ELERE 'S

Logic Design Assistance System
based on Temporal Logic

(RIS < REERERI XY % 7 4)

19894E 12 A 22 H

HEHE HEPES B

FORAR AR LR ITRI R R LA ES
B 3E 77078 SIS

N~

Logic Design Assistance System
based on Temporal Logic

Hiroshi Nakamura

Department of Electrical Engineering
The University of Tokyo
~7-3-1 Hongou, Bunkyo-ku
Tokyo 113, Japan

December 22,1989

Abstract

In this thesis, a logic design assistance system based on temporal logic is presented.
There are three key points in this system: how to specify the behavior, how to verify the

control part, and how to verify the data path.

A new behavioral description language named Tokio is proposed. Tokio is based on

interval temporal logic. Tokio has the following three characteristics.
e Sequentiality and concurrency can be specified accurately and simply.

e Specified behaviors can be simulated.

o The behavioral descriptions at both the algorithmic level and the register transfer

level are given in the same language.

A verifier for control part is presented in this thesis. In this verifier, a structure is
verified formally whether it satisfies a given specification. This verifier is applied to two

examples.
A data path verifier is described next. This is the central part of this assistance system.

The inputs are the behavior and the structure at the vregister transfer level. The following

items are realized by this verifier.
e Link informa,ti.ons between the behavior and the structure are derived automatically.
o Consistency between the behavior and the structure is verified automatically.
o The logic of the control part is derived automatically.

This data path verifier is also successfully applied to three examples.
Performance of this system is discussed and the proposed system is concluded to have

enough power to assist practical hardware design.

N~

ii

Acknowledgement

My deepest gratitude goes to my supervisor, Hidehiko Tanaka. His
great feeling for what research areas are important and intersting was a
good guide during my research.

I am very grateful to the late Tohru Moto-oka. He led mé to investi-
gate CAD.

I wish to thank Masahiro Fujita for valuable discussions and guidance.

I also wish to thank Shinji Kono for comments on this work.

I thank Masaya Nakai and Yuji Kukimoto for their deep contributions
to implement the assistance system. Takeshi Shimizu agreed to use the
data of the network interface processor. |

The students in Tanaka Laboratory have made my stay here a pleasant
one, thanks to Tadashi Saito, Fumiko Kouda, Tadashi Omori, Kouichi
Doi, Minoru Yoshida, Eiichi Takahashi, Yasuo Hidaka, leOhlkO Sagawa,
Toshihiro Nemoto, and all other members in Tanaka Lab.

Many thanks go to the following people for happy student lives: Takahiko
Yamazaki, Yoshitaka Okada, Chinae Yonezawa, and Hiroki Konaka.

Finally, my most sincere thanks go to my parents for their devoted

supports.

5 ~

- Contents

1 Introduction ' 1
1.1 Motivation e e e 1
1.2 Organizationof Thesis 2

2 Survey on Logic Design 3
2.1 Design Flow of Circuit Design 3

2.1.1 System Design o o oo 3
2.1.2 Function Design. e e e e e e e e e e 5
2.1.3 Gate Design B 6
2.1.4 Implementation Design e T
2.2 High Level Synthesis 8
221 Current Status Lo o oo 8
2.2.2 SynthesisTask 9
2.2.3 Yorktown Silicon Compiler e e e e 11
224 OpenProblem. LR 17
2.3 Hardware Description Language e .. 18
2.3.1 ISPS e 18
232 VHDL e e e E T e e e e e e e s e 21
2.4 DiscussionsintheSurvey. 23

iv

Hardware Logic Design Assistance System

3.1 Objective

3.2 Structure e e e e e e e e e

Tokio as a Hardware Description Language

4.1 Temporal Logic as a Hardware Description Language

411 LTTLy
412 ITL e
4.2 Tokio. i i e e
421 LogicofTokio.
4.2.2 Operatorsin Tokio
43 RTL-Tokio.
4.4 Derivation of RTL-Tokio from Tokio

Verification of Control Part

5.1 Structure e e e e e e e e e e e e e e e
5.2 Verification Method

5.2.1 Translating LTTL Formula into State Diagram

5.2.2 Verification Method using Cover Expression . . .
5.2.3 Techniques for Increasing the Efficiency
5.3 Experimental Results
5.3.1 Receiver Circuit L
532 DMA Controller. e

‘Veriﬁcation of Data Path
6.1 Structure 0. R
6.2 Verification Method Lo

6.2.1 Structural Description

CONTENTS

¥y~

CONTENTS

6.22 Translator oo
6.2.3 Facility Checker
6.2.4 Forward Time Trace
6.2.5 Backward Time Trace
6.3 Experimental Results
6.3.1 Computing Square Root
6.3.2 General Processor oo
6.3.3 Network Interface Processor

7 Discussions
7.1 Performance Evaluation of Control Part Verifier
T.1.1 Speed e
7.1.2 Size of Required Memory o
7.2 Performance Evaluation of Data Path Verifier
7.2.1 FacilityChecker
722 TimeTrace i,

7.3 Logic Design
7.4 Future Work

8 Conclusion

using Proposed System R

80
81
82
88

89

89
94
101

113
113
113
114
115
115
116
117
119

121

=

vi

CONTENTS

(

List of Figures

2.1
2.2
2.3
2.4
2.5

3.1

4.1
4.2
4.3

44
45

4.8
4.7
4.8
4.9

5.1
5.2
5.3
5.4

Design Flow of Circuit Design 4

Design Processinthe YSC 12
YIF Example 13
Behavior of MC6502in ISPS 20
RSFlip-Flopin VHDL 24
Structure of Assistance System 30
Temporal Operator “;” it 38
Without Temporal Operators . F R 42
Chop Operator it it it ittt e et e 42
NextOperator...............; I 43
Always Operator e e 43
Temporal Assignment L oo e 45
Immediate Assignment L. oo e 45
‘Description Examples in Tokio e e e e e e 48
Recursion in RTL-Tokio, 50
Structure of Control Part Verifier 7
State Diagram (1). e e e 56
State Diagram (2). e e e e e e e 56
State Diagram (3) 58

Y~

viii

5.5
5.6
5.7
5.8
5.9
5.10
5.11

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

6.14

6.15
6.16
6.17
6.18

LIST OF FIGURES

State Diagram (4) 58
Structure of Synchronous Circuit 62
Flowchart of Verification 63
Control Part of Receiver by Handshaking 64
State Diagramfor NS 66
Receiver by Handshaking 70
DMA Controller. e 74
Structure of Data Path Verifier 78
Traced Example 85
Extracted State Diagram of Control Part 87
Behavioral Description for Computing Square Root 90
Data Path Structure for Computing Square Root 91
A Part of Output during Backward Time Trace 92
Operation Rule including Timing Relation and Its Execution 93
Behavioral Description of Processor 95
Instruction for Ackerman(1,1) 96
Da‘ta‘Path Strﬁcfure of Processor 99
Declaration of Functionin ALU 99
Structure of Network Interface Processor 102
Behavioral Description of Process Synchronization Part in NIP 103
Data Path Structure of Process Synchronization Part in NIP 104
Data Transfer through Network 107
Data Path Structure of Data Transfer Partin NIP 108
Behavioral Description of Data Transfer Part (Read-Part) I 109

Behavioral Description of Data Transfer Part (Write-Part) 110

List of Tables

2.1 Comparison of Manual and Automatic Structural Design 16
5.1 Size of On and Off Covers for Receiver 71
5.2 Required CPU Time for Verifying Receiver e 72
5.3 Size of On and Off Covers for DMA Controller 75
5.4 Required CPU Time for Verifying DMA Controller 76
6.1 Results of Verifying the Circuit for Calculating Square Root 92
6.2 Required CPU Time for Simulating ackerman(1,1) 98
6.3 Result of Verifying Processor. e . 100
6.4 Result of Verifying Process Synchronization Part in NIP 105
6.5 Result of Verifying Data Transfer Part (Read-Part) 111
6.6 Result of Verifying Data Transfer Part (Write-Part) 112

ix

LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

In recent years, computer systems have become larger and more complicated. They
have also spread over and have got the most essential part in our lives. The pop-
ularization of ASIC(Application Specific Integrated Circuit)s typically represents
this matter. Along with this popularization, theré arise much more requirements to
develop digital systems in short turn-around and without errors. In order to meet
these requests, CAD (Computer Aided Design) tools are indispensable.

The process of designing digital systems consists of several hierarchical stages,
that is, system level design, logic design, and implementation design. Although
CAD systems for implementation design are quite practical and utilized in actual
designs, upper levels of the design hierarchy are not assisted enough. Therefore, a
logic design assistance system is proposed in this thesis.

There has not been an excellent assistance method yet with which everyone
agrees, though there have been many researches in this area. The strong motivation
in this thesis is to establish a formal assistance method. Formal reasonings are very
important and helpful for us. It is tried to formalize the assistance with temporal
logic.

Temporal logic has recently attracted researchers attention because it can specify

1

2 CHAPTER 1. INTRODUCTION

concurrency and sequentiality accurately and it is suitable for describing behaviors

of hardware.

In this thesis, a logic design assistance system based on temporal logic is pre-

sented and the power of the system is evaluated.
1.2 Organization of Thesis

This thesis has the organization as follows.

e Chapter 2: Design flow of hardware design is overviewed and some attempts to

assist a logic design are introduced. Hardware description languages are also

summaried.
e Chapter 3: The proposed assistance system is described.

o Chapter 4: A new hardware description language Tokio is explained. This

language is based on temporal logic.

e Chapter 5: A control part verifier is presented. Experimental results of the

verifier are also shown in this chapter.

o Chapter 6: A data path verifier and its experimental results are presented.

This is the central part of the proposed assistance system.
e Chapter 7: Performance and contribution of the proposed system are discussed.

o Chapter 8: The thesis is concluded.

Chapter 2

Survey on Logic Design

2.1 Design Flow of Circuit Design

In this section, the design flow of circuits design is reviewed briefly. The process of
designing a very large scale intergration (VLSI) chip is usually divided into several
stages, and the abstract specification is refined in each stage. The way of separating
the process into stages depends on whether the designer has already designed other
similar hardware or not, whether the désigned hardware is large or small, and so
on. In most cases, the process is divided as shown in Figure 2.1. Each design stage

is explained in the followings.

2.1.1 System Design

First of all, designers must specify what to be designed. This process is called
'requirement specifications’. In this stage, the border line between the hardware
and the software is not clear.

Next, designers decide how to process the given specification in this system design
process. They select an algorithm which realizes the specification and separate the

algorithm into two parts which are realized by hardware and software respectively.

Which algorithm they select and how to separate the algorithm depends on both

the required performance and the permitted costs. Then, the specifications of both

3

CHAPTER 2. SURVEY ON LOGIC DESIGN

Specification

A 4
(System DesigrD

Gunctuon Desnga Logic

Design
h 4
(Gate Design)

h 4
(Implementation Design)

\ 4
VLSI Chip

Figure 2.1: Design Flow of Circuit Design

2.1. DESIGN FLOW OF CIRCUIT DESIGN 5

hardware part and software part is derived. In the case of designing a processor,
designers also decide instruction sets, rough hardware architecture (such as pipeline),
and the way of executing the instructions on the architecture. The behavior of the
hardware part is usually described in common languages, such as Ada, Pascal, C,
etc, or in original language they use. This specification is usually verified through
simulations.

The process is followed by the logic design stage. The logic design stage accepts
the specification at the system level and produces networks of logical gates. The

stage is divided into the two stages: function design stage and gate design stage.
2.1.2 Function Design

In this stage, behaviors at the system level are refined into other ones at the register

~ transfer level which represents data transfers between registers and memories. This

refinement is done with constructing a data path structure which consists of registers,
multiplexers, busses, operating modules{, and so on. The logic of control part is also
designed. This logic indicates how to control the constructed data path in order to
realize the behavior at the register transfer level.

This process is heavily affected by the constraints of required perforrna,née and
permitted cost. Using more resources generally leads to hardware of high speed and
high performance. Using too many resources, however, degrades the performance of
the hardware, because designed chip becomes too large and delay of the hardware
becomes too long. In this stage, several candidates of behaviors and structure are
designed, and designers choose one of them. This is the key point for effective
hardware design, but it is very difficult.

Consequently, this stage is almost done manually by designers. There have been

many researches which aim at automatical function design; called-high-level syn-— - — - ..

thesis. These researches are explained later in the section 2.2. Hardwares which

6 CHAPTER 2. SURVEY ON LOGIC DESIGN

are designed using the techniques of high level synthesis are not satisfactory yet.
Therefore, how to assist function design is still one of the most important topics in
computer aided design.

Derived behaviors and structures at the register transfer level are described
in hardware description languages (HDLs), such as DDL [DD68], ISPS [Bar81],
HSL [SKS80], SDL [Van77]. Currently, in the most industries and academias, they
have their original HDLs. On the other hand, the effort of st@ndardizing many
HDLs is active in many countries. For example, VHDL [Sha80] [Wax86] [Ay186] is
the standard in United States, UDL/I [Kar89] is going to be a Japanese standard,

and so on.
2.1.3 Gate Design

In the previous function design stage, all the functions needed for executing the be-
havior are decided. Inthe gate design stage, it is decided how the functions are imple-
mented with logical expressions. Functions are expanded into Boolean expressions
or state transition tables, and they are simplified and transformed into networks of
- logical gates. The main works in this stage are the assignments of the states into
flip-flops [DBS85] and simplification of the Boolean expressions [BMHS84][Sas84].

Some CAD (Computer Aided Design) tools of automatical gate design have al-
ready been produced on a commercial basis. In recent years, ASIC (Application
Specific Integrated Circuit)s have been spread widely over in many fields of produc-
tions. Consequently, there arise many requirements to design LSI chips which do
not require very high performance but entail shofter design cycle. The commercial
CAD tools are useful and suitable for such kinds of LSI chips..

There also exist other demands on LSI chips of very high performance. As
for such LSIs, gate design is still done manually. Many verification techniques are

researched now in order to assist manual design. Boolean comparison (or tautology

b

v

2.1. DESIGN FLOW OF CIRCUIT DESIGN 7

check of boolean expressions) is the main topic in the verification of combinational
circuit [HM88][WS86][Bry86][FMF89][MIY89]. Verification of sequential circuits are
more difficult than that of combinational circuits because sequentiality should be
considered. Usually, sequential circuits are divided into two parts: latches and
combinational part. In addition to the techniques of handling combinational logic,
the method of dealing with sequentiality is required in this verification.

Down to this stage, designs are independent of technologies. That is, designers

need not alter the design process no matter which technology (for example, TTL,

CMOS, etc.) is adopted.
2.1.4 Implementation Design

Results in the logic design stage are divided into several LSI chips and converted to
fit the adopted technology. The division is decided by the constraints of the number
of gates and pins allowed for one chip. Then, layouts and routings are processed.
Much efforts to automate this stage have been done. As a result, CAD systems for
implementation design seem to be very practical. However, it is required to design
much lafger and much more highly complexed systems, because the progress of de-
vice technology is drastic. Therefore, it is still necessary to develop implementation

CAD systems of higher performance.

~ The design flow of hardware design has been reviewed. Design assistance at each
stage is not enough yet. Particularly, both the system level design and the function
design among the hierarchical hardware design.
Recently, researches on the so called “silicon compiler” become one of the most
major topics in computer aided design. This “silicon compiler” aims to generate
mask patterns directly from function designs. Key points in silicon compiler are

also how to assist function design.

8 CHAPTER 2. SURVEY ON LOGIC DESIGN

In the next section, researches which aim to automate function design is intro-

duced. These researches are called “high level synthesis”.

2.2 High Level Synthesis

In recent years there has been a strong motivation for automating synthesis at higher

levels of the design hierarchy. There are a number of reasons for this:

e Shorter design cycle:

e Fewer errors

o The ability to search the design space

e The design process is obvious

o Availability of IC technologies to mére people

In the 26th Design Automation Conference (held in 1989, sponsored by ACM and
IEEE), there were several sessions concerning high level synthesis. Moreover, the
fourth High-Level Synthesis Workshop (sponsored by ACM) was held in October,
1989.

A current status of ’high-level synthesis’ is presented in section 2.2.1, synthesis
task is surveyed in section 2.2.2, a research of high level synthesis is presented as an

example in section 2.2.3, and open problems are described in section 2.2.4,
2.2.1 Current Status

High-level synthesis [Par84][MPC88][BD88] is the design and implementation of a
digital circuit from a behavioral description. A behavioral description does not
include structural information (for example, registers, busses, multiplexers, etc.) but

describes the functions to be performed by the circuit in an algorithmic form. In

b

y

2.2. HIGH LEVEL SYNTHESIS 9

essence, a high-level specification is a program describing the behavior of the circuit
to be designed. High-level synthesis should be distinguished from other types of
synthesis, such as logic synthesis or system level synthesis which operate at different
levels of the design hierarchy,

In the third "High- Level Synthesis Workshop’ (held in January 1988), four bench-
marks were chosen. Out of the 18 presentations, 6 were from industry and 12 were
from university researchers. The reason to select the benchmarks was due to the
frustration felt by many of the participants at the previous workshop (held in May
1986 in Santa Barbara, CA) with the difficulty in comparing the quality, applicabil-
ity, practicality, and originality.

The selected four examples are:

o Intel8251: a serial-line controller

e MCS6502: a small microprocessor

e DSP: a digital signal processing filter
. MC68000: a large microprocessor

Three examples of Intel8251, MCS6502, and MC68000 were available in ISPS [Bar81]
format. A one-page data-flow graph was provided for the filter example.

Among the 18 presentations, 11 were related to these benchmarks. The filter
example was the commonest (7), followed by the Intel8251 (5), and the MCS6502

(4). Only two presentations included results for the largest example, the MC68000.
2.2.2 Synthesis Task

The system to be designed is usually represented at the algorithmic level by a pro-
gramming language such as Ada or Pascal [Tri87] or by a hardware description lan-

guage such as ISPS [Bar81] or VHDL [Wax86]. Since hardware description languages

—

y

10 CHAPTER 2. SURVEY ON LOGIC DESIGN

are the central part of CAD tools, ISPS and VHDL are mentioned in section 2.3.

