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Summary

This paper presents the solution of one-dimen-
sional elastic and visco-elastic wave propagation by
the finite element method as a basis for pursuing
the general two or three dimensional stress wave
problems. The numerical analysis is executed by
the following procedures: (i) The elapse of natural
time ¢ is divided into small finite segments of
equal interval 4¢. The acceleration of the element
mass is assumed to vary linearly with time within
each interval, ie. the time derivative of accelera-
tion or third derivative of displacement being as-
sumed constant. (i) Whole bar is divided into
segments with equal length 47 that have either
lumped or consistent masses at the points of divi-
sion or nodes. Mechanical behavior of the bar
element may be elastic or visco-elastic.

Various combinations of time-to-length segment
ratios A4¢/4] and mass matrices have been ex-
amined, and it is found that the consistent mass
matrix associated with the characteristic time-to-
length ratio A¢/dl=1/c (c: velocity of wave
propagation) gives numerical solution which cor-
relates satisfactorily with the analytical solution.
Tt is due to the hyperbolic nature of basic equa-
tion in the stress wave problems.

1. Introduction

One-dimensional elastic or visco-elastic wave
propagation has been analized conventionally by
the Laplace-transformation or the finite difference
method. The former procedure is not practicable
when the number of constituent elements which

represent the mechanical behavior of the material
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is large. Moreover, it is well known that the
correspondence principle based on the Laplace
transformation fails to cover the boundary condi-
tions that changes with time. The latter finite
difference method is rather clumsy and may not
be suitable for the wave propagation problems in
two or three dimensions. Fatal deficiency of the
method is that it is practically impossible to formu-
late a unified or general purpose solution procedure
applicable to a variety of problem areas. v

We shall examine, in this paper, the appropriate-
ness of the finite element approach to wave propa-
gation analysis. As the first step, one-dimensional
wave shall be studied to elucidate the accuracy of
numerical solutions as influenced by mass matrices
adopted as well as time-to-space segments ratio in
the computation.
2. Method of Analysis
(1) One-dimentional elastic wave

We adopt notations; A jand {B} for row vector
and column vector respectively. By the virtual
work principle, the nodal force {F}{ of each ele-
ment at time # is expressed in terms of the stress
o: in the element and apparent nodal forces due
to distributing load p:%:

(F1s=((Blo.d (vo) = [ (N} pd (val) (1)

Suffix ¢ indicates quantities at time ¢ and {B} and
{N} are vectors which combine respectively the
strain € and displacement f in the element with
nodal displacement {0}¢. Note o and € are scalar
quantities in one-dimensional problem. We employ
the Zienkiewicz’s notation and assume that the
displacement in the element is linear function of

condinates along the axis of the bar, so that
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e= B {0}e, f=_N,{0}° (2)
Similarly at time z-4 4t.

BV 1= 1B oessad (vol) = [ (N} praasd (vl
(3)

Subtracting equation (1) from (3), we obtain the
following equation which relates the increments of

basic variables within time interval 4¢

{AF}e:S{B}Aad(vol)—S{N}Apd@ol) (4)

{dF}e={F};,,,~{F} etc.

where )
Increments of stress and distributing load (inertia
force) in dynamic problems are given from (2),
by noting B as well as | N in the present for-
mulation are not dependent on time and space
coordinates

do=EAe=E B, {48},

dp=—pdf=—p N,{4} (5)

o dz d2
where 4df= (th;)tﬂt - (d—tJ:)z etc.

E and p are Young’s modulus and density of the
bar element. Substituting Ao and 4p from equa-
tion (5) into (4), we obtain
{4F}e=[ 2] {40} *-+[m]*{4b}° (6)
EA 1 -1
where [/e]é’:ES {B} B . d (voI)=Tl:_1 :J

[m]e=pg {N} N ,d (vol) =‘0A1Bj2 152]

The matrix [m]¢ in equation (6) is the one that
is called consistent mass matrix. Alternatively the
lumped mass matrix has been used in many ap-
plications where the element mass is allotted e-

qually to each nodal point as follows:

[ Je=pAl 1‘;2}

By synthesizing or assembling equation (6) for
each element, we obtain the equation of motion
of whole system, i.e.

LM {40} +[K {48} = {4F} (7
where [M] and [K] denote mass and stiffness
matrices of the system respectively. Vector {4F}
corresponds to the external force increment, if any,
at the nodes including both ends of the bar.

Material damping may be taken into account in

the dynamic equilibrium by adding a term ex-
pressed conventionally by [¢]{4d}. In our for-
mulation, however, material damping is incorpo-
rated in the material constitutive equation, giving
rise to a term corresponding to the apparent force
applied at nodes of each element (see Section 2.2).
The solution of equation (7) has been obtained
by a kind of step-by-step procedure.

By the assumption of linear variation of accele-
ration with time, we can replace equation (7),
which is basically simultaneous differential equa-
tions of second order, by linear algebraic equations.
We first note, due to the assumption of linear
variation of acceleration, that the incremeuts 46
and 40 respectively of velocity and acceleration
during time interval 4¢ can be expressed in terms
of displacement increment 49 together with time

derivatives 6 and § at time £2%:

A6=(3/4t) 46 —36—(4¢[2)0 (8)
and
A6=(6/4t2) 40— (6/4¢)5—35 (9)

Substitution of equation (9) into equation of mo-
tion (7) pertaining to each bar element yields a
set of linear algebraic equations for unknown dis-

placement vector {48} at nodal points as follows:

(& 3+ a01) (01

— (4F) +3[M][%5+3] (10)

The solution of simultaneous equations (10) gives the
increment of displacement {40}, and the increments
of velocity and acceleration {48}, {48} can be
evaluated by equations (8) and (9). The dis-
placements {6}, velocities {6} and accelerations
{6} at time ¢+ 4t are calculated by adding these
increments to corresponding quantities at time .
Then we can proceed the next time step A¢ of
computation.
(2) Visco-elastic wave

We consider here specifically the visco-elastic
material expressed by three-element model of Fig.
1. (Note, however, that the material is a special

case of generalized Maxwell model of Fig. 2.)
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Fig. 1 Three-element model.
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Fig. 2 Generalized Maxwell model.

