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Abstract

This is a summary of our research which is related to the measuring
and imaging of a non-uniform, refractive medium by ultrasound. This non-
uniformity may be of interest by itself. It may also become a disturbing
factor if our purpose is to know about the details beneath it. Anyway we
must know about its properties, for example the spatial distribution of the

sound velocity inside it, before we can take its influence into consideration.

Inferring medium properties from the incident and the scattered waves has
been studied under the general name of the inverse scattering problem, which
includes one-, two- and three-dimensional problems. To solve three-dimensional
problems, signals need to be recorded on a surface enclosing the object, and
the calculation requirement is in most cases too big for the computing power
available today. From technological restrictions as well as analytical difficulties,
most research works are confined to one- or two-dimensional problems. The
solution of two-dimensional problems is usually via the Born or the Rytov

approximation, which is valid only for weak inhomogeneities.

Turning to one-dimensional problems, since the parameters of the medium
change only in one direction, the measurement and processing is usually much
easier. However to solve this problem exactly would require the impulse re-
sponse of the medium to be known. Viewing in the frequency domain, this
means knowledge of the reflection coefficient to harmonic waves of frequencies
from DC to infinity. In practice we can only measure with a transducer of
limited bandwidth. Another realistic problem is that transducers usually have
directivities that are difficult to control. In inverse scattering measurement,
waves from different directions are received by the same transducer. Without
knowing from which direction the wave comes and the directivity of the trans-
ducer, it is practically impossible to use the amplitude information contained

in the received signal.




ABSTRACT

With these practical considerations in mind, we considered the possibility
of calculating the sound velocity profile of a one-dimensional medium from
reflected signals which are band-limited and noise-corrupted. Then, layered
media with plane interfaces, either parallel or non-parallel, are dealt with. In
doing this we have avoided using the amplitude information which is system-
dependent and unreliable, as noted above. Instead we use the time information
contained in the signals. However, if the amplitude information is available,
then the density of each layer can be calculated at the same time.

Roughly speaking, the measurement required by our methods can be per-
formed in the following way, for calculating the sound velocity of each layer
and the geometrical configuration of the medium. A spherical wave is gener-
ated by a point-like transducer, and the reflected wave is received by several
receivers (at least 2 for horizontally-layered media, and 3 for non-parallel lay-
ered media) at different locations. The important thing is that these receivers
must not be too close together, because we are using the differences in the
arrival time of the echoes to infer about the sound velocity of each layer.

The main results of our research can be summarized as the following:

1. Demonstrated that it is possible to calculate the sound velocity profile of
a one-dimensional medium using only a relationship between the travel
times corresponding to two different incident angles;

2. Developed algorithms for calculating the sound velocities and thickmesses
of layered media with either horizontal or non-parallel plane interfaces;

3. Proposed a spectral fitting approach to recover an §-impulse series from its
filtered and noise-corrupted version. Evaluated the error of the positions

of these é-impulses caused by measurement noise.

All of these results have been verified by computer simulation and by
experimental measurements of some simple geometries.

Our treatment of the one-dimensional problem is unprecedented so far as
we know. On comparing two signals measured at different incident anglse, it
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ABSTRACT

is noticed that waves coming from the same depth resemble each other, even
though they arrive at the surface at different time instants. This fact indicates
that it is possible to make the two waveforms nealy the same (according to
certain criteria) by stretching or contracting the time-axis of one of them. In
this way a functional relationship is established between the two travel times.
A simple derivation is then given which shows that the one-dimensional sound
velocity profile can be recovered as a function of depth from this travel time

relationship, under the assumption that the probing wave is a plane wave.

Next we turned our attention to layered media. Apparently a layered
medium with horizontal plane interfaces is a special case of the general one-
dimensional media. The new problem here is that the probing wave is not
planar, but spherical. Using the ray approximation we investigated the de-
pendency of increments of travel time on the propagation angle, and found
the relationship d¢ ~ cos® 4 to be a very good approximation. Based upon this
observation we modified the analysis which is derived under the plane wave
assumption, and developed an algorithm for the processing of data obtained

with spherical waves.

Layered media with non-parallel interfaces are treated quite differently. Al-
though some relationships have been established between increments of travle
time and propagation angles, the final solution is based upon a minimization
formulation, i.e., the medium parameters are varied so that the travel times
calculated from the reconstructed model agree with those of observation. The
adjustment of the sound velocity ¢; of the kth layer is made through the
secant method, whereas the thickness dj and the inclination angle 7y are
obtained by solving a minimization problem, using the Marquardt-Levenberg
algorithm, which is a combination of the Gauss-Newton method and the gra-

dient method.

The problem of estimating pulse positions from signals which contain
measurement noise has been considered. The reflection from a layered medium

is modeled by the convolution of an incident pulse with the impulse response
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ABSTRACT

of the medium, which consists of a series of 6-impulses. The problem is to
estimate the accurate positions of these é-impulses from the received signal.
We propose to solve this problem by a spectral fitting approach, in which
we fit terms like p;e™“7 to the estimated spectrum of the impulse response.
This fitting problem can be solved efficiently using the FFT. Furthermore we
analysed the fluctuation of the estimated pulse positions caused by additive
noise, using the peak position of the cross-correlation function. This mnot
only leads to an analytical evalution of the fluctuation, but also provides an
alternative way for estimating the delay between two pulses. In fact this
latter approach is less time consuming when the rough positions of the two
pulses are known, and the best combination would be to use the spectral
fitting technique to scan the whole signal, which provides rough positions of
the pulses, and then to use the correlation technique, together with spline

interpolation, to get accurate estimation of the positions.

This dissertation consists of 7 chapters. The above analyses and discussions
are contained in chapters 1 through 4. Chapter 5 is on computer simulation,
in which we demonstrated deconvolution by spectral fitting, compared the
fluctuation of pulse positions to the result of analysis, and performed inversion
to parallel layered media probed by either plane or spherical waves, and to
non-parallel layered media probed by spherical waves. In chapter 6, results of
experimental measurements are reported, including the deterioration of image
qualities caused by a distortion plate, compensation for the distortion effect
using travel time residuals, and results of processing the data measured with
both parallel and non-parallel interfaced layered media.

Although we have not been able to go so far as to apply the methods
proposed here to actual human data, simply because that the geometries
we have treated are still not general enough, we think that we are heading
towards the solution of the problem.
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Introduction

1.1 A Brief Review of Ultrasonic Imaging

The practice of generating a wave from the outside of an object, and inves-
tigating the interior of the object by detecting and analysing the scattered
waves, is becoming commonplace. The application of ultrasound in medi-
cal diagnosis is a typical example. Others include the exploration seismics,

non-destructive evaluation of materials, radar and sona, ec.

From the principle of operation, the application of ultrasound in medical
diagnosis can be divided into two categories, i.e., Doppler methods and pulse-
echo methods [1]. The former make use of the Doppler frequency shift to
measure the movement of blood or the heart wall or other parts, while the
latter, although have many different forms, measure the echoes due to a

generated pulse to infer about the acoustical non-uniformity of the object.

In this dissertation we deal exclusively with the latter. The basic principle
of the pulse-echo system is illustrated in Fig. 1.1. An acoustic pulse is
generated at the surface of the body. It propagates into the deeper part, while
at the same time, is reflected back to the surface by the non-uniformity of
the body. The reflected waves (echoes) are received by a transducer, amplified

and processed to provide information useful for medical diagnosis.