The first step in high-level synthesis is usually the compilation of the formal
language into an internal representation. Two types of internal representations are

generally used: parse trees and graphs.

The next two steps in synthesis are the core of transforming behavior into struc-
ture, that is, scheduling and allocation. They are closely interrelated and depend on
each other. Scheduling represents to assign the operations to so-called control steps.
A control step refers to a machine cycle at the register transfer level. Allocation
consists in assigning the operations to hardware. These assignments are allocation

of functional units, storage and communication paths.

Scheduling aims to minimize the amount of the required number of control steps

for executing behaviors within the limits of the available hardware resources.

In allocation, the problem is to minimize the amount of the hardware. The hard- |
ware consists of functional units, memory elements and communication paths. Since
it is too complex to minimize them together:, they are minimized separately in most
proposed systems. For example, in the minimization of functional units, mutually
exclusive operations clearly can share functional units. Then, the problem is then
replaced by another problem how to gather those operations which are mutually
exclusive. The problem of minimizing the amount of storage and the complexity of
the communication paths for a given schedule can be formulated similarly. After
both the scheduling and the allocation have finished, it is necessary to synthesize a

controller which will drive the data paths.

The most difficult problem throughout all these tasks is.how to narrow down
the large “design space” into the real design. In order to select the optimal design
which meets the constraints, extremely large number of design candidates should be

examined.

2.2. HIGH LEVEL SYNTHESIS 11

2.2.3 Yorktown Silicon Compiler

In this section, a system named Yorktown Silicon Compiler [Cam87][Cam88] is pre-
sented as a typical example of high level synthesis system.

In the paper [Cams88], the automatic synthesis of an IBM 801 processing unit
using the YSC system is presented. This YSC was developed at the IBM Thomas
J. Watson Research Center. The IBM 801 architecture is a 32-bit architecture in
the sense that most instructions, data, registers and addresses are 32-bit wide. In
the following, the design process model of the YSC and the results of the automatic
synthesis is presented. All compilation and synthesis times are given in CPU seconds

on an IBM 3090-200 computer.
Design Process

The design process in the YSC is depicted in Figure 2.2. The compiler is coded in
PL/1 and the structural synthesis and logic synthesis are coded in APL(interpreted).

Compiler The behavior is given in V form. The V specification is transformed
into an internal format (called YIF: Yorktown Internal Format) consisting of a data
flow graph and a control graph. An example of YIF is shown in Figure 2.3. The
main tasks of this compilation include the decomposition of expressions into single

operations and the mapping of complex data types into simple ones. The complete

801 design at this stage contains 1851 operation nodes and 8192 variables.

Structural Synthesis 1 The next task is merging nodes representing variables.
Initially each bit is represented by a node. In the 801, for example, 32 bit arith-
metic variables are compressed into two nodes. The 8192 variables in the YIF are
reduced to around 1000 nodes.

2 The following task is to identify the cycles in the control graph and to eliminate

12 CHAPTER 2. SURVEY ON LOGIC DESIGN

behavioral spec.

compiler

internal format

| structural synthesis

logic specificatio

logic synthesis

optimized logic

timing optimization

v

layout synthesis

*}3

structure

3

Figure 2.2: Design Process in the YSC

2.2. HIGH LEVEL SYNTHESIS 13

11 11

LST LST
1 0
12 14 12
INC TR L INC
Control Data Control and Data
Flow Flow Flow

INDEX 11 TAG CBR OPERATION LST LINE 678:
INPUTS C(1..2)[0..0] 2;

OUTPUTS *;

PREDECESSORS 10;

SUCCESSORS 11 CONDITIONS 1:

SUCCESSORS 14 CONDITIONS 0:

INDEX 12 TAG SO OPERATION INC LINE 702:
INPUTS C(1..2)[0..0];

OUTPUTS T9(1..2)[0..0];

PREDECESSORS 11;

SUCCESSORS 13 CONDITIONS *:

INDEX 14 TAG SO OPERATION TR LINE 898:
INPUTS R(2..8)[0..0];

OUTPUTS T8(1..7)[0..0];

PREDECESSORS 11;

SUCCESSORS 15 CONDITIONS *:

Figure 2.3: YIF Example

o

14 CHAPTER 2. SURVEY ON LOGIC DESIGN

them by removing edges. At this point, the concept of control steps is introduced.
In general, finding the minimal set of edges to break all cycles in a graph is NP-
hard. In the YSC, the operations involved in loops are tagged by the V compiler;
this is easily done by identifying syntactically all possible loops. Thus, the stage of
eliminating cycles is very fast.

3 This stage is the core of structural synthesis. First, all variables holding values
which must cross a control step boundary are marked as registers. Second, data
flow constraints like writing a register twice during one control step are detected.
Then, new control steps are introduced carefully to solve the data flow constraints.
Introducing new registers may create new data flow constraints. Consequently, these
steps are repeated.

4 The next stage is called variable unfolding. Each variable is duplicated as many
times as necessary to achieve single assignment.

5 By this stage, the YIF has been converted into a structure. A possible implemen-
tation consists of implementing each operation by combinational logic and providing
a net for each unfolded variable. In order to reduce costs, the problem of allocat-
ing the minimum number of registers, of required operators, and of multiplexers is
solved. This is called folding.

6 Finally, the structure is generated. The structure consists of a netlist connecting

latches and blocks of combinational logic. Since the combinational logic of each

 module is minimized by logic synthesis, there is a limit to its size. If this limit is ex-

ceeded, the combinational logic is partitioned into several smaller blocks. Then, the
structure is given in HND (Hierarchical Network Definition), and the logic function

is given in YLL (Yorktown Logic Language).

Logic Synthesis Each combinational logic block is minimized separately during

logic synthesis by the YLE(Yorktown Logic Editor). The YLE initially minimizes

2.2. HIGH LEVEL SYNTHESIS 15

the size of the combinational logic and produces a multi-level implementation, both

for SCVC (Single Cascode Voltage Switch) and CMOS.

Timing Optimization Timing optimization then finds the critical path with re-
spect to the delay in the complete design and reduces delay by different measures
such as transistor resizing, logic resynthesis, etc. The design is finally passed into
layout synthesis. After timing optimization, logic synthesis is vusua,lly invoked again
to resynthesize for smaller delays. This loop may be repeated several times. In case
the timing obtained is not satisfactory, it may be necessary to return to the original

V specification and change it manually.

Result Evaluation

Table 2.1 gives a comparison between a manual design and the automatic design.
Here, the term “manual” refers to the fact that the register transfer level structural
specification and the combinational logic were designed by human designers. Both

used the YLE for logic synthesis. The complete design was done only in SCVS. In

- this example, structural synthesis yields results which are equal in performance to .

those of the manual design at the register transfer level. The automatic version was

not optimized for timing, but the critical path in combinational logic has a delay
of 72.9ns, which is almost equal to the delay in that of manual design. Timing
optimization for the manual version yields a maximum delay of 49.9ns. The size
regarding the number of transistors is 26% larger for the automatic design. This
is caused by 45% more transistors in combinational logic and 11% more latches.
However, the required CPU time for the automatic synthesis is much larger than
for the manual design.

The differences between the manual design and automatic design are explained

as follows.

16

CHAPTER 2. SURVEY ON LOGIC DESIGN

Structural SCVC SCVC CMOS CMOS
Design Manual Auto Manual Auto
Total number
of latches 534 593 534 593
Comb. logic :
transistors 11164 16259 9896 15321
Total number
of transistors 55066 69524 - -
Execution ,
cycles/instructions 1 1 1 1
Unoptimized
comb. delay 72.7 ns 72.9 ns - -
Structural
synthesis time - 13303 sec - 13303 sec
Logic
synthesis time 1680 sec | 13820 sec | 3039 sec | 14255 sec

Table 2.1: Comparison of Manual and Automatic Structural Design

2.2. HIGH LEVEL SYNTHESIS 17

e Structural synthesis does not yet minimize the number of interconnections.

This not only leads to a large number of wires but may also hide some logic

minimization potential.

o Automatic partitioning of pipeline stage P1 and P2 may lead to a lower opti-

mization possibility during logic synthesis.

o In SCVS, the automatic design does not take advantage of distributing com-

binational logic among two clock phases, as was done in the manual version.

® In the case of large unoptimal logic design, such as generated by structural

synthesis, logic synthesis may not reveal all the optimization potential.
2.2.4 Open Problem

There remain a number of open problems yet to be solved in the high-level synthesis

area.

o Human Factor: This involves the role of the designer in the design process,
such as, how the designer inputs design specifications and constraints, how
the system outputs results, what decisions the designer should make and what
information the designer needs in order to make them, and how the system

explains to the user what is going during the design process.

o Design Verification: This refers to verify whether the design produced by the
synthesis system satisfies the initial specification or not. In order to design an
effective hardware, the process of manual improvement will remain. Formal

verification is very important in such situations.

o Integrating Levels of Design: In order to make realistic evaluations of design

tradeoffs at the algorithmic and the register transfer level, it is necessary to

ki |
3

P

18 CHAPTER 2. SURVEY ON LOGIC DESIGN

be able to anticipate what the lower level tools will do. In the usual manual
design process, many times of feedback over different design levels occur. This
is the key point for an effective design. In contrast, the automatic synthesis

is processed in one straight way, and this may degrade the performance of

synthesized design.

In summary, high-level synthesis has been researched actively and many difficult
problems have been solved. Much work, however, needs to be done before synthesis

becomes really practical.

2.3 Hardware Description Language

In this section, ISPS and VHDL are introduced among a number of hardware descrip-
tion languages. These languages can specify the behaviors at the register transfer
level and are used as an input to the high-level synthesis system as mentioned in

section 2.2.

2.3.1 ISPS

ISPS is an abbreviation of Instruction Set Processor Specification and was devel-
oped at Carnegie-Mellon University under the sponsorship of DARPA (the Defense
Advanced Research Projects Agency). ISPS is a register transfer language designed
to support a wide range of application rather than a wide range of design levels.
The language has many features for the behavioral modeling of hardware, but its
capabilities for gate-level modeling are rather limited. The design philosophy of
ISPS was guided by two principles: flexibility and simplicity. Specifically, it was
desired, as mentioned in [Bar81], to désign a computer description language that
would be appropriate for many kinds of applications: automated design, simulation

(for both software development and hardware debugging), and automatic genera-

2.3. HARDWARE DESCRIPTION LANGUAGE 19

tion of machine relative software (in particular, compiler-compilers). Thus, although
ISPS can be viewed as a programming language, the aim of the notation is to de-
scribe computers and other digital systems, not necessarily general computational

algorithms.

ISPS describes the interface (i.e. external structure) and the behavior of hard-
ware units. The interface describes the number and the types of carriers (registers
and memories) which are used to store and transmit information between the units.
The behavioral aspects of the unit are described by procedures which specify the

sequence of control and data operations in the machine.

A complete separation between the specification of the structure and the behavior
of a digital system is not an easily realizable or even desirable goal. Thus, ISPS
favors the behavioral aspects over the structural or implementation aspects. The
structural information is never completely eliminated, for example, register lengths,
data path widths, and connections of registers. Other details of the‘structure, such
as component speed, layouts, .physical location, integrated circuit technology, are
not required to be specified in an ISPS description.

Time is modeled in implicit discrete units. A built-in procedure is available to
specify transport delay units. The amount of delay must be expressed in terms of

the basic time unit.

MC6502 in ISPS

In this paragraph, a description example of MC6502 in ISPS is presented instead
of describing details of ISPS notations. For the detail notations, consult [Bar81].
Figure 2.4 indicates a part of the description. MC6502 is a processor of 8-bit width.

This description is a benchmark of high-level synthesis(mentioned in section 2.2.1).

20 . CHAPTER 2. SURVEY ON LOGIC DESIGN

! ISPS Description of the MOS Technology MCS 6502 Microprocessor

MP . STATE

MACRO romlow:= ["F800 |,
MACRO romhi := |"FFFF |,
MACRO ramlow:= |"0000 |,
MACRO ramhi := |"1000 |,
MACRO maxb := |"FFFF |, ! High end of byte memory

Mb[0:maxb]<7:0>, ! Primary memory range
ram[ramlow:ramhi]<7:0> := mb[ramlow:ramhi]<7:0>, ! RAM
rom[romlow:romhi]l<7:0> := mb[romlow:romhi]<7:0> ! ROM

%PC, STATE
Pc<15:0>, ! Program counter
Y<7:0>, ! Index register
X<7:0>, ! Index register
S<7:0>, ! Stack pointer
D1<7:0>, ! Input data latch
A<7:0>, ! Accumulator
Ix<7:0>, ! Instruction register
P<7:0>, ! Processor status

*%ADDRESS . CALCULATION**

immed()<15:0> := ! Immediate
BEGIN
immed = ab = Pc NEXT
Pc =Pc + 1
END,
abs()<15:0> := ! Absolute
. BEGIN, . o
abs = ab(Pc + 1, Pc) NEXT
Pc = Pc + 2
- END,
ab(adh.<15:0>, adl.<16:0>)<15:0> := ! Address buffer
BEGIN
ab<15:8> = read(adh.) NEXT
ab<7:0> = read(adl.)
END,
! Read and write memory access routines
read(ab.<15:0>)<7:0> := ! Read from valid memory
BEGIN
Rw = 1 NEXT
IF NOT Ready => RESTART run NEXT
read = "FF NEXT ! Fake a nonexistant memory access

IF (ab. GEQ{US} ramlow) AND (ab. LEQ{US} ramhi) => read = ram[ab.];
IF (ab. GEQ{US} romlow) AND (ab. LEQ{US} romhi) => read = rom[ab.]
END, .

Figure 2.4: Behavior of MC6502 in ISPS

2.3. HARDWARE DESCRIPTION LANGUAGE 21

2.3.2 VHDL

Motivation

VHDL is an abbreviation of the VHSIC (Very High Speed Integrated Circuit) Hard-
ware Description Language. In the United States of America, the VHSIC program
was launched. The goals of the program were to reduce IC design time and ef-
fectively insert VHSIC technology into military systems. These goals, indicating
the need for a standard means of communication, motivated the development of a
hardware description language.

Requirements for VHDL were analyzed over a period of two years, from 1981 to
1983, and originally defined in a workshop that was organized by the member of
industry, academic community, and the Government. Version 7.2 of the language
was released in 1985 and became a standard IEEE-1076 in December, 1987. From
1989, all the digital ASICs supplied to DoD are under obligation to be speciﬁed in
VHDL.

Feature

One of the characteristics of hardware devices is that their functionality cém be
defined independent of the environment on which they operate. VHDL reflects
this characteristic in its overall organization, emphasizing the ability to describe
isolated components, called design entities, which can then be combined with other
component descriptions to form more complex descriptions.

A design entity consists of an interface description and a body description. The
interface defines the I/O ports through which the design entity communicates with

the outside world. The body, on the other hand, describes the internal operation or

organization of the component being described. The internal details of the compo-~ -~ - - -

nent may be described using structural, data-flow, or procedural styles of expression.

22 CHAPTER 2. SURVEY ON LOGIC DESIGN
In fact, these three styles can even be mixed in a single description.

Structural descriptions define components and then interconnection of these com-
ponents using signals. Each interconnected component is then bound to another
design entity in the library. The design entity to which a component is bound may
itself have a structural body. In this way, hierarchical descriptions of a design may
be built up. A design entity may bind its components to other lower-level design
entities, but it never binds itself to higher-level components. This characteristic al-
lows a design entity to be inserted into any description, just as a physical hardware

component can be wired into any design.

To illustrate the concept of a design entity and the structural style of descrip-
tion, an RS-flip-flop which is implemented in terms of cross-coupled NAND gates-
is considered. One way of describing the implementation in VHDL is to write an
interface description for the RS-flip-flop which declares two input ports R and S and
two output ports Q and QB, and to write a body description which contains two
cross-coupled NAND gates. Figure 2.5-(a) is the interface description and (b) is the

| body descriptioﬁ.v

VHDL provides several types of concurrent signal assignment statements. These
statements operate asynchronously with respect to one another in an event-driven
manner. Changes in the values of inputs to a given signal assignment statement
cause the statement to execute. This execution involves calculating new output
values and assigning those values, after some delay, to the output signals of the

statement.

As an example of the use of concurrent signal assignment, an alternative body
description is shown in Figure 2.5. In this body, a pair of concurrent signal as-
signment statements take the place of the component instantiations G1 and G2.

These signal assignments show the cross-coupling of the two NAND gates, like the

2.4. DISCUSSIONS IN THE SURVEY 23

structural description,

In addition to the structural and data-flow styles, VHDL also provides for pro-
cedural description in which the behavior of a device is modeled without regard to
its structure. Such descriptions take the form of algorithms for computing output
responses to input changes. This style of description has the advantage of describing

behavior without containing structural information.
Application Area

VHDL allows design and documentation of digital circuits from the system level
down to the gate level. In addition, the language has the necessary syntactic frame-
work for describing circuit geometries. This includes schematic data and layout data
for hardware devices.

The undeﬂying dynamic execution model defined by the language is event-driven.
An event may cause execution of one or more processes. The execution of a process
may cause further events to be scheduled. This execution cycle will continue until
there are no events remaining to be processed. The above event-driven model is
suitable for the simulation of digital circuits from the system level down to the gate

level.

2.4 Discussions in the Survey

There has been a strong requirement of design assistance at higher levels of the
design hierarchy. High-level synthesis is one of the answérs to these requirements.
Although its results seem to be efficient, there still remain several problems
to be solved as mentioned in 2.2.4. ‘One of the most -essential problems is that
there exist few methods for treating feedbacks spreading over different design levels.
This is itemized as Integrating Levels of Design in section 2.2.4.. The process of

improvements is the key point for an effective design, but with the current approach,

24 CHAPTER 2. SURVEY ON LOGIC DESIGN

entity RS_Latch

R,S:in BIT; --input ports
Q,QB : out Bit -- output ports
)

is

end RS_Latch

(a) the interface description

architecture Body1 of RS_Latch is
B: block
component NAND_Gate
port (A, B :in Bit; C: out Bit);

begin
G1: NAND_Gate port (S, QB, Q)
G2: NAND_Gate port (R, Q, QB)
end block;
end Body1;

(b) the body description

architecture Body2 of RS_Latch is
B: block
begin
Q <= S nand QB after 10ns;
QB <= R nand Q after 10ns;
end block :
end Body2;

(c) an alternative body description

Figure 2.5: RS Flip-Flop in VHDL

2.4. DISCUSSIONS IN THE SURVEY 25

high-level synthesis hardly assists it.

