIllll[llllllllIIIIIIHIIHIIIIIIIIIIHIIH[]I[IE? 72 o i)

proposed method.

The response for two kinds of imperfect systems
were analyzed. One is the imperfection of geo-
metry shown in Table-I in the column “geo-imp”
and another is the loading imperfection indicated
by Table-I in the column “load-imp”. The
obtained results are shown by broken lines in

the figures.

4. Conclusion

A new method of constructing equilibrium paths
through a bifurcation point was presented. This
method enables a direct and easy approach to the
post-buckling branch analysis by avoiding the
laborious process of diagonalization of coefficient
matrix.

On the basis of the perturbation method of
solving nonlinear equilibrium equations, the initial
post-buckling paths branching from a bifurcation
point are directly obtained by considering the
condition of solution for the first and the second
perturbation equations.

As an illustrative example, complete equilibrium
paths for a bifurcation buckling of a three-dimen-
sional truss were shown, where the branch analysis
was carried out by the proposed method.

(Manuscript received September 5, 1972)
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Appendix: Proof of Eq. (17)

Let us represent the coefficient matrix (f°r,:)

in the form:

a2

, | A2z =0 (a-1)

az | Az

Multiplication of the above by the regular matrix

leads to

1 —aiAxt || ani @

L1 i
0 e, ax | Az
i 1 H

an—andztan | 0

‘ = i (3—2)
a: Az

By calculating the determinants of both sides of
Eq. (a-2), we have

an—aiz Az 'an=0 (a-3)
The left term of the above equation corresponds
with Eq. (16), i.e. 8. Hence,

B=0 (a-4)

In a similar manner, we can prove a=0.
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