There are several forms in which this information can be displayed, i.e.,
the A-scope, the B-scope, and the M-scope. With the A-scope, the received

signal is demodulated (rectified) and low-pass filtered. The resultant signal
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CHAPTER 1 INTRODUCTION
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Fig. 1.2 B-scope pictures are formed by modulating the brightness
. of a scanning spot according to the amplitude of the video

signal.

The Usual View Plane

of B-scope

—
]
\% The View Plane

Fig. 1.3 B-scope pictures are different cuts of the object compared

with what we usually see.

Up to now we have neglected an important fact. We notice that the
propagation, reflection, and scattering, of the acoustic wave in the object

is basically a three-dimensional phenomenon. It is not one-dimensional as
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CHAPTER 1 INTRODUCTION

depicted in Figs. 1 and 2. However, when displaying the received signal it is
treated as though it is one-dimensional, as though the echo has come from
directly below the transducer and not from any other directions. Apparently
there is a gap between the way the signal is generated and the way it is
displayed. To make up for this gap, the commonly adopted method is to focus
the acoustic beam, so as to stay as close as possible to the one-dimensional

assumption.

The idea of focusing is very simple in principle (Fig. 1.4). For example,
to generate a wave field which focuses at a certain point, one only has to
initiate appropriately the vibration of each part of a generating system, so
that the waves from each part arrive at that point at the same time. This
makes the wave field at that point to have the greatest intensity, so that it
is focused there. Focusing can also be applied in receiving signals. Here the
process is the reverse of transmitting. The signals received by each part of
a receiving system is delayed appropriately and added up, so that the waves
coming from the focal point are in-phase to each other and when added, sum

up to a big signal.

The vibrations are so initiated so that waves from each part

I/ arrive at the focal point at the same time.

Focal Point

N

Fig. 1.4 Focusing the acoustic field.
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CHAPTER 1 INTRODUCTION

The above description of focusing applies equally well to both optical and
acoustical systems. But here comes a concept which is peculiar to acoustical
systems. It is called dynamic focusing. As the propagation of acoustical waves
is relatively slow (in water or typical biological tissues, about 1500 m/s), it is
possible to adjust the receiving focus as fast as the echoes are being received.
That is, the early echoes come from the shallow regions, and the focus is
adjusted to the shallow regions. As times goes on, echoes are arriving from
deeper and deeper regions, and the focal point is also moved to track the
origin of the echoes. In this way the entire image can be made to be in
focus. There is no counterpart in optics to this technology because the speed
of light is so fast that it is impossible to do much during the arriving of the
light. However the need of dynamic focusing in optics is neigher that great,
because the view volume has usually a relatively small depth, unlike that of

acoustics (see Fig. 1.3).

In the foregoing paragraphs we have briefly described the picture-forming
process in the B-scope, with emphasis on the need to focus, the idea of dy-
namic focusing. The last two decades have seen great improvements in the
quality of ultrasonic images. These have mainly resulted from new materials
for the transducer, which can generate a pulse of broader spectrum, better
electronics for amplification and improved focusing techniques (for example,
dynamic focusing). But the basic aspect of the situation has not changed
much. Ultrasound as a diagnostic tool is still qualitative instead of quantita-
tive. To read the pictures and make correct diagnosis is still to some extent

an art, and needs a lot of training and experience.

In the late 1970’s intcrests in tissue characterization began to grow [2,3],
which aims at characterizing the tissue with numbers or parameiers. The
main parameters that have been investigated include the sound velocity [1],
the attenuation coeflicient [5,6], and the backscattering coeflicient [7]. These
parameters have been found to be indicators of various kinds of patholog-
ical variations of the tissue. For example, it has been shown [6] that the

attenuation coeflicient is closely related to liver diseases such as alcoholic
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CHAPTER 1 INTRODUCTION

and cardiac cirrhosis, at which the values are significantly higher than no-
mal values. The temperature dependence of sound velocity and attenuation
coefficient has been proposed to be utilized for non-invasive measurement of
temperature deep inside the body.

But as the research on tissue characterization is carried on, it quickly
becomes clear that a better understanding of wave propagation in non-uniform
media is necessary. We must have a better knowledge of the situation before
we can say something definite. Just generating a pulse and listening to the
echo, which is certainly necessary, is not enough. Even if we go back to
the basic problem of imaging, we find that a knowledge of sound velocity
distribution is needed to focus (either fixed or dynamic) in a non-uniformn
medium. Without a detailed analysis we would be at a loss as to what it is
that we have measured.

On the other hand there have been active research activities on diffrac-
tion tomography and the inverse scattering problem. Direct application of
the X-ray CT algorithm to ultrasound has not been successful [8,9], ow-
ing to the diffraction phenomenon which invalidates the line-integral assump-
tion. In diffraction tomography most authors work with two-dimensional non-
uniformity. The object is usually assumed to be embedded in a know uniform
medium and probed by plane or spherical waves. The Born or the Rytov
approximation is in most cases applied to derive the relationship between
the scattered waves and the medium non-uniformity. Most of the studies are
restricted to theoretical analysis or numerical simulation. The reason that
only a few experimental measurements have been conducted may lie in that
there are still very few systems with which the scattered waves can be easily
measured at many accurately known positions. The same is true with inverse
scattering studies, which also deal with the problem of inferring medium prop-
erties from scattered waves, but encompass a broader spectrum of problems,

ranging from one to three dimensional problems.

In summary of this brief review, we note that technological progresses
have greatly improved the qualities of ultrasonic images. Ilowever it is be-
lieved that more information useful to medical diagnosis can bhe derived from
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the scattered waves, in more quantitative forms. Endeavor in this direction
includes tissue characterization, diffraction tomography and inverse scattering.

The final group is the most fundamental, yet the most difficult approach.

1.2 An Overview of the Present Research

In the previous section much of the background of this research has been
laid down. To focus acoustic waves in a non-uniform medium, it is necessary
to know sound velocity as a function of spatial coordinates. Sound velocity is
also an important parameter for tissue characterization. In the limit of high
frequency, sound velocity alone can be used to determine the ray ecuation (the
eikonal approximation), manifesting the importance of sound velocity profile

on wave propagation.

In this research we consider layered media. The simplest example of such
media can be imagined as a stack of plates of different materials. Layered
structures are encountered in the earth’s crust, in the sea and the sea hottom.
In the case of human body they can be found in the eye, the skin and the
bodywall. The problem of calculating the sound velocity profile of such media
from the reflected waves is certainly a special case of the more general inverse
scattering problem. So in the following we will first take a bird’s-eye view
of this field.

There have been many research works [10,11] concerning the inverse scat-
tering problem, with applications to exploration seismics, underwater acoustics,
plasma, quantum mechanics and medical ultrasonics. According to the au-
thor’s classification, the researchers can be roughly divided into 3 groups, i.e.,
the exact solution group that pursues mathematically exact solutions [12-17],
represented by mathematical physicians such as Gel’fand, Newton, Balanis,
etc.; the approximation group that assumes weak non-uniformity and employs
the Born (for example, [18,19]) or the Rytov approximation (for example,
[20]), or their improved version such as the distorted Born or the distorted

Rytov approximation [21-23], to find solutions; and the geometrical group
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that assumes the frequency to be high enough for the wave phenomenon to

be dealt with geometrically, and discusses travel path and travel time.