So, an assistance system of another approach is suggested. The essential idea of
this system is to make use designers’ expert knowledge positively.

Hardware description language always plays a central role in CAD tools. In the
proposed system, temporal logic is adopted as a behavioral description language.
ISPS has enough power as a behavioral description language at the register transfer
level, but has rather poor power at the gate level. The reason for this is that ISPS
does not explicitly declare timing relations such as sequentiality and concurrency.
On the contrary, temporal logic has clear semantics and enough ability to specify
* such relations. VHDL also has sufficient power as a behavioral description language
at these levels. The event-driven model which underlies in VHDL and also is uti-
lized in petri-net is suitable for specifying sequentiality and concurrency. Behaviors
of asynchronous circuits can be specified more easily in event-driven model than in
temporal logic. However, temporal logic can declare the aspects of nezt clock explic-
itly, whereas event-driven model cannot. This nature is important as a behavioral
description language at the register transfer level and is convenient for specifying
synchronous circuits. Some researches have been reported in practice which extend
petri nets to “timed petri nets” [Zub80] or “Temporal petri nets” [SL89]. With these
extended petri nets, timing requirements on the components of a digital system can
be specified. In addition to that, VHDL has too wide varieties as a hardware de-
scription languages, which is often the case with standard languages. So, VHDL
itself cannot be adopted directly as a core language in CAD tools. The first task for
researchers is to define a subset of VHDL when they intend to use VHDL in their
CAD tools. Some attempts to define a standard subset of VHDL have been made.

Therefore, temporal logic is adopted as a core language to describe behaviors in

our system. The proposed system is presented in the remain of this thesis.

26 CHAPTER 2. SURVEY ON LOGIC DESIGN

Chapter 3

Hardware Logic Design
Assistance System

3.1 Objective

The objective of the proposed system is to assist an effective logic design. The
approach of this system is not to design automatically but to introduce integrated
knowledge or experience of designers positively. The target of the system is an as-
sistance both at the function design level and at the gate design level. Designers can
utilize their techniques in this system. Design verification becomes very important
Wheﬁ such an approach has been adopted. |

In this system, a logic design flow is regarded as follows. At first, the designers
specify the algorithm of the behavior to be designed. Then, the register transfer level
description is derived from this abstract form step by step with a system realization.
This derivation is assured by simulating the behdviors.

The designers also give the structure of the data path to be designed. Although
there have been many reports on synthesizing the data path from the behavioral
description [MPC88][PPM86][PK86][Cam88], the derived data paths are not yet

completely satisfactory and are difficult to be improved.

Usually, the behavior is refined along with the construction of the data path

27

28 CHAPTER 3. HARDWARE LOGIC DESIGN ASSISTANCE SYSTEM

structure. One of the most typical cases is to divide the control part from the data
path part. This border line is decided while the behavior is refined, and of course,
the data path structure is affected by this decision. In other words, the designers
are always linking the behavior to the structure when they refine the behavior step
by step.

This link information is the key for an effective synthesis. Particularly, this

information is very important in the following cases:
e To improve the derived behavior and structure.
o To re-use the already designed structure for a new design.

Therefore, in our system, the structure as well as the behavior is assumed to be

given by the designers, and the following assistances are realized.

e Link informations between the behavior and the structure are derived auto-

matically.
¢ Consistency between the behavior and the structure is verified automatically.
e The logic of the control part is derived automatically.

Even though a good data path can be synthesized from the behavior in the near
future, the process of improvement will still have to be done manually. Therefore,
these assistances are still very important.
| Then, the derived logic of the control part is transformed into networks of logical
gates or micro-programs by manual or by using a commercial synthesizer. The
obtained design should be verified formally.

As for the behavioral description language, the following three points are impor-

tant in our design flow.

o The behavior is specified in an executable form.

3.2. STRUCTURE 29

e The behaviors at both the algorithmic level and the register transfer level are

given in the same language.
® Sequentiality and concurrency can be specified accurately and simply.

Since Tokio is based on interval temporal logic [Mos83], its semantics is very clear.
Due to this nature, Tokio meets these three requirements and therefore, provides a

smooth assistance of register level synthesis.

3.2 Structure

The structure of the proposed assistance system is as shown in Figure 3.1.

The designers, at first, specify the algorithm of the behavior in Tokio. Then, the
register transfer level description is derived. Currently, this derivation is verified by
the simulator [KAFT85] which has been already developed. The register transfer
level description is specified in RTL-Tokio (Register Transfer Level Tokio) which

is a constrained form of Tokio. Both behaviors in Tokio and RTL-Tokio can be
simulated on the same simulator after being compiled into Prolog. The designers
also give the structure of the data path using a graphic editor. The part of translating
the structural description into Prolog format remains to be developed.

Then the 'Data Path Verifier’ verifies the consistency between the behavioral
and the structural descriptions. After the verification has finished, the structure
and the behavior are evaluated. If the design is satisfactory, the design process
proceeds to a lower level synthesis. Otherwise, the design is improved manually
and then verified again. In the process of verification, the state transition table and

the facility usage table are derived. Facility usage table indicates link information

between the behavior and the structure, such as what component in the structureis =

used in order to realize a certain data transfer in the behavior. The control part is

30 CHAPTER 3. HARDWARE LOGIC DESIGN ASSISTANCE SYSTEM

algorithmic level -
description structure description
(in Tokio) from graphic editor
4 - [Translatorj
Tokio
Verifier \ 4 l
register transfer level _
description structu.ral description
(in RTL-Tokio) (in Prolog)

NS

state transition table
facility usage table

F

'

Synthesizer

¢ of control part
Simulator of data-path
at register transfer level l

v

synthesizing
at the lower level

Figure 3.1: Structure of Assistance System

3.2. STRUCTURE 31

synthesized from these two tables. As for the control part, this system is connected

to the verification system [NFKT8T7].

32 CHAPTER 3. HARDWARE LOGIC DESIGN ASSISTANCE SYSTEM

Chapter 4

Tokio as a Hardware Description
Language

4.1 Temporal Logic as a Hardware Description Language

In this section, temporal logic is introduced and it is explained how to specify
hardwares with it. While traditional logic uses sucﬁ operators as ~, A,V,—, etc.,
texﬁporal logic introduces additional operators for dealing with temporal sequences.

An expression of traditional logic is assumed to specify properties of the system
at a given state called the “present” state. Temporal logic can describe properties
of all possible execution sequences that may evolve from the present system state.

Temporal logic has become very popular in the CAD fields [BCDM86] [CES86]
[FTM85] [NFKT87] [Aba87] [MP81] [Wol82].

The reasons are as follows.

o Temporal logic can easily and accurately express the timing relations such as

the concurrency and the sequentiality.

¢ Since temporal logic is based on formal theory, assistance, such as verification

or synthesis, is easily implemented on computers.

Many kinds of temporal logic have been proposed differing from each other

slightly. Most of them are defined not on continuous states but on discrete states.

33

34 CHAPTER 4. TOKIO AS A HARDWARE DESCRIPTION LANGUAGE

In this section, Linear Time Temporal Logic (LTTL)[MP81, Wol82] and Interval
Temporal Logic (ITL)[Mos83] are introduced. These logics are defined on discrete

states, and therefore, there exists the next state for each state.
4.1.1 LTTL

Linear Time Temporal Logic (LTTL)[MP81][Man81] have four temporal operators:
o (next), O (always), © (sometime), and U (until). The first three are unary
operators and the last is a binary operator. Meanings of each temporal operator are

as follows.
o P (without temporal operators): P is true at current state.

oP: P is true at the next state.

e OP: P is true in all future states.

OP: P is true in some future state.
o P U Q: P is true for all states until the first state where Q is true.

Temporal operators are defined on discreﬁe states. Thé strict definitions of the
above operators are introduced in the following way.

Let so be the present state and sy, s5, - - - be the states of the future in order. For
an w-sequence of states o = sq, 81, 53,53,-+ , where each state is an assignment of
tfuth values to the atomic propositions. The i-truncated suffix of o, is denoted by

o' = s;,8i41, - . Then, the followings are obtained.
e 0 = fiff so = f where f is an atomic proposition
eok~fiffnotokf
coEAANfiffokEfiando f;

4.1. TEMPORAL LOGIC AS A HARDWARE DESCRIPTION LANGUAGE 35
sokofiffol = f
o o = Of iff (Vi > 0)(c* k= f)
o o = Ofiff (3 > 0)(o' k= f)

s o= fiUfiff (Vi>0)(o' = fi)or (L2 0)(c' | L AVI(0LSj<i— ol |=
f1)) |

Notice that the U operator defined here (known as the “weak” until) does not

have an eventuality component, in contrast with the one defined in [Man81]. The
two temporal logic systems have the same expressive power.

An axiomatic system for LTTL is as follows [Man81]:

Axiom Schemas:

o FOp=~0On~p

F0O(p— q) — (Op — Og)

Fo~p=~op

Fo(p— q) — (op — 0g)

F‘Dp——)p/\op/\on

FO(p — og) — (p — Op)

F Op — pUgq

tpUg =gV (pAo(pUg))
Inference Rules:

o If w is a tautology, then F w

o If F (wy — wy) and F w; then F w,

36 CHAPTER 4. TOKIO AS A HARDWARE DESCRIPTION LANGUAGE
o If Fw, then F Ow
LTTL is proved to be as expressive as the first order theory of linear order [MP81].
This has caused LTTL to be called “expressively complete” and would seem to imply
that LTTL is perfectly adequate for expressing desirable properties of an execution

sequence.

O and < are acquired from U as follows.
e Of = f U false
o Of =~ (~ f U false)

Therefore, only U and o operators are essential. However, O, < operators are
introduced for the ease understandings of the descriptions. O and < operators have
the following properties, which are acquired from the axioms and inference rules

mentioned above.
e OOf=0Ff
¢ OOf=0f
o 0OOf = OOf

o OOCf =00f

So, only OO and <O of combined O and < operators have different meanings from

O and © operators. For example, the expression:
B 00CA

means that if B is true at present, then at every future point in time, A will be true
at some point following that point and, thus, A will be true infinitely often, possibly

without change. And the expression:

. formulas depends not on states but on intervals. Second, ITL has the operator “;”

4.1. TEMPORAL LOGIC AS A HARDWARE DESCRIPTION LANGUAGE 37

B — O0OA

means that if B is true at present, then at some future point in time, A will be true
at every future point following that point.
As a whole, systems are divided into two properties: safeness and liveness prop-

erties. Safeness property means “bad things never happen”, for example, “deadlock

will not happen”, etc.. This can be described in LTTL like:
O(“adequate initial condition” — O ~ “bad thing”)
or
O(“adequate initial condition” — OO ~ “bad thing”)

On the other hand, liveness property means “good things eventually happen”,
for example, “the calculation will eventually terminate” etc.. This can be described
in LTTL like:

O(“adequate initial condition” ‘-—» O “good thing”)
or

O(“adequate initial condition” — OO “good thing”)
4.1.2 ITL

Interval Temporal Logic (ITL) was proposed by Moszkowski [Mos83]. The differ-

ences between ITL and LTTL are represented as follows. First, ITL is based upon

“interval”s, which are successive states of finite length. The truth of variables or
;

(read semicolon) to divide an interval into two subintervals as shown in Figure 4.1.

" A model in ITL is defines as a pair of £, M. consisting of a set of states & =

3,1,.... together with an interpretation M. M maps a propositional variable P and

38 CHAPTER 4. TOKIO AS A HARDWARE DESCRIPTION LANGUAGE

}\ ! / time

Figure 4.1: Temporal Operator “;”

4.1. TEMPORAL LOGIC AS A HARDWARE DESCRIPTION LANGUAGE 39

nonempty interval sg, 1, ..., 8, € Lt to a some truth value M;,....s.[P]- The length

of an interval s, s, ..., 8, is n.
Interpretation of Formulas

Fundamental operators in ITL are “” (chop) and o (next) operator. Suppose w,wl,

and w2 be formulas. Then interpretation M is given as follows.
o M,y s [~ w]=trueiff M,, . [w]= false
sn| WL A w2] = true iff My, [wl] =true and M,, _, [w2] = true

o M. . s.[0w =trueiff n > 1AM, [w] = true

140238

o M,,, . s.[wl; w2] = trueiff for0 < 3i < n, M,,, .. [wl] = trueAM,, ,.[w2] =

All the other operators in LTTL can be represented by using “;” and o. For

example, & operator is expressed in ITL as follows.

Of = (true; f)
Some operators ‘which are useful to describe properties of hardware are defined

in terms of “;” and o. The beginning and ending states of an interval, beg and fin,

are defined as follows.
o beg(P) & ((empty A P); true)
‘ def def .
¢ fin(P) = (true;(empty A P)) where empty = o fail

“empty” indicates an interval with O length, that is, an interval with only one
state.
Register transfer statements in HDLs or assignment statements in programming

~ languages are described with beg and fin in first order ITL.

A— BY Ve (beg(B=c)— fin(A=c))

40 CHAPTER 4. TOKIO AS A HARDWARE DESCRIPTION LANGUAGE

4.2 'Tokio

4.2.1 Logic of Tokio

Tokio [KAFT85][AFT85][FKTMS6] is a temporal logic programming language which
is based on LITL (Local Interval Temporal Logic).
In non local ITL, the truth of a variable is determined in the interval. On the

contrary, the truth of a variable is determined at the beginning state of the interval

in LITL. Therefore, the following formula succeeds in LITL.
Mso,...,sn[P] = Mso [P]

ITL is not decidable even in propositional logic, whereas propositional LITL is
decidable. Therefore LITL is calculated more easily in computer than ITL is.

As for the decidability, LTTL and LITL are identical. However, it is much easier
to describe sequentiality in LITL than in LTTL. For example, suppose the case to

describe the formula that
“first execute P and then execute Q”.

This formula is specified as “(P;Q)” in LITL. In contrast, all the following things
should be declared in LTTL.

e First P is executed.

o All the states when P is executed, Q is not executed.

o If P is ended, then @ is started to execute.
o All the states when @ is executed, P is not executed.

Underlined part “ended, then” is rather cumbersome to describe compactly. This is

described in LTTL as

4.2. TOKIO 41
D((P/\ONP)—)(NQ/\OQ))
or

O(~ PVoPV (PA~QAo~PAoQ)).
4.2.2 Operators in Tokio

Tokio is regarded as an extension of Prolog with temporal operators intuitively.
The difference between Tokio and Prolog is characterized by whether they have the
notion of the time sequence or not. In Tokio, several operators are defined and the

logical variables are handled in a different way from Prolog.
Tokio Operator

Tokio is based on Local Interval Temporal Logic and the temporal operators are

defined on the intervals.

° without temporal operator: P :- Q,R.

In the above expression, the goals Q and R is executed in the same interval
- where the predicate P is defined as shown in Figure 4.2. Therefore the concur-

rency is represented here.

. chop (&&): P :- Q && R.

The chop operator && specifies the sequential execution of the two goals Q
‘and R. As shown in Figure 4.3, the chop operator divides the interval Ip is
defined into the two subintervals Iq and Ir. The goal Q is executed in Iq and

R is executed in Ir.

) next (@): P :- @Q.

This operator @ specifies the execution in the next interval. The goal Q is -

executed in the next interval Iq of the interval Ip. The relation between Ip

42 CHAPTER 4. TOKIO AS A HARDWARE DESCRIPTION LANGUAGE
P:-Q,R. Interval for predicate P
T T 1 >
time
QandR are

executed in this interval.

Figure 4.2: Without Temporal Operators

Ip
P:Q&&R. Iq Ir

] | | >
Q is executed R is executed time
in interval Ig. in interval Ir.

Figure 4.3: Chop Operator

4.2. 'TOKIO 43

Ip
Pr@Q. |g (next interval)
[T 1 —
time
Figure 4.4: Next Operator
e
subintervals |
P:-#Q. erva 9

time

Figure 4.5: Always Operator

44 CHAPTER 4. TOKIO AS A HARDWARE DESCRIPTION LANGUAGE

and Iq is as shown in Figure 4.4.

o always (#): P - #Q.

The always operator # indicates that the goal Q is executed in the all subin-

tervals Iq. The relation between I'p and Ig is shown in Figure 4.5.
Tokio Variable

Tokio variables may have different values at each time(clock) in contrast that the
'va,lues of Prolog variables do not change. In other words, one Tokio variable is a
sequence of Prolog variables along the time sequence.

There are two kinds of variables in Tokio, which are the local variables and global
variables. A global variable holds the value unless a new assignment to that variable
occurs, whereas the value of a local variable varies along with the time sequence.
As for the syntax, the name of a local variable begins with a capital letter and that
of a global variable begins with a character.”*”. In Tokio, there are two kinds of

assignments to the variables.

. temporal assignment:
X < =Y (for local variables),

*x <= *y (for global variables)

This assignment is defined on the interval. The values of the variables Y or *y
.at the beginning of the current interval are assigned to the variables X or *x

at the end of the interval as shown in Figure 4.6.

o immediate assignment:
X =Y (for local variables),
x := *y (for global variables)

This assignment is defined on the discrete time like Figure 4.7.

4.2. TOKIO

Interval
e l
X <Y.
X unify
/
v IN O
Figure 4.6: Temporal Assignment
Interval
X =Y. — I
D
X R
unify
YOI

Figure 4.7: Immediate Assignment .

45

46 CHAPTER 4. TOKIO AS A HARDWARE DESCRIPTION LANGUAGE

4.3 RTL-Tokio

Tokio is defined on the discrete time sequence. The semantics of Tokio depends
on what "the discrete time” in Tokio represents in the hardware. If "the discrete
time” represents the clock of flip-flops in the hardware, the description in Tokio
corresponds to a synchronous circuit. If "the discrete time” represents the absolute
time, the description corresponds to an asynchronous action within one clock. Due
to this flexibility, Tokio can describe the behavior at different levels.

