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FLUCTUATIONS OF RESPONSE SPECTRA —PART 4—
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——THEORETICAL EVALUATIONS IN CASE THAT RESPONSES
AND EARTHQUAKES ARE STRONGLY CORRELATED—
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by Nobuyuki SHIMIZU*
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1. Introduction

In this paper, the fluctuations of response spectra
are theoretically discussed. In a previous report®,
the fluctuations of response spectra were discussed
under the assumption of independence between the
average energy of output-and that of input-
waves. But, when the output-and input-waves
are strongly correlated, the results from expressions
in the previous report are not consistent with the
results from analog computation®.

Here, the author has derived the probability dis-
tribution of response spectra including the correla-
tion coefficient of average energy of output-and
that of input-waves. By using this formula, the
statistics of response spectra are given.

2. Fundamental Equations

In the previous report, the joint probability dis-
tribution of X; and X, (square root values of nor-
malized average powers correspond input-and out-
put-waves) was obtained under the assumption that
X: and X, are independent each other. When X; and
X, are not independent, the determination of an
exact expression on the joint probability distribu-
tion of X; and X, seems to be quite difficult. Here,
an approximate expression on the joint probability
distribution of X; and X, is derived by solving the
following probabilistic model for y2-type-problem.

“Problem; Let I, I, ..., I» be the m real
random variables belonging to N(0, V'¢i), and
Imst, ..., Imin be the n real random variables
belonging to N(O, V'¢s).

What is the joint probability density fa(x1, x2)
of the vector process X, if Iilmij=Imsili=12=

0,(i=1,2,..., m; j=1,2,..., n)?
Where,
x1 LaJ. 1
x—(x2>_(fszIz) <1)

and
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and Ji, J. are unit matrices of orders m and
and A denotes a transpose matrix (or vector) of
A‘)I
We can solve the above problem as follows.
The characteristic function F3(i&1, i&:)x of fa(x1,
.Z‘z) is
Fu(iéy, igz)x:r S Frin(D)eF=d T
(2)
from its definition, where fumsn (I) and &= (g;)

are the density of I and argument of a characte-
ristic function. Also from its definition, the fmsn(I)
is
e— (/2T
Smea(l)= (2m)m+n)/2 (det K )1/2

and covariance matrix K is

(3)

7—11—1 """ IlIm Il-LrH—l """ ?11m+n
: T : m
Inl Inlm [mlm+l """ Im1m+n
B |
Im'+111 "'Im.+lIm Im+'llm+l '“IﬂH:ll7n+ﬂ }
T o : : n
<I7;tr+nll "'Im+nlm Im+nIm+1 "'Im+n1m+n
(4)
and this becomes as
¢1‘ 0 (/{12"'§/{12
0 ‘¢1 é[;u"'g/;m
K= . (4)’
d{lZ""/{lZ QDZQ 0
¢.’12"'¢.12 0 ~Qﬁz
from the assumption of probabilistic model. As
éx is
& 0
N~ 0
Y . 0 &
sx:IEI, H=] cceeeneriinineiininns A (5)
& 0
0
0 &

eq. (2) becomes as follows;
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il e—(/2)I(K1—2i8)I
Fax= S_D.; " S(zn)<m+n/m<det K)1/2
=[det(J—-2:K8)]-12,
where J is unit matrix of order (m-n).
Introducing a new variable P(¢n, ¢2; &, &),
that is,

P((/)], (/}2§ El, Ez)—E

dl (6)

(1—2ih&)"(1 —2iduta)”,
(8)

F,y is obtained from eq. (7) as,

1— P 9
Fae| (1mtgisn )P )
Eq. (9 can be expanded to Taylor series if

9/1122%{;% <1, and we take the first 2 terms,
then F.. becomes as follows;
fra 0° ) 12,
sz4(1+ 2 06:00 P- (10)

From eq. (10), fas(xi, x2) is obtained approxi-
mately as

fitan ez (1495 T e g0 fiaa 40,
an
where
filzs, ¢o)= _1—( )(/) < o—(1/2)zi/ i),
HER =y 2”2F<1/2>¢ :
l=m:if i=1
{l:n Cif =2 (12)

From eqs. (11) and (12), fa(u1, u2) is obtained as
follows;

Fala, uz>;[1+0_22{u1_<p,+1>} {m—(pﬁl)}}
X 1) frues), (13)

where in this equation, we replaced
i&

U; = ¢ ( —1 2) Pl_ l p2_—§—1
(14)
and
WD (l=mif i=1
flw)=7 rapy " {l:n Cif =2
15)

Now, the joint probability distribution f2(X:, X,)
dyidy. for the square root value of a normalized
average power of input waves ¥: and that of out-
put wave Y, is

f(X,»X,,)dX;dXO:[l-{—m
X (2=t 1)) Pl = (ot 1)} |
4X ;2ni+1)  2n041
* Plout D (na+1)
dXidXo; Yiy, X0o=0
=0 s Xi, X, otherwise

e—i*+¥0%)

(16)

from analogy of expression (5) in the previous
report and eq. (14), where (¢ is a correlation coef-
ficient of a normalized average power of input-
and that of output-waves, n; and 7, (correspond
to input-and output-waves) are degrees of
freedom of y%type distribution in eq. (15).