From the dimension of non-uniformity there can be one-, two-, and three-
dimensional problems. To solve three-dimensional problems, signals need to be
recorded on a surface enclosing the object [28], and the calculation requirement
is in most cases too big for the computing power available today. So, although
the solution to three-dimensional problems has been claimed for some years
[14,26], not much seems to have been done to put it into practice. From
technological restrictions as well as analytical difficulties, most research works

are confined to one- or two-dimensional problems.

Concerning one-dimensional problems, since the parameters of the medium
changes only in one direction, the measurement and processing is usually rel-
atively easy. However to solve this problem exactly would require the impulse
response of the medium to be known. Viewing in the frequency domain, this
means knowledge of the reflection coeflicient to harmonic waves of frequencies
from DC to infinity. In practice we can only measure with a transducer of
limited bandwidth. Another realistic problem is that transducers usually have
directivities that are difficult to control. In inverse scattering measurement,
waves from different directions are received by the same transducer. Without
knowing from which direction the wave comes and the directivity of the trans-
ducer, it is practically impossible to use the amplitude information contained

in the received signal.

With these practical considerations in mind, we considered the possibility
of calculating the sound velocity profile of a one-dimensional medium from
reflected signals which are band-limited and noise-corrupted. Then, layered
media with plane interfaces, either parallel or non-parallel, are dealt with. In
doing this we have avoided using the amplitude information which is system-
dependent and unreliable, as noted above. Instead we use the time information
contained in the signals. However, il the amplitude information is available,

then the density of each layer can be calculated at the same time.
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Roﬁghly speaking, the measurement required by our methods can be per-
formed in the following way, for calculating the sound velocity of each layer
and the geometrical configuration of the medium. A spherical wave is gener-
ated by a poing-like transducer, and the reflected wave is received by several
receivers (at least 2 for horizontally-layered media, and 3 for non-parallel lay-
ered media) at different locations. The important thing is that these receivers
must not be too close together, because we are using the differences in the-

arrival time of the echoes to infer about the sound velocity of each layer.

When imaging organs inside the body, the non-uniform bodywall comes
in between the transducer and the organ inevitably, whose influence must
be accounted for. By modelling the bodywall as a layered medium and
estimating the sound velocity and thickness of each layer, we can compensate
for this influence, thus improving the focusing of the acoustic field in the
organ. In this way it is expected that the quality of ultrasonic images can
be much improved. Another field of application of this research is in tissue
characterization. Sound velocity and thickness (size) of each part of the eye
ball, of the skin and the organizations beneath it, may be of diagnostic
values, although much of this is yet to be discovered. This research can also
have applications besides in medical ultrasonics. The problem encountered in
exploration seismics [24] is almost the same as the one here, except that the
scale and frequency range are different. Knowledge of velocity distribution is

critical to the post-stack migration of the geophysical signals [25].

With this we conclude the introduction to our research.

1.3 Organization of This Dissertation

This dissertation is composed of 7 chapters, describing in detail our research

on the inverse scattering problemn (ISP) on layered media.

Chapter 2 is a briefl review of some of the important results concerning

the ISP, including the Born and the Rytov approximation, the Goupillaud’s
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method of one-dimensional media, the transision matrix method, the impe-
diography and the forward scattering approximation. This chapter not only
provides some idea about how the ISP might be solved, but also reveals
the difficulties of measurement: scattered waves at all frequencies need to be

measured at known positions, and the amplitude information is required.

Chapter 3 describes our approach to the one-dimensional ISP. We have
considered practical signals which are band-limited and noise-corrupted. Be-
cause waves are arriving from different directions and the directivity of the
receiver is usually unknown, we have avoided using the amplitude information
quantitatively. For this reason only the sound velocity profile is recovered.
The density and the impedance profiles are lelt untouched. We considered
layered media of either horizontal or non-parallel plane interfaces, and pro-
vided algorithms for calculating the medium parameters from observed pulse

positions.

- Chapter 4 deals with the problem of estimaling pulse positions from the
signals. A spectral fitling approach is proposed for the deconvolution of
these signals, so that the original impulse responses can be obtained, from
which the pulse positions can be easily read off. The error in the estimated
pulse positions caused by measurement noise has been evaluated using the
fluctuation of the peak position of the cross-correlation function between two
pulses. Based upon this the error of the sound velocities calculated from these
errorneous pulse pbsitions has also been discussed, revealing the well-known

ill-conditionedness of the ISP.

Computer simulation has been an important part of this research since the
very beginning. In chapter 5 various simulations have been devised to verify
the validity of the analyses and processings, or to investigate the influence of

various factors.

Chapter 6 describes our experimental work. We demonstrated the deterio-
ration of image qualities by inserting a distortion plate between the transducer

and wire targets, and also showed that this can be compensated if the travel
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time aberration introduced by the distortion plate is known. Next the re-
sults of measuring layered media with horizontal or non-parallel interfaces are

shown, and compared to the real values.

Finally in chapter 7 we conclude this dissertation by listing up the main
results, as well as some problems. Directions for further research work have

been suggested.

In appendix A, the propagation of non-perpendicular plane waves in a
one-dimensional medium, and in appendix B, the reflection of a spherical wave
from a plane interface, have been treated. These results, though can be found

in the literature, have been included for convenience and self-containedness.
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2

Inverse Scattering

—Various Formulations and Approaches

In this chapter we will make a survey on the inverse scattering prob-
lem, i.e., the problem of estimating medium properties from the ohserved
waves. For multi-dimensional problems the most popular formulation is still
via the Born or the Rytov approximation, although there have been some
important progresses in exact solution, made by for example Newton, Yagle
[13,14,26,27]. For one-dimensional problems many variations exist, including
continuous and discrete media, time-domain and frequency-domain analyses,
exact and approximate solutions. Here we will only pick up the topics that
are ecither relevant to our research, or helpful in developing a general idea
of how the inverse problem might be solved. Our emphasis will be on the

physical insight provided by these analyses to the inverse scaltering problem.

2.1 The Wave Equation in Inhomogeneous Media

We begin by deriving the wave equation in inhomogenecous media. Consider

a rectangular parallelpiped at & = (z,y,z), whose three sides have lengths
Az, Ay, Az respectively (Iig. 2.1). It has density p(7), compressibility (7).
The pressure and particle velocity caused hy the wave motion are denoted
by p(7,t) and 4(7 ).

First we will consider its motion in the ¢ direction. From Newton’s law,

av.
at.

p(z,y,2) — plz + Az, y, 2)] Aydz = pArAyAz
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'Ul'(:l"l y) Z)

v (T + Az, y, 2)

— —
l
|
}
p(z, v, 2) : p(z + Az, y, 2)
—> <
/)-__—__ ——————
/// . Ay
A
(.'.l?, y,z) *
Fig. 2.1 A cell in the medium.
or
o _ _ 0
oz ot
. .0 0 d 01 -
Simillarly we can obtain 5;—) = - %, (—}—g = —p-él-jti, and combining these

into one vector equation, we obtain

av
Vp= *ﬂ?ﬁ

(2.1)

Next we notice that pressure originates from the gradient of partical velocity.

For example, after time At the parallelpiped is “compressed” in the z direction
by [vz(z,y,2) — v:(z + Az,y,2)]At. From the definition of compressibility, the

increase of pressure can be obtained from the proportion of compression:

1[va(z,y,2) — vo(z + Az, y, 2)]At
(A]))m=;[ (z,y ) ( Y )]

Az

where (Ap), means increase of pressure due to compression in the z direction.