RTL-Tokio is a register transfer level hardware description language and a con-
strained form of Tokio. The discrete time in RTL-Tokio indicates the machine cycle.

The variables and backtrackings are constrained in RTL-Tokio as follows.
Variables

The global variables which hold the values represent the data of the registers or
memories, and the local variables also represent these data indirectly. The current
assignment of the global variables such as ”"*q := *p” is prohibited in RTL-Tokio
because no transfers between registers or memories can be done immediately. Both

the global and the local variables cannot stand for list structured variables.
Backtracking

Tokio has two kinds of backtrackings. One is the backtracking which occurs usually
in Prolog and the other is the backtracking of time sequence. Since the behavior of
hardware is decidable, RTL-Tokio is restrained from these backtrackings. In order
to prevent RTL-Tokio from the former backtfacking, the syntax of RTL-Tokio is

constrained as follows,

head(arg) :- localCond, !, recursiveCall.

head(arg) :- localCond, !, actions &% actions && ... &% recursiveCall.

4.4. DERIVATION OF RTL-TOKIO FROM TOKIO 47

“localCond” should be estimated at the beginning of the interval and the number
of localCond is more than or equal to 0. “actions” includes no recursive predicate
calls, and “recursiveCall” may include them. Consequently, only tail recursions
(that is, loop structures) are to be permitted in RTL-Tokio.

The latter backtracking (that is, the backtracking of the time sequence) occurs
owing to the undecidability in determining the length of each interval. The length
of intervals in Tokio is determined to be more than or equal to 1. (Details are
described in [KAFT85]). In RTL-Tokio, the length of each interval is decided so that
every temporal assignment is executed in the interval of length 1. This constraint
represents that the data transfers between registers are executed in one machine

cycle.

4.4 Derivation of RTL-Tokio from Tokio

Transforming Tokio into RTL-Tokio is to derive a behavior at the register transfer
level. This process includes operation scheduling, operation allocation, register al-
location, and so on. This derivation is currently done manually. An inte_ractively |
automatic derivation using the method of high-level synthesis [MPC88] is an ideal
design assistance. This remains to be solved.

In this subsection, it is shown that Tokio/RTL-Tokio has enough power as a
behavioral description language by illustrating several examples.

Figure 4.8-(a) shows a simple program that computes the square root usiﬁg
Newton’s method (cited from [MPC88]). Figure 4.8-(b) is the same algorithm as (a)
in Tokio. In the description (b), neither operation schedulings nor register allocation
have been processed yet. What is found is that some adders and multipliers are
required.

Next, the description (c) is derived. Here, the operation “Y <- (Y + X / Y) /

48 CHAPTER 4. TOKIO AS A HARDWARE DESCRIPTION LANGUAGE

Y := 0.222222 + 0.888889 * X;
C := 0;
DO UNTIL C = 2 LOOP
Y:={@+X/Y)/ 2
C:=C+ 1;
ENDDO;

(a) Algorithm of Newton’s Method

main(X) :-

Y <= 0.222222 + 0.888889 * X, X <- X && sub(X,Y,0).
sub(X,Y,C) (- C =2, }.
sub(X,Y,C) = !, Y<-(Y+X/Y)/ 2, C<-C+1, X< X
%W && sub(X,Y,C).

(b) Algorithm in Tokio

sub(X,Y,C) (- C =2, !,
sub(X,Y,C) :- !,
(Tmp <- Y+ X/ Y, X<-X&& Y «<- Tmp / 2, X <-X), C<-C+1
&& sub(X,Y,CC). '

(¢) Partially scheduled description in Tokio

main :-

*y <- 0.222222 + 0.888889 * *x , *cnt <= 0 && sub.
sub :~ *cnt = 2, !, ' :
sub :- !, *y <= (xy + xx / *y)

&& *xy <= %y / 2, *cnt <= *cnt + 1

&& sub.

(d) Behavior at the register transfer level in RTL-Tokio

main :- *adr = 8, !, true.
main :- !, input &% stagel && main, (stage2 && true).
input :- !, *inputl <= *memory(*adr), *adr <= *adr + 1 &&
*regl <= 0.222222 + 0.888889 * *inputil.
stagel :- !, *regl <= xinputl / *regl + *regl &&
*reg2 <= *regl / 2, *input3 <= *inputl.
stage2 :- !, *reg2 <= xinput3 / *reg2 + *reg2 &&
*xoutput <= *reg2 / 2.

(e) Pipelined behavior in RTL-Tokio

Figure 4.8: Description Examples in Tokio

4.4. DERIVATION OF RTL-TOKIO FROM TOKIO : 49

2” is scheduled and divided into the two steps “Tmp <~ Y + X / Y” and “Y <- Tmp
/ 2. In this stage, the operation “C <- C + 1” has not been scheduled yet. Since
both the sequentiality and the concurrency are declared clearly in Tokio, partially
scheduled behavior like Figure 4.8-(c) is also able to be simulated. This is one of the
most outstanding characters of Tokio. Due to this nature, smooth design assistance
can be achieved. ’

Then, the description (d) is derived along with the register allocation and op-
eration scheduling. Registers are denoted as global variables in RTL-Tokio. In the
description (d), the register cnt controls the repetition times of the loop. Another
candidate of the derivation is to delete the register cnt and control the loop by the
control part. It is natural, for example, in the case this computation is processed in
pipeline. Pipelined behavior is as shown in Figure 4.8-(e). In this description, the
loop is decomposed into “stagel” and “stage2”. The separation between the data
path and the control part is represented like this in RTL-Tokio. The second line of
Figure 4.8-(e)

“main, (stage2 && true)” indicates that “stage2” and the next pipeline “main”
are started up concurrently. “true” is a built-in predicate which always succeeds

and whose length is not decided.
recursive call

In RTL-Tokio, only tail recursion is permitted among recursive structures. A simple
example is shown in Figure 4.9. Figure 4.9-(b) denotes state diagram derived from
(a). As found easily, implicit controller like a stack exists in the description (a) which
counts how many times actioni is executed. The controller should be declared
explicitly as the behavioral description at the ‘register transfer level. If one more
register is added up, the description (c) is derived. -

The constraint that only tail recursion is permitted represents that all the con-

50 CHAPTER 4. TOKIO AS A HARDWARE DESCRIPTION LANGUAGE
pred :- cond, !, actionl &% pred && action2.
pred :- !, action3.

(a) recursive call

action2

actioni

N times N times

(b) corresponding state diagram

% *reg is set to ’0’ initially

pred :- cond, !, actionl, *reg <= *reg + 1 &% pred.

pred :- !, action3 && pred_tail.

pred_tail :- *reg > 0, !, action2, *reg <= *reg - 1 && pred_tail.
pred_tail :- !, true.

(¢) tail recursion

Figure 4.9: Recursion in RTL-Tokio

4.4. DERIVATION OF RTL-TOKIO FROM TOKIO 51

trollers should be declared explicitly. This is tightly coupled with the problem of

separating control part from data path part. This constraint is natural for the

behavior at the register transfer level.

52 CHAPTER 4. TOKIO AS A HARDWARE DESCRIPTION LANGUAGE

Chapter 5

Verification of Control Part

In this chapter, a verification system of control part is presented. This is called a
control verifier in Figure 3.1. Verification method adopted here is called as “proof
checker”. First, an assertion which the correct design should satisfy is given. This
assertion is regarded .a.s a part of the required specification. Then, the actual design
is formally and automatically verified whether it satisfies the given assertion or not.

This verification is basen upon the decision procedures of temporal logic.

5.1 Structure

The structure of the verification system is shown in Figure 5.1.

The input to this system are specification in propositional LTTL [MP81] and
structural description in HSL [SKS80]. HSL is a structural description language
that indicates networks between logical gates. A formula in propositional LTTL is
translated into state diagram. The part of this translation is implemented in Prolog.
All the other parts are implemented in C language. Since propositional LTTL
has decision procedures as mentioned in section 4.2.1, the verification is processed
automatically. Boolean expressions are handled in the cover (sum-of-product form).

Details of the verification methods are described in the next section 5.2 and

53

54

CHAPTER 5. VERIFICATION OF CONTROL PART

— Design
Specification (in HSL)
(in LTTL)
v
l . (1) lists of variables
| (2) on,off covers
State Diagram (8) information of
, the connection
l l of flip-flops
State Diagram ! l
(in cover expression)

Verification Program

Figure 5.1: Structure of Control Part Verifier |

5.2. VERIFICATION METHOD 55

experimental results are shown in section 5.3.

5.2 Verification Method

5.2.1 Translating LTTL Formula into State Diagram

The method to translate LTTL formulas into state diagrams is presented. The basic
idea of this method is that LTTL formula can be decomposed into sets containing
formulas which are either atomic (that is, without temporal operators) or that have
o as their main operator. The atomic sets are transitive conditions and the rest
excluding outermost o operator are conditions in next state (details are described in
[Wol82]). Decompositions are repeated until all the newly obtained states are the

same as those conditions which have been already produced.

The decomposition rules are as follows.

e OF = FAoOF

o OF = FV (~ F AoOF{F})

¢« F1U F2=F2V (F1A ~ F2Ao(F1U F2))
For example, lét P, Q and R are atomic and ti'aﬁélate
(A) OP
(B) ~ ((P AoDOQ) — oOR)
into state diagrams using above rules. It goes as follows;
(A) OP =P AoOP

Since the condition in the next state 'OP’ (underlined) is the same as the con-
dition at the current state, the decomposition is completed and the corresponding
state diagram is obtained as shown in Figure 5.2. -

The translation of (B) goes;

56

CHAPTER 5. VERIFICATION OF CONTROL PART

o (@)

Figure 5.2: State Diagram (1)

~(PAOOQ)->O0OR)

| Q/\~

@ . &)y
Q/\~

~R){~R}

(o

Figure 5.3: State Diagram (2)

5.2. VERIFICATION METHOD 57
(B) ~ ((P AoOQ) — oOR)

= (P A oOQA ~ (oOR))

= (P A oOQ A oO(~ R))

= (P A o(DQ A O(~ R))

(OQ A O(~ R)) is the condition in the next state and decomposed as follows.
(OQ AO(~ R))
=Q AoOQ A (~ RV (RAoO(~ R){~ R})

=(QA ~ RA00OQ)V(QARA(OQAO(~ R){~ R})
Therefore, the corresponding state diagram is as shown in Figure 5.3.
Satisfiability

A LTTL formula is satisfiable iff it has at least one infinite sequence of state tran-
sitions when it is translated into a state diagram.

The logic formula (A) is satisfiable because it has an infinite sequence of state
transitions < 1 >,< 1 >,< 1 >,---in Figure 5.2. Similarly, the logic formula (B) is
satisfiable because it has an infinite sequence of state transitions < 5 >,< 5 >,---
in Figure 5.3. Here, the sequence < 4 >,< 4 >,--- is not infinite because it does not
satisfy the eventuality {~ R}. The eventuality {P} means that P must eventually
be true in all the sequences of future states which follow the state P. Since '~ R’ is
never true in the sequence < 4 >,< 4 >, .-, this sequence cannot be infinite.

The satisfiability of products of some logic formulas is easily checked by tracing
each state diagram concurrently. For example, the satisfiability of the next formula
is calculated in the following steps. -

0(Q A R)A ~ ((P A oOQ) — oOR).

58 CHAPTER 5. VERIFICATION OF CONTROL PART

QAR
O(QAR) [O(QAR)

<6>

Figure 5.4: State Diagram (3)

P/\ Q/\ R
Q/\R

Figure 5.5: State Diagram (4)

ar

5.2. VERIFICATION METHOD , 59

The formula O(Q A R) is translated into a state diagram of Figure 5.4 in the

same manner that Figure 5.2 is derived. Figure 5.3 represents the other formula

~ ((P A o0Q) — oOR).

Then, Figure 5.5 is obtained by tracing each state diagram Figure 5.4 and Fig-

ure 5.3.

There exists no loop (even the sequence < 4,6 >,< 4,6 >,--- does not satisfy

the eventuality {~ R}). Therefore, this formula is concluded as unsatisfiable.

5.2.2 Verification Method using Cover Expression

This system verifies that the hardware designs really satisfy the specifications. Let
D be the temporal logic expression for hardware design and S be that for the

specification. We must investigate whether the following formula is valid.
D—-S
In order to prove it, we show that the negation of the formula, that is
- DA ~S
is unsatisfiable. Therefore, we have only to do the following.
1. To make state diagrams for ~ S and D.

2. To check whether there is any infinite sequence of state transitions for both

state diagrams ~ S and D.

If there exists an infinite sequence, the design does not satisfy the specification.
Otherwise, the design is correct with respect to the specification S.
The verification is processed with handling boolean expressions in the cover (sum-

of-product form). Cover is introduced from now on.

60 CHAPTER 5. VERIFICATION OF CONTROL PART

Cube and Cover

Let p be a product term associated with a sum of products expression of a logic
function with n input variables (z,, ...z,) and m output variables (fi,..f;,). Then p

is specified by a row vector ¢ = [¢1, .., Cny Cag1y -+s Crym), Where

10 if z; appears complemented in p,
01 if z; appears not complemented in p,
¢; =<4 11 if z; does not appear in p,
0 if pis not present in the representation of f;_,,
1 if p is present in the representation of f;_,,

For example, suppose a boolean function with 4 input variables and 2 output vari-
ables. The function fi = z,1z,Z7 is represented by the cube ¢ = [01 01 11 10 1
0].

The input part of ¢ is the subvector of ¢ containing the first n entries of c. The
output part of c is the subvector of ¢ containing last m entries of c. A variable
corresponding to a “11” in the input part is referred to as an input don’t care. “00”
never appears in the input part.

A set of cubes is said to be a cover C associated with a sum of products expression.

For

fi = z123 + T3T3 + 71235

f2 = T3z3 + T3%3;

01 01 11 11 1 O

11 10 01 11 1 1 |. .
C= 01 11 0L 11 1 0 is obtained.

11 11 10 10 0 1

Intersection Suppose that the intersection (logical and) of two cubes ¢ and d,
written as c- d, is a cube e. Then, the entries e; of the cube e are obtained from

bit-and operation between cube ¢ and cube d.

5.2. VERIFICATION METHOD 61

f1 = T1T9 [01 0111 1]
f1 = T3 [11 01 01 1]

U 4
f1 = 21T9ZT3 [01 01 01 1]

Example.

On-cover and Off-cover For a certain output variable f;, the set of all cubes which
makes f; be 1 is called on-cover for the output variable f;; similarly the set of all

cubes which makes f; be 0 is called off-cover for the output variable f;.

Verification Algorithm using Cover Expressions

Then, the verification algorithm using cover expressions is shown. Synchronous
circuit is generally divided into combinational part and flip-flop part like Figure 5.6.
The verification is processed with simulating combinational part in the form of cover

expressions.

The verification algorithm using cover expressions is shown in Figure 5.7.

Figure 5.7 is explained by illustrating the actual verification process. The exam-
ple used here is the control part of receiver by handshaking [FTM83]. The structure
of the design is shown in Figure 5.8 and specification to be verified is

DO(Call — © Hear)
with the condition that flip-flops are reset at initial state.

(preparation)
All cubes are represented in the form of [Call, CY, Hear-i, Call-o, Hear-0, Hear]. (input
variables are Call, CY, and Hear-i; output variables are Call-o, Hear-o, and Hear) The
on-cover and off-cover of the combinational pzut are as follows. Detalls of computing

the on-cover and the off-cover are described in [Nak87).
01 11 11 1 0 0

01 10 11
01 01 01
11 11 01

Con = (on-cover)

o o o

10
10
01

62 , CHAPTER 5. VERIFICATION OF CONTROL PART
external external
input , output
— combinational
part
internal - internal
input output
. flip-flop
L part

Figure 5.6: Structure of Synchronous Circuit

5.2. VERIFICATION METHOD 63

(step 1) Set the initial state in *NS to the current state in the specification.
Set the initial condition of flip-flops
to the current state in the design.

*NS represents the #4
<

alr negation of the specification

(step 2) Obtain the next states both in the specification and design using
the transition condition from the current state in NS.
(step 3) Can

the next states be all the transitions
obtained? checked or not?

Z_» | END
wo}
Yes|

Yes
Go back and use
another transition.

step 5) ArR

No

(step 4) s
there any loop?

Yes No

P> | Set obtained states to

the current states.

Print out the
contradictory example.

Figure 5.7: Flowchart of Verification

64 CHAPTER 5. VERIFICATION OF CONTROL PART
I

o | | i
] - 1
1 . i
1 :]
¥ i
. }
+]
] | 1
i |] : 1
] 1
] 1
‘..-.. -D..O..-___....-.._..__.._-_.._.._..___.' Hear

Hear-i Hear-o
» D-FF
cY Call-o
D-FF
Figure 5‘8:, Control Part of Receiver by Handshaking
L

5.2. VERIFICATION METHOD 65

10 11 11 1 0 O
10 11 11 0 1 O
Coff = (off-cover) 1100 01 0 10
11 11 10 0 0 1

For example, the second and the third rows of Con show that Hear-o on in two
cases, whether Call is on and CY is off or Call, CY, and Hear-i are all off.

Connections between flip-flops and the combinational part is illustrated as oHear-i
= Hear-o and oCY = Call-o.

The negation of the specification, that is ~ O(Call — OHear) is translated into
a state transition diagram such as in Figure 5.9. This state diagram is represented
as NS in Figure 5.7.

(stepl) The initial state of NS is < 1 > in Figure 5.9. The condition in which
flip-flops are reset is described in the cube form as

Ccond = (1110101 1 1].

(step2) The transitive condition from the state < 1 > into the state< 2 > in NS
is (Call A ~ Hear). The cube for the condition Call is

[0111 1111 1).
Then the cube for the condition ~ Hear is

11111011 1],
which is taken from the fourth row of Coff. The cover for (Call A ~ Hear) is obtained
as

Ct=[01111011 1]. |

The next state in NS is < 2 > and that in the design are calculated from

Cnext-on = Ccond-Con-Ct

and

Cnext-off = Ccond-Coff-Ct.