Stress-strain relations or constitutive equation of
the three element model is given by the following
differential equation at time . ‘

ot Trid=Ee8+(Ei+Ee)Trié (11)
Incremental form of equation (11) is

Ao+ Tridé=Ecde+-(E;-+E)Tridé (12)
In the following, we assume that the stress and
strain velocities ¢ and & vary linearly with time
in each inteoval 4¢, ie. the second time deriva-

tives of stress and strain being constant such that
.2 . .2 .
=“ fo— =2 fe—2 13
46 zAa 26, 4¢ p de—2¢ (13)

Assumption of linear variation of & is consistent
with that made for & in deriving equations (7)
and (8) of the preceding section. Substituting
A6 and 4¢ from (13) into (12) and using the

relation given by equation (11), we obtain

AGZ(Ee+—1—E;')A€——At/—’TﬁO'g

1448 144t 14
2Tri 2Tri

where 0i=0:1—Es:&
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Equation (14) is extended, for generalised Maxwell
model of Fig. 2, as

do= (Ee+2 %Ei)ds—z%m
1+2Tr|' 1+2Trx‘
(15)

In visco-elastic wave analysis, equation (14) sub-
stitutes the relation do=Ede for elastic case.
Thus modifing equations (5) through (10) ap-
propriately, we can compute visco-elastic stress
wave by the computer program developed for
elastic wave.
3. Results of Computation

Our first example concerns with the longitudinal
wave propagation in an elastic bar of finite length
whose one end (x=0) is rigidly fixed (Figs. 3
through 6) ; the external loading being applied at the
other end (z=1). The type of loading considered
was the displacement type with a constant tensile
speed v(l, ¢) or displacement u(l, t)=v(l, t)¢. Pa-

rameters or data in the computation are:

PROPAGATION-1

‘ V=1mm/ms
g i analytical solution
= 2.0r °oo numerical solution
E '
z { , £=0.08ms
(5] o o
2 °o ° o o o N
2 1.0 MO
P o
] .
T
=4 0 o°
1 11 21 31 41 51

node number

Fig. 3 LUMPED MASS with dt=4dl/c

total number of nodes 51

total number of elements

50

(1) lumped (2) consistent
(1) dt=4dli]c,

mass matrices

time increment
(2) de= é— Aije

E=20000 kg/mm?
density of the bar material
0=0. 0008 kg/msec?/mm*

velocity of elastic wave propagation

Young’s modulus

¢=5000 mm/msec
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PROPAGATION-2
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g analytical solution
5 2.0r °°o numerical solution
E ,
2 $=0. 08 ms
8 % o
—_— [ ° o
g 1.0 °°° ST a0y
L9
:_9: ©
= °
A 0 oo’ 1 !
. ,
1 11 21 31 41 51

node number

Fig. ¢ LUMPED MASS with 4¢=0.541/c

PROPAGATION-3

l:~ V=1 mm/ms

£ ' analytical solution
= 2. Ol- e numerical solution
E |
> i
'G B
._; L OL t=0.08 ms
2 |
g |
04 ! . . ,
1 11 21 31 41 51

node number

Fig. 5 CONSISTENT MASS with dt=4l/c

PROPAGATION-4

— V=1 mm/ms

) !

E 5 OL analyu:cal solution

E - U °9° numerical solution

- |

Z !

—-g 1 0; clt=0. 08 ms
2@ ( °
s | .
. | o
a 1 °

OL&——" o 1 ! ! ]

1o ° 11 21 31 41 51
node number

Fig. 6 CONSISTENT MASS with 4t=0.54l/¢

length of each bar element
41=10 mm

tensile speed at bar end  v(J, £)=1 mm/msec
Results of computation are portrayed in Figs. 3
through 6, giving particle velocities pertaining
each element in the bar along longitudinal axis z.

The accuracy of calculation has bzen found un-
satisfactory when we adopt lumped mas matrix,
irrespective of the size of time division 4z (Figs.
3 and 4).
matrix is adopted with 4¢> 4l/c, similarly as in

Instability occured when consistent mass

the paper of Chiu® where the computation was

carried out by the finite difference procedure. How-
ever, consistent mass matrix with 4z < 41/c predicts
correct wave except near the wave front of propa-
gation. Particularly, it can be seen from Fig. 5
that characteristic time interval dt=Al/c gives
exact solutions for whole region of the bar in
consistent with the hyperbolic nature of governing

equation of stress wave.

ost  —

S s 1 2 2\ 172
= L - (e )
pcv 2

0.6 TTeeal =1 —analytical solution
:?: ° eoo numerical solution
S T, E=20000 kg/mm?
r0d Poovoeoool, 7=0. 02 msec

P00 000000h 000 : oo
0.2r
/=4
0 2 37 Iy 3
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Fig. 7 VISCO-ELASTIC WAVE PROPAGATION

Fig. 7 exemplifies the visco-elastic wave. Bar
material is of simple Maxwell type that is the
special case of three-clement model of Fig. 1 with
E,=0.
values of elastic spring constant E and relaxation
time 7 for the Maxwell model in the computation,
together with exact solution® of stress induced in
the bar. (Manuscript received Feb. 18, 1971)

Inset of Fig. 7 gives the characteristic
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