Similar relation exists for compression in the y and z direction, and adding

the effects up because

Ap = (Ap). + (Ap)y + (Ap).
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CHAPTER 2 THE INVERSE SCATTERING PROBLEM

we get in the limit
9 _ _1g (2.2)
ot K

The equations (2.1) and (2.2) are the basic equations that describe wave

motion in a isotropic, linear, lossless medium. Combining these two equations

1 o ([ 9p ‘
A= — k=) = 2.
v (pr) o, (lbat) 0 (2.3)

Assuming that the inhomogeneous part is embedded in a homogeneous medium

we get

with parameters pp and xy (Fig. 2.2), equation (2.3) can be rewritten as

2 18 _ v.0%

- = =%+ V(vy,V 2.4
where . ") )
) _ _ K =ro _ _ p(F) —po o
cH = = ——— o = Tt 2.5
1] K0£0 ) Yx K0 '740 /)(7) ( )
Scattered Waves
Incident Wave .
Po, Ko

Fig. 2.2 A non-uniform medium embedded in a uniform medium.

Taking the Fourier transform with respect to time, we have

o0 ot . 1 +o0 . ot
pr(7, 1) =/ p(7,t)e ™" dt, p(7t) = 77}-/ pr(Fw)e™ dw (2.6)

—_00 4 —_—0
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CHAPTER 2 THE INVERSE SCATTERING PROBLEM

Here the subscript k is py is used to distinguish it from its time-domain
counterpart p. The equation for p is

Vi + k2 = =k yepr + V (1, Vp1) (2.7)

where k =w/cy is known as the wavenumber.

2.2 Solutions Based on the Born or the Rytov Approxima-
tion

First we will consider the (first-order) Born approximation. Using the Green’s

function, equation (2.7) can be transformed into
pr(Fw) = /v (kzwm - v(’?’pvpk)>r,,0 g(F170)dip + pir (7, w) (2.8)
where p;(7,w) is the incident field, and g(f|7) is the Green’s function which

is the solution to
V3 + kg = —6(7 - ip) (2.9)

under the condition that it represents outgoing waves (because that the scat-

tered waves are outgoing in the infinity). 1t can be shown that (forexample,

[18])

) giklF=Tol
9(7-'17‘0) = Ar |7 — 7] (2‘10)

is the required solution.

From equation (2.8) we see that to calculate the total wave pressure, we
need to know the field inside V, which is a sum of the incident and the
scattered field. If we assume that the incident field is much stronger than
the scattered field, then an approximate expression for the scattered field
psk(7,w) is obtained::

par(F0) = [ (K 5pin = (3, %p)),, o(7170)drs (2.11)

o
The approximation introduced in obtaining (2.11) is the first-order Born ap-
proximation. Next we go further to solve the inverse problem. Suppose that
the incident field is a plane wave, 1.e.,

pik = Ape’™ 70

- 15 -




CHAPTER 2 THE INVERSE SCATTERING PROBLEM

where ¢ is the unit vector along the direction of propagation (IFig. 2.3), and
assume that the observation of the scattered field is made at [7] > |7ol,

.. 1 . . .
|7~ 70| > —, then after some manipulations we obtain

kgfikeikr

Pk = d7r

/V [1e + 7,3 - 8)]e™* (=)o 4z, (2.12)

Scattering Point

Incident Plane Wave

T

Origine
Observation Point

Fig. 2.3 Coordinate system for solving the inverse scattering problem

Equation (2.12) shows that measuring the scattered field gives the three-
dimensional Fourier transform of [y +7,(i-5)]. Iere 7, and 7, are related to
p(7) and x(7) through (2.5), 7 and & are unit vectors along the incident and
the observation direction (I'ig. 2.3). This is really a remarkable result, which
has appeared with slight differences in several papers [28-32], and provided
the theoretical basis for some experimental measurements [33,34]. However it
is hard to say that enough research has been done to evaluate its applicability

to the non-uniform structures found in human body.

The validity of the first Born approximation clearly requires that the

strength of the scattered field component remains sinall throughout the volume
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of the object (scatterer). This in turn requires that both the magnitude of
the material parameters v, and v, be small, and that the total volume of the
object be small. The first condition maybe violated when dealing with the
inhomogeneities found in the bodywall because the sound velocity variation is
rather big so that the incident wave field cannot be assuined to be uninfluenced
by the existence of the inhomogeneity (at least the phase front is distorted).
The second condition is more likely to be violated by the large volume (a
linear scale of 100mm, which contains about 200 wavelengths, is typical) we

wish to image.

There are some trials to improve upon the first Born approximation. One
is known as the distorted Born approximation, which has several forms. For
example one can calculate the scattered field using (2.12) first. The sum of this
result and the incident field is a better approximation to the total field, and
can be substituted into the right side of (2.9) to make a second evaluation of
the scattered field [21,35]. In solving the inverse problem one can first caleulate
the medium parameters using the simple Born approximation. Then the total
field inside the inhomogeneous object can be calculated more accurately, which
in turn improves the evaluation of the medium parameters. One may also
want to use the obtained medium parameters as a new background medium
(instead of sticking to a uniform medium all the time). In this case not only
the wave field, but also the Green’s function in (2.9) needs to be updated.

Some computer simulation results are available on this topic [23].

Another substitution to the Born approximation is the Rytov approxima-
tion [36-38]. Instead of dealing with p; directly, we put py =e** in (2.8) and

obtain an equation for wuy, which is
V2up 4+ V- Vuy, + k% =

— 7ek? + 7P[V22Lk + Vug - Vg + Vv, - Vg (2.13)

The incident wave field (when the inhomogeneity is absent) u;, satisfies the

equation
Viug 4 Vg - Vg + k2 = 0 (2.14)

- 17 -
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Putting ux = u;x 4wy and omitting the higher order terms of uy, we get
V2u1 + 2Vu; - Vup = ~k2('y,, + 7¢) + V9, - Vg (2.15)

The Green’s function of (2.15) depends upon the incident field wu;. In the

case of plane waves wu; = iki -7, the Green’s function is

eik(r1—i7)

i,1) = —— 2.
gk(mo’;) 47y o=t (2.16)
1 =7 =T
which satisfies
V2gk + 2iki - Vg = —6(7 — 75) (2.17)

Using (2.16), the solution to (2.15) can be obtained which, under the condition

of far field observation, becomes

B E2eik(r—iF)

U
1 4y

/ [ + (7~ 3)3,)e ™= 7ary (2.18)

We notice that the solutions (2.12) and (2.18) are alinost identical. This is not
a mere coincidence. In fact it can be shown that, if one puts py = py(14 u;)
and uses the Born approximation to solve for uy, one will obtain an equation
which is exactly the same as (2.15). The difference is that in the Rytov
approximation one has put p; = e**e“1 which is |

. 1 1
pr = e*it (1+u1+§—!u%+§?u¥+m).

So, although the same u; needs to be solved in the first Born and the first
Rytov approximation, it appears in different forms in the final solution. It
should be noted that this coincidence no longer exists when it comes to higher

order approximations.

There has been much controversy concerning the relative accuracy of the
Born and the Rytov approximation [38]. Now the general opinion is that
the latter can be applied to stronger non-uniformity or greater volume of

the object. But the former has its appeal of lincarity, simplicity in its ideca
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and easiness of extension to higher order approximations. So both are in use

according to the situation.