(step3) The next state in design is obtained from Cnext-on and Cnext-off in the- - - -~ -

following way. If there is a certain output variable that has the value 1 only in the

66 CHAPTER 5. VERIFICATION OF CONTROL PART

Call/\ ~Hear ~Hear

/"‘_ﬂ
[] ~Hear

<2>

Figure 5.9: State Diagram for NS

5.2. VERIFICATION METHOD 67

cover Cnext-on, that variable should be 1 at the next state. Similarly, if there is a
certain output variable that has the value 1 only in the cover Cnext-off, that variable

should be 0 at the next state.
Judging from the covers
Cnext-on = [01 10 101 1 Q]
Cnext-off = [01 10 10 0 0 1],

at the next state Call-o and Hear-o are 0 and Hear is 1. Considering the connection

between flip-flops and combinational part, the next state in design are as follows.
Cnext = [11 01 01 11 1].

If there exist some variables that have the value 1 both in Cnext-on and Cnext-

off, the values for those variables at the next state can not be decided.

If there exists a variable that has the value 1'neither in Cnext-on nor Cnext-off,
the next state in design can not be obtained. In this case, verification flow goes to

the step (step5) as shown in Figure 5.7.-

(step4) Check whether there exist any loop both in NS and in the design. If

there exists a loop which satisfies eventuality, that is a contradictory example.

Otherwise, set < 2 > to the current state in NS and Cnext to the current state
in design (in other words, set Cnext to new Ccond), and go to the (step2).

(step2) The transitive condition in NS is

Ctv= [111110111].

In this case, since Ct-Ccond = nil, both Cnext-on and Cnext-off are nil. and
the next state in design can not be obtained. Then go to the (step5).

(step5) There remains no state transition in NS, the process of verification has
been finished. It is concluded that the design of Figure 5.8 satisfies the specification
D(Call — © Hear).

68 CHAPTER 5. VERIFICATION OF CONTROL PART

5.2.3 Techniques for Increasing the Efficiency

Filtering Structural Description

One technique for suppressing the verification cost is filtering structural description.
This technique extracts a part of the structure which is really required for the

verification.

Specifications to be verified usually have a few external output terminals. At first,
these external output terminals are marked. Second, the networks of the structure
are traced backward from the output towards the input. Finally, the required part
for the verification is obtained. This is the logic networks truly influencing the

specification. This procedure is called filtering design description.

A system is generally divided into the control part and the function part. Since
the verifier treats only control parts, what is really needed for verifying the given
specification is much smaller than the whole descriptions. Suppose the case that the
number of flip-flops in the design decreases by one with this technique. Then, the
number of internal states of the circuit is reduced by half. Therefore, the filtering of a
design description decreases the verification cost drastically and keeps it manageably

small.

Memorization of States

In the verification flowchart Figure 5.7, when we get a state that has ever appeared,
we need not check either this state or any states following this state again, provided

that all the states which have ever appeared are remembered, This technique is

called memorization of states. Using this technique, the size of necessary memory - -

increases though the required CPU-time is suppressed.

5.3. EXPERIMENTAL RESULTS 69

5.3 Experimental Results

Two examples have been verified. One is a receiver by handshaking[FTM85] and
the other is a DMA controller for a mini computer[Use]. The experimental results are

shown in this section. The verification system is implemented on SUN3/260 (4MIPS).
5.3.1 Receiver Circuit

The receiver by handshaking is used as an example. The structure of t‘he circuits is
shown in Figure 5.10.

The following specification is verified with varying the bit-width of the data path.
The data path part is in the upper part of Figure 5.10.

O(Reset — O(Call — OHear)).

Since this specification has only one output variable Hear, we have only to verify
filtered part about Hear. The filtered part is surrounded by broken lines in Fig-
ure 5.10. This is the same as Figure 5.8. The negation of the given specification is

decomposed into the state diagram consists of 2 states. .

Size of on and off covers Size of on and off covers are as shown in Table 5.1.

Sum of traced states Sum of traced states in the state diagram (~Specification

A Design) is 2 in all cases.

Memory usage The size of used memory in translating HSL description into cover
and in verifying are 130KB and 30KB respectively in the worst case of data
path of 16 bits without filtering. The size of required memory for other cases

are less than these.

CPU time CPU time required for the verification is shown in Table 5.2.

-

S N L 1Y Aasanasesaaas L L D R N N e L T Y

%9010

lesH

prrasssssalonsssrrassrrassssrnsssana

N N Y TN XY cecnacnencalacance

CHAPTER 5. VERIFICATION OF CONTROL PART

R R L T P PR P IS T

PEPFFPFEPEPFE P

treces

— — hu TANEIIVIIEIIRITYRIRIRRIV R AL

uyul —# o ml*.mmmmmms_

N\

\

70

Figure 5.10: Receiver by Handshaking

S

5.3. EXPERIMENTAL RESULTS

sum of sum of
sum of |sum of | o hoc | cubes
input | output (on cover) |(off cover)
bit width 1bit 5 5 6 8
of
data path 4bits 11 11 12 20
(not 8bits 19 - 19 20 36
filtered)
16bits 35 35 36 68
filtered 3 3 4 4

Table 5.1: Size of On and Off Covers for Receiver

71

72

CHAPTER 5. VERIFICATION OF CONTROL PART

state “ps .
CPU time HSL dgiagram | Verification part
SUNB-260[sec] coter memorizing states
4MIPS cover without with
bit width | 1bit [0.14(0.12) [0.07 0.07 0.07
dat:;ath 4bits [0.29(0.22) | 0.12 0.13 0.13
not 8bits |0.56(0.30) | 0.27 0.27 0.29
(fittered) [Tgbits 1.49(0.64) | 0.84 0.84 0.94
filtered * 0.06 0.06 | 0.06

* Since the design is filtered in making covers,
the time depends on the bit width of data path.
The time for each width is shown above in (parentheses).

Table 5.2: Required CPU Time for Verifying Receiver

5.3. EXPERIMENTAL RESULTS ‘ 73

5.3.2 DMA Controller

The next example is a DMA controller for a mini computer U-300 [Use]. The struc-
ture of the DMA controller is shown in Figure 5.11. The following two specifications

are verified.

(1) O((Reset Ao O ~ Reset AD ~ Acdt) — oO(Rqdma — o Rqdt))

(2) O((Reset Ao O ~ Reset Ao O~ Rgdma) — oO(Acdt — o ~ Rqdt))

The negation of each specification is decomposed into the state diagrams consists

of 4 states. Filtered part is dotted in Figure 5.11.

Size of on and off covers Size of on and off covers are as shown in Table 5.3.

Sum of traced states Whether filtering or not, sum of traced states in the state
diagram (~ Specification A Design) are 7 for the specification(1) and 6 for the
specification(2). |

Memory usage The size of used memory during verification is about 50KB for
each specification in either case of memorizing states or not. The size of used
memory in translating HSL description into cover expressions is ,in the worst

case, about 110KB without filtering.

CPU time CPU time required for verification is shown in Table 5.4.

VERIFICATION OF CONTROL PART

CHAPTER 5.

74

(rorg)

doga

(cer g W)

(riy g W)

(cerd W)

13548

Ilvo

dOMY |

{ror@ W)

dogyv

[{314:5 1]

&

11AYS
(LB N) —

[{1: 3]

b N {(s1vE W)
a i Ay
G a 0 1§ 450
{011E W) [(182:5.1]
{tnaw)
L+ Y R—— _
ayom
BIEH)
axds aA.J
labyt
(otpeh) .
trer @ W) i
(oilaoyv

de af
(otpir)

: DMA Controller

Figure 5.11

5.3. EXPERIMENTAL RESULTS

sum of | sum of sg:;)e‘;f Sngb;sf
Nput | output| . cover) |(off cover)
not
filtering 16 18 *o >
filtering 6 11 32

11

Table 5.3: Size of On and Off Covers for DMA Controller

L 2

75

76

CHAPTER 5. VERIFICATION OF CONTROL PART

CPU time HSL disatsrtaem verification part
S%ﬁ?ééso l ' memorizing states
[sec] cover | cover without with
not (1) | 1.36 0.44 0.66 0.58
filtered | (2) | 1.36 0.44 0.65 0.54
_ (1) | 1.13 0.21 0.27 0.23
filtered 2) | 1.13 0.21 0.26 0.22

Table 5.4: Required CPU Time for Verifying DMA Controller

Chapter 6

Verification of Data Path

In this chapter, a data path verification system at the register transfer level is
presented. This is a central part of the proposed logic design assistance system. The
input to the verifier are the behavioral description and the structural description at

the register transfer level. The following assistances are realized by this verifier.

o Link informations between the behavior and the structure are derived auto-

matically.
o Consistency between the behavior and the structure is verified automatically.

e The logic of the control part is derived automatically.

6.1 Structure

The structure of the verifier is shown in Figure 6.1. The input to this system are
the behavioral description in RTL-Tokio, the structural description in Prolog, and
the operation rules in Prolog. The operation rules are regarded as a part of the
structural description. The other widely-used structural description languages can
be translated into this style easily.

The assumptions in the verification are as follows.

77

78

CHAPTER 6. VERIFICATION OF DATA PATH

Behavioral Description

Structural Description

Operation

Rule

(in RTL-Tokio) (in Prolog)
+ l
(Translator)
—> Data Transfer _.C Facility Checker)
" Table ’
Interval Transition +
Table

Facility Usage Table

——0(Time Tracer)4—1

»| State Transition Table

Figure 6.1: Structure of Data Path Verifier

6.1. STRUCTURE 79

1. All the data transfers occupy the necessary paths and operators during the

whole one time period specified in the behavior.

2. Operations in the behavior are linked to the operators in the structure by using

the operation rules.

3. Names of the registers and memories in the behavior are the same as those in

the structure.

Instead of the second assumption, it may be another assumption that one type
of operations should be linked to one type of operators. That is, the operation of *+’
is realized by an operator of adder, and ’>> 1’ is realized by a shifter. The reason
why the operation rules are introduced is as follows. By introducing the operation
rules, modules can be regarded as black boxes. Suppose a data path with modules
which have some functions. The designers frequently construct such a data path
while they are deriving register level behavior. In order to verify such a structure,
the second assumption is required. In addition to that, this system can vervify‘ a
behavior without operation schedulings provided that required timing relations are
declared. In other words, a behavior at a little higher level than the register transfer
level can be verified owing to the second assumption.

The process of the verification is divided into the following two stages.

o To find sets of paths and operators which realize data transfers. This stage is
executed by the Translator and Facility Checker.

e To check whether any paths or operators are used for more than two data transfers
simultaneously. This stage is executed by the Time Tracer. The state transition

table of control part is also extracted in this stage.

In the next section, the format of structural description is presented at first, . .. = . _

and then each part of this data path verifier is explained. Experimental results are

80 CHAPTER 6. VERIFICATION OF DATA PATH

shown in section 6.3.

6.2 Verification Method

6.2.1 Structural Description

There are three types of declaration as follows. Since a hierarchical structure can
be expressed in this format; the other widely-used structural description languages
can be translated into this style easily.

o type(type-name, facility-name, module-name).
"type(aa,bb,cc).” represents that a facility of name bb in the module cc belongs
to the group of the type aa. The module name of the top level is reserved as top.

o path(path-name, input-port, output-port)
This expression represents the network between the facilities. To declare the bit-
width e:;cplicitly, the following syntax is prepared.

path([p412,[0,15]], [busi, [out, [O,’15]]] , [add1, [in, [0,15]]]).

o func([function, input-port, output-port], signal-line).

This declaration represents the function of each type..

6.2.2 Translator

The RTL-Tokio description is translated into the interval transition table and the
data transfer table by the translator.

First, all the intervals in the RTL-Tokio description are identified. The identifier
is in the form of |
intld = (predName/arity, clauseNum,intNum). For example, (main/0,1,2) represents

the second interval of the first clause whose name is main and whose arity is none.

- Second, the length of each interval is decided. Then, all -the transitive relations

are extracted with its transitive conditions. The transitive relations are caused by

6.2. VERIFICATION METHOD 81

chop operators and predicate calls. All these informations construct the interval
transition table.
After the interval transition table has been obtained, all the data transfers in

RTL-Tokio are extracted with interval-identifier (intld) and gathered into the data

transfer table.
6.2.3 Facility Checker

The facility checkef transforms the data transfer table into the facility usage table
using the operation rules. From the given data path, this part selects a set of paths
and operators which realize each data transfer listed in the data transfer table. The
facility usage table consists of these selected ones. To put it in other words, this
table represents the link informations between the behavior and the structure. This

transformation is processed in accordance with the following steps.

o Find a operator or a set of operators which realizes the operation in each data

transfer.

o Search for data paths from the source register to the input of the operator and

those from the output of the operator to the destination register.

In the first step, care must be taken that one operation is realized in several
ways. For example, the operation of 'multiplied by 2’ is realized not only by using
a multiplier, but also by using an adder or one-bit shifter. In order to find all
the candidates, therefore, both the functions of the facilities and the rules of the
equivalent operations should be given in advance. The latter is called the operation

rules. The former is declared in the structural descriptions as follows. -
func([add, [[adder,in1], [adder,in2]], [[adder,out]]], [adder,cnt]).

The operation rules are also given in the following Prolog form.

82 CHAPTER 6. VERIFICATION OF DATA PATH
opSame ([[multi,X,2], [shift_left,X], [add,X,X]]).

The operation rules are constructed in advance, but the user is allowed to add any
necessary rules. The fact that the functions of the facilities and the operation rules
are given in the same form provides us with a smooth design assistance.

If the facility usage table cannot be obtained or if a certain facility is used twice
in the same ?nterval, the RTL-Tokio behavior cannot run on the specified structure.
In the case that a certain facility is used in some ihtervals, the Time Tracer checks
whether these intervals occur simultaneously or not. Two method of time trace have
been implemented. One is called as forward time trace and the other is called as

backward time trace.
6.2.4 Forward Time Trace

The process of the forward time trace is divided into the following two stages. In
the first stage, all the intervals occurring simultaneously are listed by tracing the
intervals transition table forward. A’state transition table in Moore type is also

derived in this stage. In the second stage, all the listed intervals are checked whether

- they use the same facility or not. Conflicts of data transfers are detected in this

stage.
Derivation of State Transition Table: Stagel

A state in Moore state diagrams is defined by {intervalName,clockNumber} in RTL-
Tokio ciescription. A state transition table is obtained by traversing all the transi-
tions listed in the interval transition table forward clock by clock. The algorithm
is explained at first, and then the way of execution is illustrated by‘using a simple

example.

stepl The initial interval I;,;; and initial clock I . (usually 0) is selected. Sy =

{{Linits Latock) }-

6.2. VERIFICATION METHOD 83

step2 (Predicate Call)
If S; has predicate calls, all the called intervals are added to S;. The obtained
S; are recorded with the transitive conditions. The names of the ancestors
are also recorded unless the predicate call occurs in the last interval of the

predicate.

step3 To proceed one clock, and S;;; next to S; are obtained. Contents of Siy1 are
@i{“ the list of states if the behavior contains concurrency. There are two methods

1in this step as follows.

1. Increment the clock number I, if the obtained clock number is not

larger than the length of that interval.

2. Transfer to the next interval through chop operator &&.
Step3 is followed by step?.

Halting Condition Let S, be the newly obtained one in step2. If 0 < F: <

n, S, C S: holds or S,;; next to S, cannot be obtained, the execution halts.

The trace always halts.

Proof. (abstract)

The number of intervals in the behavior is finite. Therefore, the number of

states is finite if ancestors of predicate calls are not recorded infinitely in step2.
. Here, ancestors are recorded unless the predicate calls exist in the last interval.

Since recursive calls exist only in the last interval by the constraint of RTL-

Tokio, infinite ancestors are not recorded in step?: Thus, the number of states

appearing during the trace is finite. Consequently, the time trace always halts.

84 CHAPTER 6. VERIFICATION OF DATA PATH

Then, a practical execution of this stage is illustrated. Figure 6.2 shows an .

example adopted here.

o Initial set So = “[[(start/0,1,1,0)]]”. Here, “(start/0,1,1,0)” represents “(pred-
icateName/arity, clauseNumber, intervalNumber, clock)”. Thus, this denotes

“0 clock in the first interval of the first predicate whose name/arity is start/0”.
o Sy = “[[(init/0,1,1,0),(start/0,1,1,0)]]” is obtained in step2.

o In step3, S; = “[[(execution/0,1,1,0)]]” is obtained as the first candidate and
recorded with the transitive condition “[=<,*a,10]”. Intervals are traversed in

depth first. The second candidate “[[(execution/0,2,1,0)]}” is traced later.

o 5; = “[[(sub1/0,1,1,0),(execution/0,1,1,0)]]”. S; should be distinguished from
“[[(sub1/0,1,1,0),(execution/0,2,1,0)]]” because the successors are not the same.

This is the reason why ancestors of predicate call should be recorded in step2.
o 53 = “[[(execution/0,1,2,0)]]”.

o 5, =“[[(sub2/0,1,1,0),(execution/0,1,2,0)],[(sub3/0,1,1,0),(execution/0,1,2,0)]}".

In the case concurrency exists like this, contents of S; are more than one.
o S3 = “[[(execution/0,1,3,0)]]".

o Sy = “[[(execution/0,1,1,0)]]” is obtained at first. The ancestor of predicate

call “[[(execution/0,1,3,0)]]” needs not be recorded, because the successors of

“[[(execution/0,1,1,0),(start/0,1,2,0)]]” are the same as those of
“[[(execution/0,1,1,0),(execution/0,1,3,0)]]”. This is the reason why the ances-
tors is not recorded when the predicate calls appear in the last interval.

S3 = “[[(sub1/0,1,1,0),(execution/0,1,1,0)])” is obtained finally.

6.2. VERIFICATION METHOD

start :- init && execution.

init :- *a <= 1, *b <= 2, *c <= 4, *d <= 0.

execution :- *a =< 10,!, subl && sub2,sub3 && execution.
execution :- *a =< 40,!, subl && *a <= *d + *c && execution.
execution :- !, empty.

subl :- !, *d <= *a,

sub2 :- |, *a <= *d * x*b,

sub3 :- !, *%c <= *c + 1.