The probability distribution of a normalized
response spectra from the 2nd term in eq. (16)
[ AR)d A%, (A*=U,o/Xs), is as follows (the 1st term
was already discussed);

1

* =
fo(A*)dA 1/(",+1)(n,,+1) B(ni+1,n,+1)
Ak2mo+1
'W‘[(7ii+no+3)(ni+no+2)
A%z 1

~(ni+D)mi4no+2) ——5 1—|—Z*2) (n.'+1)(no+1)}
XdA*; A*=0
=0 ; A*<0,

Qan

where B(p, q) is Beta function of argument p
and gq.

3. Statistical Properties of Response Spectra

The moments of response spectra are obtained

from eq. (17).

o, and relative dispersion d» are as follows;

Mean value 4, standard deviation

1=Kn, (18)
or=KV'ks—k:? 19
dr=Vk—F2/K: (20)

Here, K is a constant, £, and k2 are the first and
second moments of A*, and these can be obtained
from eq. (17), that is,

N P
w= 1= e s @L

— 14
= [1 - V(‘fmmiﬁ]“*’

where a; and a» are the 1st and 2nd moments
of A* when ©=0.0

From egs. (21), (22), we see that the correla-
tion coefficient g gives an influence to &2 stronger
than to #;, that is, to standard deviation than
to mean value. And the larger ¢ becomes, the
less £1 and k2 become.
4. Correlation Coeflicient and Cross

Covariance Function

Correlation coefficient # is defined as

(22)

V- O -
— 9 Eio] (23)
OEi*OE,
where
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T
oZ[E,-o:|=2§O<T—r>[¢,-ﬁ<f>+¢m-2<r>3dr
(24)

o[E]= 453(7‘ — ) H0)dT (25)

and
T
OEEa]=4SO(T—T)¢oZCT)df- (26)

Here, ¢,i(t) is the cross covariance function of
output-and input-waves, and ¢«(t) and ¢ ,(z) are
auto covariance function of input-and output-
waves respectively. Cross covariance function
¢0i(t) is obtained as Fourier Integral® of cross
spectral density Woi(w) for the output-and input-
waves.

5. Numerical Computations and Results

& B oWk
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The author comtutes 4, d, in case of a single-
degree-of-freedom dynamical system. The power
spectrum of pseudo-earthquake is taken as,

Aoy= —Aodteorto)
o' —2(1 -2 w0+ wyt
and transfer function for an absolute acceleration
of the vibrating system is as,
e gpe s o 200p(iw)Fw,?
)= Bt = G oy r ot
(28)
where @, {; are a dominant frequency and a
corresponding damping ratio of the ground and
ws, { are a natural frequency and a damping
ratio of the system, and % is an intensity of gaus-
sian white noise. From egs. (27), (28), cross
power spectrum is obtained as

@7

i (7)

Ty=0.2s

T,=1.0s, ¢,=0.3

Tsy=parameter, {;=0.07

Fig. 1 CROSS-COVARIANCE FUNCTION OF #3(/+7) AND «(?)
(1 freedom system, stationary-input)
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Fig. 2 CORRELATION COEFFICIENT OF E; AND E,
(1 freedom, stationary-input)
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A THEORETICAL EVALUATION £,=0.3
(pe:theoretical) £,=0.07
© THEORETICAL EVALUATION T/T,=20.0
) (72 analog comp. results were used)
dy
0 THEORETICAL EVALUATION
0.4 |- (2 always zero)
® ANALOG COMPUTATION s
0.3F
0.2
0.1F
0 /T,
0
Tig. 3 RELATIVE DISPERSION OF RESPONSE SPECTRA
(1 freedom, absolute acc.)
W, (iw)= 200 w)+ 0,2 6. Conclusions and Acknowledgements
o T ((0)2+-25w,(iw)F w,? The author obtained the following conclusions
2L olioYto2 |2 5 (29) from the above discussions ;

(im)2+2C0wa(iw)+waz

Fig. 1 shows the cross covariance function ¢,;
(z) for the absolute acceleration of the system and
pseudo-earthquake. Fig. 2 shows the correlation
coefficient ¢ of the average energy of the absolute
acceleration of the system and that of pseudo-
earthquake. In this figure, the results of analog
simulation are also involved. A tendency of the
two curves is consistent, but the curve from analog
simulation is turned more shaper. Quantitative
defference between the two curves would be caused
by the nostationary effect (i.e. initial condition),
although input waves are stationary processes, for
analog computation.

Fig. 3 shows the curves of the relative dispersion
dy for Ty/T;. We see that the results of theore-
tical evaluation from eq. (19) are better agreement
to the results of analog simulation than those of
theoretical evaluation as #=0. When g is small,
so also is dx. This fact is known directly from
eq. (20). For T4/T,=1.5, the relative dispersion
is considerably large and in this region, the effect
of ¢ to the d, is almost none, that is, we can
see that the assumption of the independency be-
tween the average power of the output-and that
of input-waves is sufficiently satisfied. As for mean
value 2, /¢ scarecely gives an influence to it.

(1) New formulae are given for the probability
distribution of response spectra as eq. (17), and
the joint probability distribution X; and and %,
as eq. (16).
(2) Correlation coefficient of an average power
of output-and that of input-waves is an important
factor for the fluctuations of response spectra, but
(8) Mean value is little influenced.
(4) Expressions derived in Chap. 2 & 3 are valid
for the estimation of response spectra, and
(5) These expressions can be used to a multi-
degrees-of-freedom vibrating system because g is
included. This problem will be reported in the
following papers.
The author expresses his great gratitudes to
Professor Shibata for his valuable discussions.
(Manuscript received Mar. 24 1970.)
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