However, the purpose of this section is in obtaining some idea about how
the inverse scattering problem might be solved, even though approximately.
We can also learn from these analyses what kind of data need to be collected
to solve a three-dimensional problem. It is known that to invert a three-
dimensional Fourier transform, which is just what should be done in solving
(2.12) or (2.18) for [yx+(1-d)7,), we must know the transform at any point
in the three-dimensional frequency domain. Now the frequency domain vector
in these equations is k(7 —5). To meet the above requirement, the vector i— g
must have chances of pointing to any direction and the wavenumber %k must
be varied from zero to infinity. If the incident vector 7 is fixed, then the
observation vector & must vary over the entire solid angle, 1.e., the scattered
field must be observed on a surface enclosing the object. Varying & from
zero to infinity means to vary the frequency of the probing wave from zero
to infinity, since k = w/cp; or alternatively, to measure the scattered waves

caused by an impulse input.

2.3 One-dimensional Forward Scattering Problem

When it comes to the one-dimensional problem, there are many more varieties
in its solution. The forward problem, i.c., to calculate the reflected waves
caused by a given input, typically an impulse input, can be solved in several
ways by numerical methods. One approach is to calculate the frequency
response of the medium and use the inverse Fourier transform to obtain the
impulse response. Another approach is to use the Goupillaud’s model, which |
is well-known to the seismic circle. By analysing this model much can be
learnt about the reflected and the transmitted waves. Still another approach
to solving the forward problem of either one- or multi-dimensional medium
is the so-called k-space method [39,40] which, although very interesting, will

not be discussed here.
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In this section we will discuss briefly the two former approaches only,
because of the physical insight they can provide. The Goupillaud’s method

will also be useful in our computer simulation studies.

Now we begin by considering the one-dimensional wave equation. From

equations (2.1) and (2.2) we have

ap Lo0v
IS |
z ot (2.19)
v _ _ o )QB
oz gy

Here we have assumed wave motion in the z-direction only (thus, perpendicular
plane waves), for the sake of simplicity. In Appendix A we have shown that
non-perpendicular plane waves can be treated by introducing an equivalent
sound velocity, whereas non-plane waves can be dealt with by decomposing
them into sums of plane waves using the Fourier transformation (see Appendix
B, [18,41]).

Since we are going to calculate the impulse resopnse of the medium from
its reflection coefficient for harmonic waves, we will suppose the time depen-
cence of any quantity to be et so that 2 can be replaced by multiplications

with iw, and (2.19) becomes

ap e

— = —lwp

dz (2.20)
v TWED

— = —{WwK

oz f

The first step is to decompose the wave motion into down-going and up-
going components [42]. Examining the case of uniform medium will give us
hint as for how to do it. In a uniform medium the down-going pressure
and velocity components will look like p*(t — z/c) and v*(t — z/¢). Using
(2.19) we obtain immediately vt = p*/pc. Similarly, for up-going waves we
have v~ = —p~/pc. The total pressure and partical velocity are sums of the
individual components:

1

p (pt —»7) (2.

o
g
—
~—

P =7)++p_, v=ot 40" =
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The relationship (2.21) suggests a transformation from (p,v) to (pt,p7), which
guarantee that, in a uniformn medium, if there are down-going waves only,
the p~ component will diminish, whereas if there are up-going waves only,
the p* component will diminish. These can be made clearer if we solve for
pT and p~,

+

1 _ 1
pt = 5(p+pew), pT=5(p - pev).

¢
L

Using the transformation (2.21), the wave equation (2.20) becomes

2 =l (2 D+ ) (222)

where 1 dlnz(z)
w dlnz(z
ko) = c(z)’ T T @

2.23)
1 . (
c(z) = ——=——, z(z)=p(2)c(z) = LL—)-
Vo(2)s(z) ()
Equation (2.22) can be solved numerically by dividing the z-axis into short
enough intervals and assuming that k(z) and o(z) are constants in each

interval. For instance, for the interval [jAz,(j+ 1)Az], equation (2.22) takes

El%;- (p+) = A(jAz) (gf) = A (gf) (2.24)

the form

-
which can be solved since A; is assumed to be constant,
P 7 (+1)5e P/ jax
Applying the above calculations repeatedly, we arrive at
(p:t) — eA]_IA.‘L‘ . eA_]_QA.’Z? .. 'erAx (pt) (2.26)
P Jiax P Jo

where J is the last interval beyond which the mediume is assumed to be

homogeneous. Since no waves are reflected from beneath the Jth interval,
(pw)JA:c = Os and
(P+) — o~A0Az  ,~A1Az | —A; Az (p"'(JAr))

0

D 0

= (‘M-OO Af()l) <p+(JA:B)) (227)
=My My 0 |
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From this result,

o

{P+(0) = Moop™ (J Az) p~(0) _ Mo 28)

p7(0) = Myopt(JAZ) pF(0) — Mo (

i.e., the reflection coefficient can be calculated at the first interval. To obtain
the impulse resopnse, one only has to calculate the reflection coeflicient for
all the necessary frequencies and perform inverse Fourier transform to the
results.

This approach, though very straight-forward in its idea, needs relatively
much calculation. It neither reveals much about the properties of the reflected
and the transmitted waves. Next we will turn to the Goupillaud’s method [42-

45], which also calculates the impulse response of a one-dimensional medium.

In the Goupillaud’s model the medium is also divided into thin layers
along the ¢ direction, but the thickness of each layer varies to keep the
propagation time in each layer a constant. These thicknesses are assumed to
be small enough so that the density and the sound velocity of each layer are
also approximately constant, and the reflection occurs only at the interfaces
among the layers. If the incident wave is an impulse, the reflected signal will
also be a series of impulse, whose strength may be denoted by Ry, Ry, Ry, ---
The time interval between two successive impulses is just the round-trip time
of one layer. If z is used to represent this delay, then the received signal can
be written as

R(z) = Ry + Ryz + Ryz* + - (2.29)

In this system of notation, the impulse input becomes I(z) = 1.

Now we will consider the problem of calculating R(z) from medium param-
eters pg,cq,p1,c1, -+ (Fig. 2.4). Denote the down-going pressure component by
Dy and the up-going component by Uy at the begining of the kth layer(Fig. 2.4).
At the bottom of the same layer these components are dashed. They are
related by

_ 1 .
Dy =zDpo1, U= 2 Ui (2.30)

- 99 _




CHAPTER 2 THE INVERSE SCATTERING PROBLEM

e st Layer Dk—l\l/ TUk—l
Pk—1 Ck—
Diayg, Yui, 1
Pn—1y Cn—1 ("’ - l)th Layer Dy \L TUk PE Ck
Prs Cn . ‘J’ nth Layer
T(z)

Fig. 2.4 The Goupillaud's model of a one-dimensional medium.

where /z represents the one-way travel time of one layer. The relationship

between Dj_;, Ul_;, Di, Ux can be established from the requirement that the
k=11 YE—1 » Yk

pressure and the particle velocity should be continueous across the interface.