Figure 6.2: Traced Example

85

86 CHAPTER 6. VERIFICATION OF DATA PATH

Here, S, is the same as S;. Therefore, the trace stops and another transition
is searched for. Another state “[[(subl/0,1,1,0),(execution/0,2,1,0)]]” is set to
s,

- (The rest of the trace is omitted.)

Reduction of States:

In the example of Figure 6.2, S; = “[[(sub1/0,1,1,0),(execution/0,1,1,0)]]” and

Sz = “[[(sub1/0,1,1,0),(execution/0,2,1,0)]]” can be regarded as one state because
the data transfers within them are the same. In order to put them together into
one state, the transitive conditions should be changed. This system only produces

a message about the possibility of the reduction.

Figure 6.3 shows a state diagram of control part which is derived from Figure 6.2.
Conflict Detection: Stage2

This stage is divided into the following two steps.

o Listing all the concurrent intervals.
All the elements in each S; occur simuitaneousiy unless they’ have exclusive
transitive conditions. For the given two transitive conditions, they are judged
as exclusive only if they have the exclusive conditions at the same time spot.
In order to detect exclusiveness with time passing, linear programming method

"should be introduced. This remains to be solved.

¢ Detecting facility conflict.
Using facility usage table, all the concurrent intervals are checked whether they
use the same facilities. If they use the same facilifies, it results in data path
conflict. In this check, care must be taken that there exist some alternative‘

sets of the facility usage avoiding facility conflict.

6.2. VERIFICATION METHOD 87

Obtained State Transition :
Ancestor = 0
Obtained Successor = 1
Obtained State = [[(init/0,1,1,0),(start/0,1,1,0)]1]
Transitive Condition = [[],[]]

Obtained State Transition :
Ancestor = 1
Obtained Successor = 2 o
Obtained State = [[(sub/0,1,1,0), (execution/0,1,1,0)]]
Transitive Condition = [[],[[=<, [*,a],10]]1,[1]

Obtained State Transition :
Ancestor = 2
Obtained Successor = 3
Obtained State = [[(execution/0,1,2,0)]]
Transitive Condition = [[]]

Obtained State Transition :
Ancestor = 3
Obtained Successor = 2
Obtained State = [[(sub/0,1,1,0), (execution/0,1,1,0)]1]
Transitive Condition = [[],[[=<,[*,a],10]1],[]]

Obtained = [[(sub/0,1,1,0), (execution/0,2,1,0)]]
- [[(sub/0,1,1,0), (execution/0,1,1,0)]] State Id = 2
can be the same state as the above state.
Obtained State Transition :
Ancestor = 3
Obtained Successor
Obtained State
Transitive Condition =

[[1,[[=<, [*,2],40]], (neg_of, [[=<, [*,2],10]1), [1]

4
[[(sub/0,1,1,0), (execution/0,2,1,0)]1]

Obtained State Transition :
Ancestor = 4
Obtained Successor = §
Obtained State = [[(execution/0,2,2,0)]]
Transitive Condition = [[]]

Figure 6.3: Extracted State Diagram of Control Part

88 CHAPTER 6. VERIFICATION OF DATA PATH

6.2.5 Backward Time Trace

The process of backward time trace is in the reverse order to that of forward time
trace. In the backward time trace, a pair of intervals which use the same facility
is listed at first, and then they are verified whether they occur simultaneously or
not by tracing the interval transition table backward. The technique of tracing the
interval transition tables is similar to that of the forward time trace except for the

direction. Here, the abstract of the algorithm is shown.

stepl All the pairs of intervals which occupy the same facilities are found.

step2 For a given set of intervals found in stepl, the concurrency check begins.
Suppose the initial set of intervals be Ay = {I,} and By = {I;}. In case that
I, follows I. or I; and I, follows I, or Iy, Ay = {I.,I;} and By = {I.,I;} are
obtained as the predecessor. Using the interval transition table, the backward
trace continues in this way and constructs the A;4; and B;;; from A; and B;
with recording the transitive conditions.
o dint, 0 < 3 < n; int C A; N int C B; holds and the transitive conditions
from int to I, are not exclusive of those from int to I, I, and I, are proved
to occur simultaneously, which results in the design error.
e Suppose A, and B, be the newly obtained sets. If 3i; A, C 4;N B, C B;

holds, or either A, or B, is empty, the execution is aborted and goto stage3.

step3 For all the pairs listed in stepl, step2 is applied. The obtained results in the
previous step2 are used to cut off the same trace. This method decreases the .

execution time but increases the required memory.

6.3. EXPERIMENTAL RESULTS 89

6.3 Experimental Results

This verifier has been applied to three examples. One is a circuit which calculates
square root using Newton’s method. Another is a general processor cited from
[Kar89]. The last is an application specific processor called NIP (Network Interface
Processor). The data path verifier is implemented on SUN4/260 using SICStus-
Prolog [CW83].

6.3.1 Computing Square Root

The algorithm of computing square root using Newton’s method has been already
shown in section 4.4. Figure 6.4 is the pipelined behavior with two times repetition
in RTL-Tokio. The structure of the data path is shown in Figure 6.5.

This example is verified with altering the repetition times. The repetition times -
indicates how many times the loop in Figure 4.8-(a) is executed. Irrelevant to the
repetition times, the degree of internal concurrency is 2. The verification halts
only after all the conflicts are detected. The results are shown in Table 6.1. In
this example, addA is used in (input/0,1,2) and (stage2/0,1,2) and these sub-
intervals occur Simultanéoﬁsiy. Figui‘é'G.G shows a part of the output during the
backward time trace.

In Table 6.1, the intervals with data transfers are counted as the 'Number of
Intervals’, and 'Number of Backward Trace’ is the number of the pairs listed during

stepl of backward time trace as mentioned in section 6.2.5.
Operation Rule including Timing Relation

A behavior which is not scheduled completely has been verified. ' I illustrate the
behavior, required operation rule of timing relations, and a part of the execution in
Figure 6.7. The structure is the same as Figure 6.5. This behavior has been verified

successfully.

90 CHAPTER 6. VERIFICATION OF DATA PATH
start :- !, main.
main :- *adr = 8,!,true.

main :- !,input && stagel && main,(stage2 && true).

input :- !,
*inputl <= *memory(*adr), *adr <= *adr + 1
&&
*regl <= 0.222222 + 0.888889 * *inputl.

stagel :-!,
*reg2 <= xinputl / *regl
&&
*reg2 <= *reg2 + *regil
&&

*reg3 <= *reg2 / 2, *input3 <= *inputi.

stage2 :- !,
*regd <= *input3 / *reg3
&&
*reg4 <= *regd + *reg3
&&

*output <= *regd / 2.

Figure 6.4: Behavioral Description for Computing Square Root

6.3. EXPERIMENTAL RESULTS

, addA
y W\ ‘uin1 in2|=#
out

APREIN

91

adr ‘ reg2 ’ ' reg4 ' ‘ reg3 '

R Y e SR
in out
 divA
outr out in2<
mitA in2 in1
Cint
yy

address
out

memory

‘Figure 6.5: Data Path Structure for Computing Square Root

92 CHAPTER 6. VERIFICATION OF DATA PATH
CPU time (sec)
Number
Number ‘ Number of of
of Translator | Facility | Forward | Backward | Backward | Derived
Repetitions Checker | Trace Trace Trace States
2 0.29 2.23° 0.53 2.10 6 12
4 0.43 3.44 1.03 9.23 28 21
8 0.62 5.99 2.15 78.8 120 39

Table 6.1: Results of Verifying the Circuit for Calculating Square Root

[((input/0,1,2),0)],1

and

[((stage2/0.
may conflict.in

,1,2),0)],1

[[mltAaddA, [addA, [in1,[0,711]], [reg4addA, [addA, [in1, [O,f]]]]] |

[((main/0,2

»3),0)1]

[((input/0,1,1),0)]
[((1nput/on1)1) ;1)]
[((input/0,1,2),0)]

[((main/0,2
[((stage2/0

,3),0)]
»1,1),0)]

[((stage2/0,1,1),1)]
[((stage2/0,1,2),0)]

Happen.

These may happen at the same time.

Figure 6.6: A Part of Output dﬁring Backward Time Trace

6.3. EXPERIMENTAL RESULTS

%% Input Behavior

start :- !, main.
main :- *adr = 8,!,true.
main :- !,input && stagel && main,(stage2 && true).
input :- !, | :
*inputl <= *memory(*adr), *adr <= *adr + 1
& | |
*regl <= 0.222222 + 0.888889 * *inputi.
stagel :-!, ’
*reg2 <= (*inputl / *regl) + *regl
&&
*reg3 <= *reg2 / 2, *input3 <= *inputil.
ar stage2 :- !, :
*regd <= (*input3 / *reg3) + *reg3
&&

*output <= *reg4d / 2.

44 operation rule including timing relations
4% timing_rule(original scheduling,
WA nev scheduling, unbounded variables).
timing_rule((*R <= (%A / *B) + *C) ,
[(*R1 <= %A / *B) && (*R <= *R1 + *C)] ,R1).

%4 a part of script file during the execution
| ?- tst(’Root/root_time.tokio’,extend).

*reg2<= xinputl/ *regl+ *regi
% is replaced by
it i [*_1242<= *inputl/ *regl && *reg2<= *_1242+ *regi]
Please confirm undefined variables: _1242
|: reg2. % manual input
*regd<= *input3/ *reg3+ *reg3
is replaced by
[*_3902<= *input3/ *reg3 && *regd<= *_3902+ *reg3]
Please confirm undefined variables: _3902
|: reg4. Ymanual input

Figure 6.7: Operation Rule including Timing Relation and Its Execution

94 CHAPTER 6. VERIFICATION OF DATA PATH

6.3.2 General Processor

The next example is a general purpose processor (cited from [Kar89]). In this

section, the following results are presented.
o Description of the processor in RTL-Tokio
e Computation of ackerman(1,1) function on this processor.
o Veriﬁéa.tion of 1.;he data path.

Description in RTL-Tdkio

Figure 6.8 shows a part of the behavioral description in RTL-Tokio. In this de-
scription, instead of specifying the decoder, both the byte and the type of each
instruction are declared explicitly for clarity.

This computer has 16 instructions. The computation consists of “ifetch” part
and “execution” part. After “ifetch” fetches an instruction from the memory, “ex-
ecution” is activated. For all the instructions except for add and adc, the next
“iftech™ stage begins after the “execution” stage has finished. In the case of add
and adc, however, the next “ifetch” begins one clock earlier. Consequently, “ifetch”
is executed in the last clock cycle of “execution” concurrently. The underlined part

in Figure 6.8 represents this concurrency.
Compuﬁng Ackerman(1,1)

The description of Figure 6.8 has been simulated by computing ackerman(1,1). Fig-

ure 6.9 shows a part of instructions for ackerman(1,1). As shown in Figure 6.9, the

computation begins by loading the instructions into the memory.

Required CPU time is shown in Table 6.2. This simulator is implemented on
SUN4/260 using SICStus-Prolog. The input are the behavior of the processor (Fig-
ure 6.8) and the instructions for ackerman(1,1) (Figure 6.9). Descriptions in RTL-

6.3. EXPERIMENTAL RESULTS

ifetch :- !, *opl <= *mem(*pc) , *pc <= *pc+l && ifetch_branch.
ifetch_branch :- *opl = stop, !, empty.
ifetch_branch :- (_,2,_) = *opi,!,ifetch2.
ifetch_branch :- !, execution.
ifetch2 :~- !, *op2 <= *mem(*pc) , *pc <= *pc+l && execution.
execution:- !, exec_first && execution_latter.
exec_first :- (add,.,.) = *opl, !, *memd <= *mem(*op2).
exec_first :- (adc,.,.) = *opi, !, *memd <= *mem(*op2).
exec_first :- (clr,_,.) = *opi, !, *a <= 0.
exec_first :- (com,_,.) = *op1, !, %*a <= aluO(*a).
exec_first :- (push,_,_) = *opi, !, *mem(*sp) <= *a.

exec_first :- (pull,_,_) = *opi, !, *sp <= *sp+1.
exec_first :- (lda,.,.) = *opl, !, *a <= xmem(*op2).
exec_first :- (sta,.,.) = *opl, !, *mem(*op2) <= *a.
exec_first :- (1lds,_,.) = *opl, !, *sp <= *mem(*op2).
exec_first :- (sts,_,.) = %opl, !, *mem(*op2) <= *sp. -

..... (omitted)........
execution_latter :- (Op,By,short) = *opi,!,ifetch.
execution_latter :- (Op,By,long) = *opi,!,
(exec_second && true),ifetch.

execution_latter :- (0Op,By,sec2) = *opl,!,exec_sec2_begin.
exec_second :- (add,_,_) = *opl, !, *a <= alul(*a,*memd).
exec.second :- (adc,_,_) = *opl, !, *a <= alu2a(*a,*memd,*c),
. *c <= alu2c(*a,*memd,*c).
exec_sec2_begin :- !, exec_sec2 && ifetch.
exec_sec2 :- (pop,_,_) = *opl, !, *a <= *mem(*sp).
exec_sec2 :- (jsr,_,_.) *opl, !, *pc <= *op2, *sp <= *sp-1.
exec_sec2 :- (rts,_,_) xopl, !, *pc <= *hem(*sp).
exec_sec2 :- (push,_,_) = *opl, !, *sp <= *sp-1.
*$function’ aluO(A) = Qut :- aluO(A,Qut).
alu0(X,0ut) = 1, Out = -X.
’$function’ alui(A,B) = Out :- alui(4,B,0ut).
alui(X,Y,0ut) :- !, Out = (X + Y) mod 256.
'$function’ alu2a(A,B,C) = OQut :- alu2a(A,B,C,0ut).
alu2a(X,Y,Z,0ut) :- !, A=X+Y+ Z,
(if A > 255 then Out = A - 256 else Out = A).

?$function’ alu2c(A,B,C) = Out :- alu2c(4,B,C,0ut).

alu2c(X,Y,Z,0ut) := !, A=X+Y + 2Z,
(if A > 255 then Dut = 1 else Out = 0).

Figure 6.8: Behavioral Description of Processor

95

96 CHAPTER 6. VERIFICATION OF DATA PATH

init:- *pc := 0, *sp := 255, *a := 0, *c := 0,
*memd := 0, *memout := 0, *opl := (clr,1,short), *op2 := 0.

test :- init, *mem(0):=(1da,2,short), *mem(1):=(66),
*mem (2) :=(jsr,2,sec2), *mem(3) :=(5),

*mem(4) :=(stop), *mem(5) :=(push,1,sec2),
*mem(6) :=(1da,2,short), *mem(7):=(65),

ﬂ%:r *mem(8) :=(clc,1,short), *mem(9):=(sta,2,short),
*mem(10) :=(67), *mem(11) :=(adc,2,long),
*mem(12) :=(63), *mem (13) :=(pull,1,sec2),

*mem(14) :=(brc,2,short), *mem(15):=(19),
*mem(16) :=(add,2,long), *mem (17) :=(64),
*mem(18) :=(rts,1,sec2), *mem(19):=(sta,2,short),
*mem (20) :=(68), " *mem(21) :=(clc,1,short),
*mem(22) :=(adc,2,long), *mem(23):=(63),
xmem (24) :=(brc,2,short), *mem(25):=(35),
*mem (26) :=(1da,2,short), *mem(27):=(64),
*mem (28) :=(push,1,sec2), #*mem(29):=(1lda,2,short),

*mem(30) :=(67), *mem(31) :=(add,2,long),
*mem(32) :=(63), - *mem(33) :=(jmp,2,short),
*mem(34) :=(8), *mem(35) :=(1da,2,short),
*mem(36) :=(67), *mem (37) :=(push,1,sec2),
*mem (38) :=(jsr,2,sec2), *mem(39):=(54),
2 *mem(40) :=(sta,2,short), *mem(41):=(68),
1 *mem(42) :=(pull,1,sec2), *mem(43):=(sta,2,short),
*mem (44) :=(67), *mem(45) :=(1da,2,short),
*mem (46) :=(68), *mem(47) :=(push,1,sec2),

*mem (48) :=(1da,2,short), *mem(49):=(67),
*mem(50) :=(add,2,long), *mem(51):=(63),
*mem (52) :=(jmp,2,short), *mem(53):=(8),
*mem(54) :=(1da,2,short), *mem(55):=(68),
........... (omitted).............. , ifetch.

Figure 6.9: Instruction for Ackerman(1,1)

6.3. EXPERIMENTAL RESULTS 97

Tokio are first compiled into Prolog. Then, the obtained codes in Prolog are com-
piled again. After these two stages have been completed, the execution starts. The

rightmost column indicates the number of required clocks in the processor.
Data Path Verification

The data path structure is shown in Figure 6.10. The bit-width of the structure is
8 except for the lines explicitly indicated. »

In the verification, “ALU” is treated as a black box. Functions of “ALU” are
specified in the lower part of Figure 6.8. In the structural description, those functions
are declared as shown in Figure 6.11. If the function names such as “alu0” are
common in both the behavior and the structure, this verifier can handle a module
as a black box. If the number of the input to a signal-line is more than one, it results
in a data path conflict. In this example, the function"s of “alu2a” and “alu2c” can be
executed simultaneously because the input signals of them are the same as shown
in Figure 6.11.

The input to the verifier are the behavioral description (Figure 6.8) and the

structural description (Figure 6.10). The required CPU time are shown in Table 6.3.

The required time does not depend on the bit-width of the data path structure. This
is because a path of 8 bit-width is handled together as a single path in the facility
checker. The number of states which appear in the derived state transition table is
26. In this example, no states were reduced.