F 2.21
rom (2.21) DL+ UL — Dyt T

1 | ,, (2.31)
— (Dl = Ul )= — (D = Uy
Pk——lck—-l( k-l k 1) ﬂkcfk( b L)
which can be rewritten as
Uk — __];_ 1 =Tk U}:'—l HIED)
(Dk) Tt (“Tk 1 Dy (2:32)
where )
" Pr—1Ck-1 o= PECE T Pl=1Ck—1 -1, (2.33)

T ke Pr1Ck-1’  © prox Pl—~1Ck—1
Combining (2.30) and (2.32),

Uk) _ 1 ( 1 —1‘kz) (Uk—l) 9 34
(—Dk tk/z \—Tk 2 Dy (2.34)

Applying (2.34) repeatedly we obtain

e
Dk H?:l t"\/‘;};
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1 =z 1 "7'1:—13) ( T —mz\ (U 2.35
( —Tk 2 ) ( —Th—1 Z —7q 5 Dy (~3))

The multiplication of the k¥ matrixes in (2.35) can be performed in an efficient

way. By inspecting

( 1 —rzz) 1 —rlz) =<1+7'1rzz ~r12 — 1y’

B z ! z —ry =112 2 4 gz
. Y 2( g 0, L

_ (1—]—717‘2~ z ( 79 71Z)) ,

—ry — 7112 Px: (1 -+ Tlrg-l;)

we get the hint of trying a result of the following form:

( 1 —'I‘k_lz) ( 1 —T‘k__gz) ( 1 —7‘12) .
—Tk-1 z fnad A )} z -7 4 -

(Fk-lw #71Gy (%)) (2.36)

Gr-1(2) 2 1F_4 (%)

whose correctness can be verified by showing that the multiplication of another
matrix to the right of (2.36) does not destroy this form:

( 1 —-'rkz) (Fk_l(z) 216Gy (%)) _

—r oz Gr-1(2) 2F1F_4 (%)

Fr_1(z) = rezGroq(2) 2% [‘Tka—l (%) + %Gk*l G)] ) (2.37)
—riFr_1(2) + 2Gr-1(z) Pl [Fk—l (l) - 7‘k71;Gk—1 (L)} B
So, if we put
{ Fr(z) = Fro1(2) = rizGror(2) (2.38)
Gr(z) = —7‘ka..1(Z)+3Gk——1(3) B

we see that the form is preserved.

By this result we can write down

Du) " Mia /7 \Gu(z) =1 (L) ) \ Do

From boundary conditions (Fig. 2.4)

Up=R(z), Do=1, Uy=0, D,=T(z) (2.40)
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it is required that F,(z) does not have zero points inside the unit circle (for

example,
1 1 2z 22
sz z2titg®
converges, while
! _ 2
1—:—5}; 1 + 2z + 4z +

diverges). This is known as the minimum-phase condition. As is well-known,
a minimum-phase signal can be uniquely determined from its spectrum [46].
That is to say that, if A(z) is known to be minimum-phased and B(z) =
A(z) A(z71) is given, then A(z) can be uniquely determined from B(z). We
can apply this theorem here, to show that the transmitted signal 7'(z) can be
determined from the reflected signal R(z). From (2.46) and (2.44) it follows
that

_Gn (l) Gul2) _ [T tit]
R(Z)R(v) CRER(L) - Fn(z)Fnk(})
N O¢F _ [tthIIt%/% _ puca [0
T(z)T (z) N Fo(z)F, (.1_) - Fn(zISFn é) = oco ) E, k(%)
Thus |
1- R(z)R (%-) = SS‘;—ZT(z)T (é) (2.47)

Since F,(z) can be determined uniquely from F,(z)F,(1/z), so can T'(z) from
T(z)T(1/z). Except for the constant pgcy/pncn (actually this constant can
also be deduced from R(z)), equation (2.47) says that T'(z)7(1/z) can be.
obtained from R(z)R(1/z). So we may conclude that the transmitted signal
T(z) can be uniquely determined from the reflected signal R(z). The reverse
is not true. That is, R(z) is not uniquely determined by T'(z), because there
is no guarantee that G,(z) will be minimum-phased. In fact it can well be

non-minimum-phased.
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2.4 One-dimensional Inverse Scattering Problem

In the previous section we have described two approaches to solving the one-
dimensional forward scattering problem. One is a frequency-domain method
while another is the Goupillaud’s method. In this section we will consider
the inverse problem. First the possibility of caléulating medium parameters
from the observed scattered (reflected) signals will be examined. Next we
will consider several proposed approximate solutions to the inverse problem,

including the impediography, the forward scattering approximation.

On considering the one-dimensional inverse scattering problem, the first
natural question is, what can be recovered from the impulse response of
the medium when probed from one direction only? Since non-perpendicular
incident waves can be equivalently treated by defining a new compressibility or
sound velocity (see Appendix A), we only have to consider the perpendicular
incidence case. In this case the reflection is determined solely by the acoustic
impedance z(z) = p(z)c(z). For instance, so long as z(z) remains constant, no
reflection can be observed even if p(z) and ¢(z) vary with z. This observation
indicates that, from one impulse response measured at a particular direction
one cannot reconstruct the two profiles p(z) and c(z) as functions of depth
simultaneously. The more accurate answer to this question is, impulse response
of one direction can be used to reconstruct the (equivalent) acoustic impedance
as a function of travel time, while two impulse responses of different directions
can be used to reconstructboth the density and the sound velocity as functions

of depth. This fact will become clear as our analysis goes on.

First we will introduce an inversion procedure provided by the Goupillaud’s

model [45,47]. Equation (2.34) is rewritten here:

[fk(z)) — 1 ( 1 *7‘;;21) ( Uk_l(z)) 2.34
(])k(z) (1—rp)y/z \ =T 2 Dy_1(z) (2.34)
Referring to Fig. 2.4, Uy_; and Dj_; are the up-going the down-going impulse
trains observed at the beginning of the (k—1)th layer. Intuition tells us that
the first impulse in Uj_; originates from the reflection of the first impulse in
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Dj_1, by the interface between the (k- 1)th and kth layers. So the reflection
coeflicient r; is given by the ratio of the amplitudes of these two impulses.
Once ry is obtained the equation (2.34) can be applied to find (U/x, Dy), from
which 1, can be calculated, using the first two pulses of (U7, Dx) again.
Thus we may proceéd until all the rp are determined. The initialization of
this process is certainly made by Uo(z) = R(z), Do(z) =1, where R(z) is the

measured impulse response.

If all the rp have been determined and if gy, ¢o (see Fig. 2.1), or rather
their product zo = ppco is given, then z;, 29, -+, 2z, can be easily calculated
using (2.33). But, as we have no knowledge about e, the thickness of each
layer in the Goupillaud’s model is unknown. However the round-trip travel
time of each layer is known — it is just the time interval between the impulses
in R(z). So, by this procedure the impedance profile can be reconstructed
from the impulse response, but only as a function of the travel-time. Although
very simple, this procedure is exact in principle, which is a remarkable fact.
Its essential feature is a downward continuation of the wave phenomenon

observed at the surface.

Next we will discuss three approximate solutions to the one-dimensional
inverse scattering problem. The interesting thing is that, although these three
- solutions have been derived from different considerations, they lead to the same
answer. This same approximation has also been arrived at from other start
points [48], and it has also been shown that if the relative variations of the
medium parameters have the order e, then the term that has been omitted

in deriving this solution is of the order of ¢ [49].

The first derivation can be obtained by intuition. Consider the one-
dimensional medium of Fig. 2.5. the reflection coeflicient at depth z is ap-

proximately
2z +Ar)—z(z) 1 ds(a)

~ A 2.‘8
z2(z+ Az)+2(z)  2z(z) ds ? (2.48)
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f(@®)

\7

D

J\

2(z) 2(z + Az)
Fig. 2.5 A one-dimensional medium.
Suppose that there is a pressure variation f(1) at the surface, which

propagates into the medium. If we ignore the loss and dispersion it suffers

in this process, at depth & the pressure variation will be f(t - r(z)), where

r(z) = /: C(lf)dé“ (2.49)

is the one-way travel time from the surface to depth z. The reflected signal
travels back to the surface again, suffering the same amount of loss and dis-
persion, which is agina ignored. Thus the reflected signal can be approximated

by

0w [ st~ 20()) 2,;?,) d;(;)d:n (2.50)

This is known as the impediography approximation [50]. If the integration

variable is changed from z to r, then

r(t) ~ /Om e - ZT)zzzr) dil(:)d'r (2.51)

where z(7) = z[r(z)] means the impedance at a depth whose one-way travel

time from the surface is 7.
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The inversion of (2.51) under the condition f(¢) =4(z) (i.e., the input is

an impulse) is straightforward, and gives

Ny

t

(t) = z(0) exp [4/ 7‘('2T)d‘r] (2.52)
0

Note that the r(¢) in (2.52) is the impulse response as f(t) equals §(1).

Another derivation starts with the wave equation (2.22). By changing the

variable from z to r using (2.49), the wave equation becomes

d_?'i%f_): (—iw+ B(r))pt(r) = B(r)p~(7) ,
= (2.53)
L2 = —B(r)pt () + (i + B(7))p™(7)
where
8(r) = %ﬂ:{r_([_) (2.54)

If we assume that the down-going wave p* is much stronger than the up-goin
I I

(r)

. . d :
wave p~—, then in the equation of LA ¥ the term —fp~ can be omitted,
T

dp*(r)
dr

= (—iw + B(r))pT(r) (2.55)

This approximation has been given the name forward scattering approximation
[51,52]. Equation (2.55) can be solved under the boundary condition pt(0) = 1,
giving

pt(r) =exp [——iwr + /UT /5’(u)du] (2.56)

On substituting this result back to the second equation of (2.53), p~(7) can
also be solved under the condition p~(+co0) = 0, which means that no echo

comes from the infinity. The solution is

+ 00

p~(r) = ei‘”r‘*'forﬁ(“)d”/ Bu)e™ e  duy (2.57)
Our interest is in the up-going wave at 7 =0,
+oo o

: p—(0)=/0 Bu)e™“ du (2.58)
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Since pt(0) =1, the reflection coefficient for frequency w is clearly

_ oo 1 g1 )
R(w) -£+E83 jé iéﬁgﬂﬁ—le-“WTdr (2.59)

For arbitrary incident waveform f(t), the reflected signal can be obtained

using the Fourier {ransform:

)= o [ t:" F(w) R(w)e ™ du

1 oo oo —iwe too ldinz(r) i, i
=5z [ ([ rea) (/_m PR A

teo 1dlnz too 1 [F L bmumtr
/ _%—l [) (27r /_Oo grelim? )dw) f(w)du-dr
oo 1 oo

_ +°° ldln()
/ r)y e (2.60)

“which is exactly the same as the intuitive result (2.51).

Another investigation from the Riccati’s equation is also possible. Defining

a new variable R(r)=p~(r)/p*t(r), its equation can be obtained from (2.53):

AR 1dp~  p~ dpt ) ‘ Y .
— T —— —_ = 2wl — — I 2.
i v dr T dr wh—p(l - R (2.61)

This is known as the Riccati’s equation, whose general form is

d—+p( )yt + q(z)y + r(z) = 0.

As the general solution for arbitrary A(r) cannot be obtained, we solve it
under the condition R? « 1 by the following approximation:
dR
2R~ f (2.62)
The solution is clearly the same as that given by (2.59).

An improvement upon this solution has been proposed [53]. Dividing
(2.61) by (1- R?), we get
LR m
1—- R2dr 1-R?
- 91 -
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. . an’ 1 .
If R is defined as tanh R, since AR the neighborhood of R =0,

the approximation R'~ R/(1- R?) is adopted and

%g:/— ~ 2iwR - 3 (2.63)
is obtained. Although equations (2.62) and (2.63) have exactly the same form,
their contents are apparently different, because of the usage of the non-linear
hyperbolic tangent. There are reports on improved accuracy |£>y virture of this
nonlinear transformation [53,54]. The modified procedure can be outlined as
the following. Given the impulse response r(t), the first thing is to Fourier
transform it to get R(w), from which R'(w) = tanh R(w) is calculated. Then
by the inverse Fourier transformation, r'(t) can be obtained from R (w), which

is then used in place of r(¢) in (2.52) to calculate the impedance profile.

2.5 A Summary of the Inverse Scattering Theory

On surveying the literature it is noticed that the research on the inverse scat-
tering problem can be roughly divided into 3 groups, i.e., the exact solution
group that pursues theoretically exact solutions, represented by mathemati-
cal physicians such as Gel'fand, Newton, Balanis; the approximation group
that assumes weak mnon-uniformity and employs the Born or the Rytov ap-
proximation (or their improved version such as the distorted Born or Rytov
approximation) to find solutions; and the geometrical group that assumes
the frequency to be high enough for the wave phenomenon to be dealt with

geometrically, and discusses travel time and travel path in detail.

These approaches have their merits and demerits. The exact solutions are
fundamental and important, but are usually difficult to obtain, to understand
and to implement. The weakly inhomogeneous approximations are much easier
to handle with, and have lead to the proposal of diffraction tomography. The
problem is that very few experimental measurements have been performed,
and we do not know how well these approximations apply to the reality,

for example, to the bodywall in the abdomen. The possible reason for this
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is that measuring and processing the three-dimensionally scattered waves is
still not an easy job with present-day technology. However, researches in this
direction seems most likely to lead to imaging non-uniform media by inverse
scattering. The geometrical approaches usually deal with much simpler, usually
structural non-uniformities. For this reason the data that need to be collected
and processed are not that many. The results of inversion may not be directly
of interest by themselves, but they can be used to facilitate the interpretation
of signals which come from beneath the structural non-uniformity. In medical
ultrasonics, the necissity of this kind of interpretation manifests itself through

the need of focusing the sonic beam in the organs.

The analysis and approaches introduced in this chapter form the basis,
as well as part of the motivation of our research. Although they can be
found in the literature, we have tried to present them in a brief, unified and

easy-to-understand form.
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Inverse Scattering in Layered Media

As discussed in the previous chapter, nulti-dimensional inverse scattering
problems encountered in medical ultrasonics are still too difficult for present-
day technology. The one-dimensional problem, though can be solved relatively
easily, has very limited applications. There are also problems associated with
the data that is required by the general solutions. From the results obtained
in §2.2 and §2.4 (see in particular the discussions at the end of §2.2, and
the formula (2.52)), it is clear that the impulse response of the medium
system is necessary for either the exact or the approximate solutions, while
knowing the impulse response is equivalent to knowing the scattering or the
reflecting coefficient for harmonic waves of all frequencies, ranging from zero
to infinity. In practice transducers are eflicient only within a certain limited
frequency band, so that the impulse response is usually unavailable. Another
thing that we should not forget about is the directivity of the transducer,
which is very angular-dependent and often uncontrollable. Even in the simple
case of plane wave incidence upon a layered medium with non-parallel plane
interfaces (Fig. 3.1), the waves reflected from different depths will arrive at the
receiving transducer from different directions. The directivity of the transducer
gives them different gains when transforming the mechanical vibrations into
electrical signals. To compensate for this difference in gain is impossible unless
the directivity and the wave directions are known simultaneously. (Using
two transducers as receivers may enable us to determine the direction of
plane waves (Fig. 3.2)). However, this is rarely the case and generally we
cannot expect the amplitude information contained in the received signal to

be quantitatively correct.
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\ke
co
% CQT
§ =sin™! ol
Fig. 3.1 Waves are arriving from dif- Fig. 3.2 Wave direction can be de-
ferent directions. termined using 2 transduc-

ers.