The backward time trace can test whether the given two intervals occur simulta-
neously or not. It is also possible in the backward time trace to specify one interval
and search for other intervals which occur simultaneously with the specified one.
As shown in Figure 6.8 obviously, exec..secoﬁd is always included in the pairs of
intervals which occur simultaneously. Therefore, we only have to trace backward -

with specifying one interval as exec_second. Required CPU time for this backward

98 CHAPTER 6. VERIFICATION OF DATA PATH

Tokio — Prolog Required CPU time | Required
Prolog | Compilation | for Execution Clock Cycle

Behavior of
Processor 1.73 sec 4.27 sec

2.49 sec 168 clock
Instructions | 0.66 sec 1.18 sec

Table 6.2: Required CPU Time for Simulating ackerman(1,1)

6.3. EXPERIMENTAL RESULTS

;f A
PC oP2 SP MEND A

| I— v
v | |op vv’ £1
DBUS

99

out l tc-a Jr
memory Y 4
iy v v vy \. AU /
a ress OBUS /,
+l 9

ABUS

Figure 6.10: Data Path Structure of Processor

func([alu0, [[alu, [in2, [0,71]]1], [[alu, [out4, [0,71113], [alu,alul]).
func([alul, [[alu, [in2, [0,7]]], [alu, [in1, [0,7]1]1],

([alu, [outa,[0,71]1]1], [alu,alul]).

func([alu2a, [[alu, [in2, [0,7]]], [alu, [in1, [0,7]]], [alu, [in3, [0,0]1]],

[[alu, [out4,[0,7]1]]1], [alu,alu2]).

func([alu2c, [[alu, [in2,[0,7]]1], [alu, [int, [0,7]]], [alu, [in3, [0,0]]1],

[[alu, [outcC,[0,0]1]1], [alu,alu2]).

Figure 6.11: Declaration of Function in ALU

100

CHAPTER 6. VERIFICATION OF DATA PATH

|t
CPU time (sec)
' Number of
Translator | Facility | Forward | Backward Derived
Checker Trace Trace States
- 2.22 6.51 17.3 775 26

Table 6.3: Result of Verifying Processor

6.3. EXPERIMENTAL RESULTS 101
time trace was 1.38 sec.
6.3.3 Network Interface Processor

The last example is a network intefface processor (NIP) in PIE64 [KT88]. PIE64
is a parallel inference machine which executes knowledge information processing in
parallel, and is under development in our laboratory. This machine consists of 64
inference units and two high speed interconnection networks. Each inference unit
has one inference processor, four network interface processors (NIP), one SPARC
processor, and local memory modules. NIP processes the interface between each
inference unit and the interconnection network.

The structure of the NIP is divided into four parts: a command-bus interface
part, a memory-bus interface part, a process synchronization part, and a data trans-
fer part as shown in Figure 6.12. The four parts of NIP acts in cooperation, but
each part has its own sequencer and is controlled independently. The data path
verifier has been applied to the process synchronization part and the data transfer
part. NIP was designed by Takeshi Shimizu in our laboratory. The behaviors of
the sequencers were originally written in FLDL-F which was developed at FIJUTSU
LIMITED. The behaviors were translated into RTL-Tokio by Yuji Kukimoto in our
laboratory. The structure of the data path was also translated into Prolog style by
Yuji Kukimoto.

Process Synchronization Part

This part supports the following functions. Details are described in [SKT89].

* Addition of the contexts to the suspension record lists. This function is realized

in suspend command.

e Collection of the suspension record lists. This function is a part of activates

command.

3
)

102

CHAPTER 6. VERIFICATION OF DATA PATH

{

Data
Transfer
Process

T -Synchronization

l :

Memory Bus Command Bus
Interface Interface

Memory Bus

)

2

N
— J

)

Figure 6.12: Structure of Network Interface Processor

6.3. EXPERIMENTAL RESULTS 103

%% state transition description

start :- !, idlestate.
idlestate :— #*reqi=1,*req0=1,!,
dataouts, btmp
&
activatess.

idlestate :- *reql=0,*req0=1,!,
dataouts, btmp
&
localbind.

idlestate :- *reql=1,%req0=0,!,
*btmp <= 0, dataouts, btmp

k&
localsuspends.
&%’?k idlestate :- *reqi=0,*req0=0,*xreqnd=0,*rsusp=0,!,
i dataouts, btmp
&&
slavebind. ‘
idlestate :- *reqi=0,*req0=0,*xreqnd=0,*rsusp=1,!,
dataouts, btmp
&&
slavesuspend.
idlestate :~ !,
dataouts, btmp
&x
idlestate.

%4 data output
dataoutf :- *xdack=0,!,
*dataout <= *datain.

dataoutft :~- !,

*dataout <= dfree(*free).
dataoutv :- *xdack=0,!,

*dataout <= *datain.
dataoutv :- !,

*dataout <= dval(#*val).
dataouts :- *xdack=0,!,

‘ *dataout <= *datain.

dataouts :- !,

*dataout <= dsusrec(*susrec).

%%Y% address output

.var :- !, *addrout <= avar(*var).
free :- !, *addrout <= afree(*free).
btmp :~ !, *addrout <= abtmp(*btmp).

Figure 6.13: Behavioral Descriptidn of Process Synchronization Part in NIP

104

CHAPTER 6. VERIFICATION OF DATA PATH

31 VAR, Remote check

VAR
0
31

VAL
0 —p-

~>'

31

SuUsS

o—> REC Add Tag
2\ 32
@ 0 7 32
—*
, 32 £
23 _NULL check 5o Data Out
.) . , + tag
22 22
2\
| 2s EfR2 CAR/CDR
29
| 23 7 D
22
Addr Out
32 28 . A |2 22
STMP

Data In

FREE NULL check

Figure 6.14: Data Path Structure of Process Synchronization Part in NIP

6.3. EXPERIMENTAL RESULTS

CPU time (sec)

- Number of
[[Translator | Facility | Forward Backward Derived
Checker Trace Trace States
5.97 7.85 1488 (not measured) 236

Table 6.4: Result of Verifying Process Synchronization Part in NIP

105

106 CHAPTER 6. VERIFICATION OF DATA PATH

Its behavior and structure are shown in Figure 6.13 and Figure 6.14 respectively.
The arities of the commands are held in the registers of VAR and VAL. SUSREC, BTMP,
and STMP are used as temporary registers. The register FREE holds the free list.
The results of the verification is shown in Table 6.4. In this example, 178 states are

detected to be reduced.

Data Transfer Part

This part supports the data transfers through the network and the garbage collec-
tions. Data are transferred through the network as shown in Figure 6.15.

The data path structure of the data transfer part is shown in Figure 6.16. Since
the required performance for this part is quite severe, the behaviors of both the
read-side and the write-side NIPs are pipelined. In the read-side NIP, a data is
transferred BUF0 — BUF1 — NOB in the pipeline of 3 stages. In the write-side
NIP, a data is transferred NIB — BUF2 — NOB in the pipeline of 3 stages. Other
registers in Figure 6.16 are used as buffers when data transfers cannot be pipelined. |

The upper part of Figure 6.16 which includes BUF0 and BUF1 and the lower
part which includes BUF2 and BUF3 are controlled respectively. The behaviors
of the two parts are shown in Figure 6.17 and in Figure 6.18 respectively. Since
the upper part is used mainly in a read-side NIP and the other part is used mainly
in a write-NIP, we call them read-part and write-part of NIP. These behaviors are
verified whether they can run on the structure illust;ated in Figure 6.16. The results
are shown in Table 6.5 and Table 6.6 respectively. In this example, no states and

20 states are detected to be reduced respectively.

107

dIU 8PIS 81lIM

dIU 8p15 pesy

g1

ndyng inding
e ssaxppy ~ TIE]

6.3. EXPERIMENTAL RESULTS

JyIomyay]

gaou ¢ 114 < 04g < |
inding
e
nding qae sseppy

JaJSueI] EBlE(]

Figure 6.15: Data Transfer throﬁgh Network

o

108 CHAPTER 6. VERIFICATION OF DATA PATH

Network Data In Y

“Current Address

> NIB

UNDEF check — ;

Memory Data In

BUF1

\AA
(Add Tag / Mark)

¢
v I
?BUFZ >BUF3 Parity

VAR, Remote check

Y
++ /- PLBI

> NOB Load Balancing
Information

* bit width is
32 for all paths.

- Data Out

Figure 6.16: Data Path Structure of Data Transfer Part in NIP

-
™

6.3. EXPERIMENTAL RESULTS

start:- !,initial.
initial:- *rmode=1,!,
*buf0 <= *addr, *bufl <= *bufd
&& initial.
initial:- *full=1,*xnack=0,!,
*¥bufl <= *nib
&& st001.
initial:- !, true,length(1l) &% initial.
st001:- *getd=1,*xnack=0,!,
*bufl <= *nib
&& st001.
st001:- *getd=1,!,
true,length(1) && initial.
st001:~ *xnack=0,!,
*buf0 <= *nib
&& st011.
st001:- !, true,length(1) && st001.
st011:- *getd=1,*xnack=0,!, -
*buf0 <= *nib, *bufi <= *bufo
&% st011. |
st011:~ *getd=1,!,
*bufl <= *buf0
&& st001.
st011:- *xnack=0,!,
true,length(1) &% stiil.
stO11:- 1,
true,length(1l) && st01i.
st111:- *getd=1,*xnack=0,!,
| *buf0 <= *nib, *bufi <= *bufo
&& st001.
still:- *getd=1,!,
*buf0 <= *nib, *bufl <= *bufl
&& stii1.
sti1il:-

!, true,length(1) &% stiii.

Figure 6.17: Behavioral Description of Data Transfer Part (Read-Part)

110 CHAPTER 6. VERIFICATION OF DATA PATH

start:- 1,initial.
initial:- *rmode=1, !, length(1) && rd000.
initial:- !, length(1) && wr000.

% memory to network data transfer
nobparfrom2:- *slmi=1,!,
' *nob <= *mdatain, *parity <= *mdatain.
nobparfrom2:~ *slap=1,!,
*nob <= xbufi, *parity <= *bufl.

rd000:- *dack=1, ! , true,length(1) && rd100.
rd000:- !, true,length(1) && rd000.

rd100:~ *nack=1,*dack=1, !, nobparfrom2 && rdi00.
rd100:- *nack=1, !, nobparfrom2 && rd000.

rdi00:- *dack=1, !, nobparfrom2 && rdi00x.

rd100:- !, nobparfrom2 &% rd000x.

% network to memory data transfer
wr000:- *nack=1,!, *buf2 <= *nib &% wri00.
wr000:- !, true,length(1) && wr000.

wrl00:- *pnack=1,!, *nob <= *buf2, *buf2 <= *nib
&& wrioi.

wr100:- !, *nob <= *buf2
&& wr001.

wrl01:- *dack=1,*valid=1, !, *nob <= *buf2, *buf2 <= *nib

&& wri0i.
wr101:- *dack=1,*nack=1,!, *nob <= *buf2, *buf2 <= *nib
: && wri101. 4
wri01:- *dack=1,!,*nob <= *buf2 && wr001.
wri0l:- *valid=1,!,*buf3 <= *nib && writiila.
wri01:- *nack=1,!, *buf3 <= *nib && wriila.
wri01:- !, true,length(1) &% wr101.

Figure 6.18: Behavioral Description of Data Transfer Part (Write-Part)

6.3. EXPERIMENTAL RESULTS ' 111

ol
CPU time (sec)
Number of
Translator | Facility | Forward | Backward Derived
Checker Trace Trace States
0.80 1.07 - 2.36 40.1 14

Table 6.5: Result of Verifying Data Transfer Part (Read-Part)

112

CHAPTER 6. VERIFICATION OF DATA PATH

CPU time (sec)

- Number of
Translator | Facility | Forward Backward Derived
Checker Trace Trace States
3.23 4.66 183.3 | (not measured) 81

Table 6.6: Result of Verifying Data Transfer Part (Write-Part)

Chapter 7

Discussions

In the previous chapters, a logic design assistance system is presented and explained.
In this chapter, the performance of this system is evaluated and the practical logic
design using the proposed assistance system is discussed. Several topics for future

researches are listed finally.

7.1 Performance Evaluation of Control Part Verifier

7.1.1 Speed

As shown in Table 5.2 and Table 5.4, circuits of 20~30 gates have been verified
within a few seconds. We discuss the two techniques for increasing the efficiency

which is described in section 5.2.3.

Filtering Structural Description

Required CPU time is linearly proportional to both the size of on-, off-covers and the
number of the state transitions which appear in the state diagram of (Design A ~
Specification). The size of covers increases exponentially to the number of the

input variables. The technique of “filtering structural description” extracts a truly

- required structure, decrease the number of input variables, and suppresses the size .

of the covers. In the control part; an output variable is usually a function of a

113

114 ~ CHAPTER 7. DISCUSSIONS

part of the input variables. In such case, this technique is very efficient because
the extracted structure is much smaller than the original structure. The results
illustrated in section 5.3 indicate that this technique is quite efficient for the adopted

two examples.

Memorization of States

This technique suppresses the number of state transitions which are traced during
the verification. On the other hand, this technique enlarges the size of required
memory.

The results illustrated in section 5.3 indicate that this technique is not so efficient.
The main reason for this is that the state diagram (Design A ~Specification) is small
originally. For example, the number of traced states is 6 or 7 for each specification
in DMA controller.

This technique becomes efficient when the given specification is complex and the

state diagram of (Design A ~Specification) is large.
7.1.2 Size of Required Memory

The size of required memlory is sﬁlall for t’hé adopted two examples as éhown in
section 5.3. It is the process of making on-, off-covers which requires the largest
mefnory. Here, we estimate how much memory is needed during making covers in
the worst case. |

Let n be the number of the input variables (including‘ both external input and
flip-flop). The number of cubes in on (or off) cover is considered to be 2"~! in the
worst case. The worst case happens when the function is exclusive-or.

For example, suppose a logic formula with 4 input. A cover for the formula

fl1 = 21222324 + 117,T3%4 + 21732374 + 71722324

7.2. PERFORMANCE EVALUATION OF DATA PATH VERIFIER 115
+T1T2T3%T4 + T1T2T3T7 + T1T2T3T] + T122T324

is as follows.

01 01 01 01
01 01 10 10
01 10 01 10
01 10 10 o1
10 10 01 o1
10 10 10 10
10 01 01 10
10 01 10 01 1

In practice, however, the worst case seldom happens, because the logic of control

Cover =

b e d i e e

part is rather simple. As for the DMA controller without filtering, the number of
input variables is 16, and the number of cubes in on (off) cover is still 46 (59), which
is much smaller than 2%, It is the same in the Receiver.

Besides cover expressions, various methods for representing boolean functions
have been proposed. Among them, BDD (Binary Decision Diagram) [Bry86] [MIY89]

is reported to be very compact style. Using BDD, the size of required memory will

be suppressed.

7.2 Performance Evaluation of Data Path Verifier
The performance of each part in the data path verifier is discussed.

7.2.1 Facility Checker

This part extracts the link information between the behavior and the structure.
Required CPU time for this part is much smaller than that for the time tracer,
except for the small example of computing square root. In other words, performance
- of this data pathv verifier is limitted by the power of the time tracer. 'I‘he facility
checker, in this sense, is efficient enough.

The procedure of this extraction is as follows.

116 CHAPTER 7. DISCUSSIONS

1. Find a operator or a set of operators which realizes the operation in each data

transfer.

2. Search for data paths from the source register to the input of the operator and

those from the output of the operator to the destination register.

Therefore, if a certain operation can be realized by many operators, the cost increases
in proportion to the number of the operators. For example, this situation arises in

array processors. In such case, we had better to adopt the following procedure.

1. Search for data paths from the source register and select operators to which

the source register is connected.

2. Among the selected operators, find a operator or a set of operators which

realizes the operation in each data transfer.

3. Search for data paths from the output of the operator to the destination reg-

ister.

7.2.2 Time Trace

Forward Time Trace

The cost for the forward time trace increases almost proportionally to the products
of the number of state transitions and states in the obtained state diagram. Since
this process traces all the transitions in the state diagram, its cost is in proportion
to the number of the state transitions. Moreover, overheads for checking the halting
condition increases proportionally to the number of states.
As for the first example of computing square root, the number of state transitions
‘are small, though it is a pipelined behavior. The second example (general proces-
“sor) has been also successfully verified. The last example of the network interface

processor is an application specific processor. Since its main purpose is to achieve

7.3. LOGIC DESIGN USING PROPOSED SYSTEM 117

very high performance, the behavior is complex. The forward time trace have also

managed to verify this example.

Therefore, the forward time trace is concluded to have enough power.

Backward Time Trace

- In the backward time trace, pairs of intervals which use the same facility are listed at
first. Next, all the pairs are verified by tracing the interval transition table backward.
Therefore, the number of backward time tracings is §C in the worst case, where N
is the number of intervals. The worst case occurs when a certain facility is used in
all the intervals. A bus often causes the worst case because it is used in almost all
the data transfers. In the second example, for example, the structure has 4 busses
and required much CPU time for the backward time trace.

The backward time trace can test whether the given two intervals occur simulta-
neously or not. It is also possible in the backward time trace to specify one interval
and search for other intervals which occur simultaneously with the specified one.
The general processor has been successfully verified using this technique.

. The backward time trace, therefore, is suitable for checking a part of the design
where designers are not sure of its correctness. It would be better that some parts
of the design are tested partly using the backward time trace at first, and then the

whole design are verified using the forward time trace.
7.3 Logic Design using Proposed System

In this section, we discuss the practical logic design using the proposed assistance
system.

In the proposed system, the designers, at first, specify the algorithm of the be-

havior to be designed in Tokio. Next, this description is transformed into another

description at the register transfer level. This derivation is processed step by step

118 CHAPTER 7. DISCUSSIONS

with a system realization such as scheduling operations, allocating operators, and so
on. This derivation is assured by simulating the behaviors. In this stage, the follow-

ing three points are realized concerning with the behavioral description language.
¢ The behavior is specified in an executable form.

o The behaviors at both the algorithmic level and the register transfer level are

given in the same language.
¢ Sequentiality and concurrency can be specified accurately and simply.

The second and the third points are enabled by the simple and accurate semantics
of Tokio or temporal logic. Owing to these points, manual derivation is processed
smoothly as mentioned in section 4.4. As for the first point, the simulator has been
already developed. This simulator is enough powerful as shown in Table 6.2.

Then, the designers also give the structure of the data path to be designed.
Both the derived behavior and the given structure are temporary. These should be
verified, estimated and improved.

In the verification, consistency between the behavior and the structure is checked.
If there exists a contradiction, both the behavior and the structure should be im-
proved. Link information between the behavior and the structure is required for
this improvement. This information indicates what parts of the structure are used
in order to realize a certain behavior. This information is obtained automatically
by the data path verifier.

In the estimation, the behavior should be simulated on the given structure and
the frequency in use of a facility is estimated. If there exists a facility of low fre-
quency, it is merged with another facility. Then, the improved structure should be
- verified. Simulatofs for this estimation have not been developed yet. This remains to -

be solved. However, the most required information for the improvement is also the

74. FUTURE WORK 119

link information between the behavior and the structure. Therefore, the assistance
of deriving thesé informations automatically is very beneficial.

After the steps of verification, estimation, and improvement have been repeated,
the final behavior and structure at the register transfer level are obtained. The
design process proceeds into the next stage of gate design. The data path verifier
extracts the logic of control part automatically. The derived logic is transformed into
networks of logical gates by manual or by a commercial synthesizer. The synthesized
control part is verified by the control part verifier.

In this way, logic design is assisted smoothly and effectively in the proposed

assistance system.

7.4 Future Work

There are several topics for future researches. Followings are the list of topics.

o In the control part verifier, the BDD (binary decision diagram) is suitable as

the internal representation of boolean functions.

o The déri§ation of RTL-Tokio froﬁ Tokio is currenﬂy done manually. In or-
der to achieve an efficient and practical assistance of functional design, it is
recommended to assist a semi-automatic derivation of the behavior and the
structure at the register transfer level. That is, an assistance system presents
some alternatives of the derivation, and then designers selects one of them or
they do another derivation manually. The system should adopt the techniques
of artificial intelligence. In order to realize this assistance, interfaces between

| designers and assistance systems are one of the most important points.

e A total assistance system should be investigated. The target of the proposed-

system in this thesis is only the logic design. In the actual design process,

120

CHAPTER 7. DISCUSSIONS

however, requirements to improve the results of the logic design often arise
from the implementation design stage. A total assistance system should be
investigated in order to meet such requirements which spread over different

design stages.

Chapter 8

Conclusion

In this thesis, a logic design assistance system based on temporal logic is presented.
There are three key points in this system: how to specify the behavior, how to verify
the control part, and how to verify the data pa{;h.

In chapter 4, a behavior description language Tokio is presented. Tokio has the

following three peculiarities.
e Sequentiality and concurrency can be specified accurately and simply.
o Behaviors are specified in executable forms.

o Behaviors at both the algorithmic level and the register transfer level are given

in the same language.

In section 6.3,vThree behaviors have been successfully specified which contain con-
currency. This is the basis that Tokio is concluded to have the first characteristic.
Ackerman(1,1) function has been also successfully simulated on the specified general
processor. This is the basis for the second point. As for the third point, a manual
derivation of register transfer level behavior is described in section 4.4.

The control part verifier was presented in chapter 5. Structures are verified
whether they satisfy given specifications or not. Speciﬁcatioﬁs are given in the form-

of propositional LTTL. Two examples have been successfully verified.

121

122 CHAPTER 8. CONCLUSION

A data path verifier is presented in chapter 6. The inputs to this verifier are the
behavior and the structure at the register transfer level. The following items are

realized by this verifier.

e Link informations between the behavior and the structure are derived auto-

matically.
e Consistency between the behavior and the structure is verified automatically.
o The logic of the control part is derived automatically.

This verifier has been applied to three examples successfully.
The proposed assistance system is concluded to have enough power to assist a

practical hardware design.

Bibliography

[Aba87]

[AFTS85]

[Ayl86]

[Bar81]

[BCDM386]

[BDSS]

[BMHS84]

M. Abadi. Temporal-Logic Theorem Proving. Technical Report STAN-
CS-87-1151, Stanford University, 1987.

T. Aoyagi, M. Fujita, and H. Tanaka. Temporal Logic Programming
Language Tokio. In Logic Programming Conference 85, pages 128-137,
Springer-Verlag, 1985.

J.H. Aylor. VHDL - Feature Description and Analysis. IEEE Design
and Test, April, 1986.

M.R. Barbacci. Instruction Set Processor Specification (ISPS): The No-
tation and its Application. IEEE Trans. on Computers, C-30,No.1:24~ ‘
40, 1981.

M.C. Browne, E.M. Clarke, D.L. Dill, and B. Mishra. Automatic Ver-
ification of Sequential Circuits Using Temporal Logic. IEEFE Trans. on
Computers, C-35,No.12:1035-1044, 1986.

G Borriello and E Detjens. High-Level Synthesis: Current Status and

Future Directions. In 25th Design Automation Conference, pages 477-
482, ACM/IEEE, 1988.

R.K. Brayton, C. McMullen, G.D. Hachtei, and A. Sangiovanni-
Vincentelli. Logic Minimization Algorithms for VLSI Synthesis. Kluwer

123

124

[Bry86]
[Cam87]

[Cams88]

[CES86]

[CWes]

[DBS85]

[DDég]

[FKTM86]

- [FMF89]

BIBLIOGRAPHY

Academic Publishers, 1984.

R.E. Bryant. Graph-Based Algorithm for Boolean Function Manipula-
tion. IEEE Trans. on Computers, C-35,No.8:677—691, 1986.

R. Camposano. Structural synthesis in the yorktown silicon compiler.

In VLSI ’87, pages 61-T72, IFIP, 1987.

R. Camposano. Design Process Model in the Yorktown Silicon Compiler.
In 25th Design Automation Conference, pages 489-494, ACM /IEEE,
1988.

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic Verification
of Finite-State Concurrent Systems Using Temporal Logic Specifica-
tions. ACM Transactions on Programming Languages and Systems,

Vol8, No.2:244-263, 1986.
M. Carlsson and J. Widen. SICStus Prolog Users Manual 1988.

G. De Micheli, R.K. Brayton, and A. Sangiovanni-Vincentelli. Optimal
State Assignment For Finite State Machines. IEEE Trans. on CAD,
CAD-5,7:269-285, 1985.

J.R. Duley and D.L. Dietmeyer. A Digital System Design Language
DDL. IEEE Trans. on Computers, C-17,No.9:850-861, 1968.

M. Fujita, S. Kono, H. Tanaka, and T. Moto-oka. Aid to Hierarchi-
cal and Structured Logic Design using Temporal Logic and Prolog. In

Proceedings. Pt.E, pages 283-294, IEE, 1986. -

M. Fujita, Y. Matsunaga, and H. Fujisawa. On the Application of Bi-
nary Decision Diagrams to Formal Hardware Design. In IMEC-IFIP

BIBLIOGRAPHY 125

[FTMS3]

[FTMS85]

International Workshop on Applied Formal Methods For Correct VLSI
Design, pages 246-260, 1989.

M. Fujita, H. Tanaka, and T. Moto-oka. Verification with prolog and
temporal logic. In CHDL ’88, IFIP, 1983.

M. Fujita, H. Tanaka, and T. Moto-oka. Logic design assistance with

- temporal logic. In CHDL ’85, pages 129-138, IFIP, 1985.

[HMs8]

[KAFTS5)

[Kar89]

[KT83)

[Man81]

[MIY89]

G.D. Hachtel and P.H. Moceyunas. Algorithm for multi-level tautology

and equivalence. In International Symposium on Circuits and Systems,

June 1988.

S. Kono, T. Aoyagi, M. Fujita, and H. Tanaka. Implementation of Tem-
poral Logic Programming Language Tokio. In Logic Programming Con-

ference ’85, pages 138147, Springer-Verlag, 1985.

O. Karatsu. VLSI Design Language Standardization Effort in Japan.
In 26th Design Automation Conference, ACM/IEEE, 1989.

H. Koike and H. Tanaka. Multi-Context Procesing and Data Balancing
Mechanism of the Parallel Inference Machine PIE64. In Fifth Generation
Computer Systems, pages 970-977, ICOT, 1988.

Z. Manna. Verification of Sequential Progrdms: Temporal Aziomatiza-

tion. Technical Report STAN-CS-81—877, Stanford University, 1981.

S. Minato, N. Ishiura, and S. Yajima. Fast Tautology Checking Using
Binary Decision Diagram - Benchmark Results. In IMEC-IFIP Interna-
tional Workshop on Applied Formal Methods For Correct VLSI Design,
pages 580-584, 1989.

126

[Mos83]

[MP81]

[MPC88]

[Nak87]

[NFKTS7]

[Pa184]>

[PKS86]

[PPMs6]

[Sas84]

BIBLIOGRAPHY

B. Moszkowski. A Temporal Logic for Multi-Level reasoning about
Hardware. In CHDL ’83, IFIP, 1983.

Z. Manna and A. Pnueli. Verification of Concurrent Programs Partl.
The Temporal Framework. Technical Report STAN-CS-81-836, Stanford
University, 1981.

M.C. McFarland, A.C. Parker, and R. Composano. Tutorial on High-
Level Synthesis. In 25th Design Automation Conference, pages 330-336,
ACM/IEEE, 1988.

H. Nakamura. Fast Logic Design Verification System Based on Temporal
Logic. Master’s thesis, University of Tokyo, February 1987.

H. Nakamura, M. Fujita, S. Kono, and H. Tanaka. Temporal Logic
Based Fast Verification systems Using Cover Expressions. In VLSI ’87,
pages 99-111, IFIP, 1987.

A.C. Parker. Automated Synthesis of Digital Systems. IEEE Design
and Test, November:75-81, 1984.

P.G. Paulin and J.P. Knight. Force-Directed Scheduling in Auto-
matic Data Path Synthesis. In 24th Design Automation Conference,
pages 195-202, ACM/IEEE, 1986.

A.C. Parker, J.T. Pizarro, and M. Mlinar. MAHA: A Program for Data-
path Synthesis. In 28rd Design Automation Conference, pages 461-466,
ACM/IEEE, 1986. ’

T. Sasao. Input Variable Assignment and Output Phase Optimization
of PLA’s. IEEE Trans. on Computer, C-33,No.10:879-894, 1984.

BIBLIOGRAPHY 127

[Shag9]

[SKS80]

[SKT89]

[SL89)

[Tri87)

[Use]

[Van'7]

[Wax86]

[Wol82]

M. Shahdad. An Overview of VHDL Language and Technology. In 29rd
Design Automation Conference, pages 320-326, ACM/IEEE, 1989.

Y. Sugiyama, O. Karatsu, and T. Sudo. VLSI Design System (in
Japanese). Technical Report 7-2, Monograph of Technical Group on
Design Technology of Electronics Equipment IPSJ, December 1980.

T. Shimizu, H. Koike, and H. Tanaka. Inter-pe Communication of the
Parallel Inference Machine PIE64 (in Japanese). Technical Report CA-
79-4, Information Processing Society of Japan, 1989.

I. Suzuki and H. Lu. Temporal Petri Nets and Their Application to
Modeling and Analysis of a Handshake Daisy Chain Arbiter. IEEE
Trans. on Computers, C-38,No.5:696-704, 1989.

H. Trickey. Flamel: A High-Level Hardware Compiler. IEEE Trans. on
CAD, CAD-6,2:259-269, 1987.

User Device Design Manual for PANAFACOM U-series.

W.M. VanCleemput. A Hierarchical Language for the Structural De-
scription of Digital Systems. In 14th Design Automation Conference,
ACM/IEEE, 1977. |

R. Waxman. The VHSIC Hardware Description Language - A Glimpse
of the Future. IEEFE Design and Test, April, 1986.

P. Wolper. Synthesis of Communicating Processes from Temporal Logic

Specifications. Technical Report STAN—CS-82-925, Stanford University, - - -

1982.

128

[WS86]

[Zub80]

BIBLIOGRAPHY

R. Wei and A. Sangiovanni-Vincentelli. Proteus: A Logic Verification
System for Combinational Circuits. In International Test Conference,

IEEE, 1986.

W.M. Zuberek. Timed Petri nets and preliminary performance evalua-

tion. In 7th Symposium on Computer Architecture, pages 88-96, 1980.

§

RE|IH
1. PR3

(1) PHE BEEZ FIERE BPEDS: "HERECES CREERRTY 27 4, 58
I LWRICHE, 1989, 6 A&

(2) RZE, AKTHEE, BPES: " HERETEVASRICA AT — X S RIS X7 47, (8
)

2. ERRaH

(3) Nakamura,H., Fujita,M., Kono,S. and Tanaka,H. : ” Temporal Logic Based Fast Verifi-
cation System Using Cover Expressions”, VLSI ’87, IFIP, pp99-111,Vancouver, Au-
gust, 1987

(4) Nakamura,H., Fujita,M., Kono,S., Nakai,M. and Tanaka,H.: ” A Data Path Verifica-
tion System using Temporal Logic Based Language: Tokio”, IFIP WG10.2 Working
Conference on the CAD Systems Using AI Techniques, Tokyo, June,1989

(5) Na.kamura,H.,Kukimoto,Y.,Fdjita,M. and Tanaka,H.: » An Assistance System for Effec-
tive Register Level Synthesis Using Temporal Logic Language Tokio” (Submitted for
publication)

3. BR&H

(6) BB, FMIRE, hHE, EHkE, TS "FHIRENEE Tokio K X 3T A=) XA
ficik & CMOS ¥'— + 7 v £ O HBI&RK ", ICOT,Logic Programming Conference’85,1985

(7) RE, PHIEN FFRSE BEHEE APXES: "FHEREEEEE Tokio Ic X 2 RERE
4R ”, ICOT,Logic Programming Conference’89, July,1989

4. 2ERRSE

(8) HHZE, BHEZR, A%, TMZE" BHERBERETE Tokio X3 — ¥y =7HOR”, 1§8
MBEELH 31 [(FRFN 60 FEHN) £2EAS, 2J 97,1985

(9) W, BEHEZ, APXE, T Tokio I X 3 REEROBRIT 1- BESGERBERITR O
£ -, ERAEE LS 32 [(B8 61 E5E) £B K4, 5U-2, 1986

(10) FFHZE, BEREZR, BHXE: "FHEREREE Tokio Ic X 3 REERR IR O T 7, 58
MBELH 33 [B] (BT 61 4EHHR) £EA£4,6Q-10, 1986

(11) FIEFEGE, PRE, BHEZ, HPXE: "RIEREEIEEE Tokio KX 23— FY = TIER - B
RlicEFFET 3 fact IC X 2 EH 7, BB LSS 33 [E] (F3F0 61 £KHE) £EBK4,6Q-9,1986

(12) HZ, AFKRE, BREZE, AHXEE: "Tokio KX 3L I XX I v 27 7 LAl
b OREE D HBERK 7, R LS 34 [0 (BB 62 F£5H) £EK£L,1F-2, 1987

(13) FIEFEGE, fHE, BEER, EREE: "Tokio I & 5 MAERMRLIEY — 1 », Wi0E
LN 34 [0 (BB 62 4ERUHE) £8 A4, 1F-1, 1987

(14) PRZE, BHEZ, MEFER, AHRHXE: "Tokio KX3LYRXX}+SvaRzy v-\»gait@
BWefT Y — 2 7 | (EEALEEEL S 35 (0] (BRF0 62 1) £E K4, 5F-3,1987

(15) FIEFSRiE, FPHE, BREEZ, AFXE: " FIEREREEE Tokio OAERICET 3 E£ >, 1§
AP 35 [(FBF1 62 £ 2EAL,5F-4, 1987

(16) HZE, FIEFRR, BEHEZ, BPHEE: "Tokio IS AL 754 v kKB Y —roEE
”, A& 36 [(FRF1 63 4FATH) £EAL,2X-77, 1988

(17) FAHRR, PHE, EHEZ, AhEE: "REREREEE TokioITL IC 32 3 Unification
DER”, HHRAEZ LY 36 [6 (IR 63 F£A1H) £EKAL, 2X-8,1088

(18) WHE, BEEEZ, FEKHE, AF#E: "RTL-Tokio: L ¥ X £ } 5 v X7 7 L<ABWeliR
AR, ERULIEE % 37 [H] (FRF0 63 F£HH) 2EAS, 1U-3,1988

(19) HHE, FIEFRTR, PHIER, BHEZR, Ah%E: "RTL-Tokio IcESL <L 754 vAEX
8”7, {WRULEP &% 38 [(FAUTERTHE) £E AL, 35-10,1989

(20) FIEFEGHA, FPHE, EREE: "RHERERERE Tokio IC 20 BIRLENER ", NE2s
% 38 [E] (FRICEMNH) 2EAL 45-5, 1989 -

(21) WPFHIESR, PHE, FERHE, AFEE: "EHEREREEE Tokio ICHS ¢ REFHTIBL X
787, R L 38 1] (CERCTERT) £BAL, 35-9,1989

(22) HHZE, AKTTHIE, AHEE: "RTL-Tokio f2ik 5 b 0RO MM, HEEAEELS 39
[B] (SFRRTTER) £B KL, 3X-4,1989 ,

(23) Miﬁgﬁ, F‘Pﬁ%; EE':F%: ?Tokio It F-5 < f“ﬂ/‘txﬁﬁyx 5 A OW n, Tﬁm
FRH 40 | (R 2 FF30Y) 2BALR, (RETFD)

5. prsES

(24) HrE , FIEFRGR, BEEZ, FP3%E: " Tokio IS ¢ REER ORI, {EHNESE LT
B HBHEBTES 86-DA-34-1,1986

(25) R , BREZ, FEBEE, AhXEs: ”ﬁ#ﬁ%&ﬂm%«:(?ﬁﬂ@%ﬁﬁ&%}s&” ETEE
' &% 17 6 FTC Bf%4, 1987

(26) HHEZ, HIRAMN, FHZE, BEPHEE: "Tokio Ic X 3RBEDIHXILL X 74 7, HELES
LBETHBY{LTES 87-DA-40-18, 1987

(27) AKRTHIR, PHE, AREE: "FHIEREREE Tokio KES F— 2 <RI, BTEE
o8 22 [{ FTC BfEL, 1990 (REFE)