In summary of the above discussion, practical measurement of the scattered
waves is limited to a certain frequency band, and the measured signals have
amplitudes that are diflicult to be related to the real amplitudes of sound
waves. Based upon these considerations we investigated the possibility of
calculating the sound velocity profile without using the amplitude information,

and concluded that it is possible.

3.1 Sound Velocity Inversion Using Travel Time Relation-
ships

Consider probing a one-dimensional medium with plane waves at diflerent
incident angles. The time it takes for the wave to reach a certain depth z is
different since the incident angles 6,0 and 6, and thus the propagation paths,
are different. However, by comparing the reflection data it is noticed that
waves coming from the same part of the medium resemble each other, except
that they arrive at different time instants. This suggests that these waveforms

can be made nearly the same (according to certain criteria) by stretching or
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contracting the time axis of one of them. In this way, a correspondence can
be built up between the two travel times. That is, it is possible to relate one
travel time t,(z) to another, t,(z), even though both are unkown functions
of z. In this section we will show that it is possible to calculate the sound
velocity as a function of depth from the travel time relationship ta(tp).

}

lga(x) 0s(z)

T+ Az

Fig. 3.3 A thin layer of a one-dimensional medium.

Consider a thin layer from z to z+dz (Fig. 3.3). For non-perpendicular
plane waves the equivalent sound velocity is ¢(z)/cos6(z) (see Appendix A),

so that ; ;
dta(:z:) = WG—)-, dfb(tl") = W (31)
and

dt.(z) _ cosf,(z)
dtp(z)  coséy(z)
On the other hand, from the Snell’s law for the refraction of plane waves we

(3.2)

have ) :
sinfa(z) _ sinfag _ .
c(z) c(0) T (3.3)
sin By(z) _ sinfyy _
e) o)
Combining (3.2) with (3.3) we get
(dta)z 1= sin® f.(z) 1 ——pgcg(x) (3.1)
diy, 1—sin?g,(z) 1-pic?(z) b

from which the sound velocity e¢(z) can be solved:

e(z) = \j L= (dha/d0)? (3.5)

pd = pi(dta/dty)?
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This equation indicates that, if ¢, is obtained as a function of t, then ¢ can
also be obtained as a function of t;,. The calculation of the density p as a

function of t, is possible if the equivalent impedance is available (see (2.52)):

N Zb(tb) cO8 Qb(tb) _ zb(tb) 1 _pgc?'(tb)
A= T T

The final problem is to connect t, with z, *llich can be accomplished via

ty tb) /tb
(1) = 3.
#(t) /0 cos H(ib 0o /1 — pic? fb (3.7)

(Here we have used the same notation #, for the variable and the bound

(3.6)

of integration, to help understanding. Of course the integration variable can
have any other names. They are not the same thing: one is varying while
the other is fixed during the integration.)

The problem how t,(#) may be obtained from the measured signals Tolta)
and ry(t,) is unsolved yet. A possible answer is to employ an approach
similar to the DP-matching (dynamic programing) [55] technique used in
speech recognition. Suppose that ro(t,) is worked on so that it approaches
ro(ts) (Fig. 3.4). We can employ the correlation coefficient as a measure of
similarity of the two waveforms, so that the influence of amplitude variations
can be suppressed. First r,(t,) is stretched or contracted in the whole, and
the correlation coeflicient is calculated for the whole signal, and is maximized.
Next we hold onto the middle point and the end point of ry(t,) (one at a
time), and again shift them about their present positions in both directions,
and maximize the correlation coefficient of the influenced parts. Next we
hold onto the 1/4 point, 2/4 point, 3/4 point and 4/4 point (the end point),
one at a time, and repeat the same process. The amount of shifting for the
parts between a fixed point and a shifted point can be calculated using linear
interpolation, but it is perhaps better to use other interpolation schemes, such
as the spline interpolation, if we are dealing with a continnous instead of a
stepwise variation of the sound velocity. At least this approach is feasible
in principle, though the calculation of the correlation coeflicient between two
waveforms can be conceived to be time-consuming. We will not pursue this

matter further.

- 87 -




CHAPTER 3 - INVERSE SCATTERING IN LAYERED MEDIA

<

Fig. 3.4 Matching two signals.

Another possibility of obtaining t,(t), if the equivalent acoustic impedances
(see Appendix A) z,(t,) and 2,(t;) are known, is to use the ratio zalta(z)]/ 2[t0(2)].
As a matter of fact,

rlta@) = ple) gt el = ole) 2 (35)
o that zalta(z)]  cosfy(z)
zb{tb(z)] = Cos0u(a) (3.9)
By comparing this with (3.2) we obtain that
dia(z) _ zfte(z)] (3.10)

dty(z)  z[ta(z)]
If ¢, is viewed as a function of 1, the above equation is indeed an ordinary

first-order differential equation:

dt, _ Zb(tb)
e 2l (3.11)

having the form dy/dz = f(z,y) where f(z,y) is a computable function of
z and y. This equation can be solved numerically using for example the

Runge-Kutta’s method. The initial condition is clearly t,(is)];,=0 = 0.
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3.2 Why Layered Media, and What Kind of Layered Me-
dia?

Now let us turn to layered media. There are three reasons that suggest the

consideration of layered media:

1. Layered structures are encountered in the inhomogeneous bodywall, which
is the bigges factor that deteriorates the image quality. The skin, the eye

ball are also examples of layered media.

2. The necessary information for solving the inverse problem can be greatly
reduced by exploiting the structural simplicity of the non-uniformity of a
layered medium. Consequently the measurement and processing require-

ment is far less than for general media.

3. The reflection from a layered medium consists of a series of isolated pulses,
and the travel time relationship required in the previous section can be

easily obtained from the positions of these pulses.

Having answered the question of “Why layered media”, next we will
discuss about “What kind of layered media?” There can be 3 categories of

complexity, as illustrated in Fig. 3.5.

The first category has parallel, horizontal interfaces, as shown in- the
figure. The second category has non-parallel plane interfaces, while the third
has curved interfaces. Here we will only treat problems of the first and the

second category.

Consider the description of one interface. In the first category only one
parameter, i.e., the distance d; between two interfaces is needed. In the
second category two parameters are needed: the distance dy and the angle of
inclination . For the third category there are many more variations. If each
interface is a parabolic curve, 3 parameters are needed. More generally one
can assign N points on the interface and use the spline function to interpolate

the curve. In the case N is just the number of parameters for the description
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Cattegory 1 Category 2 Category 3
Horizontal Non-parallel Curved
Interfaces Interfaces interfaces

7T
T

d 4,

dy —~ /

Fig. 3.5 Three categories of complexity of layered media.

of one curve. A special case of curved interfaces is worth noting, that is, the
case of concentric circle interfaces (Fig. 3.6). Such interfaces can be described
using the radius (one parameter) only. A particularly simple relationship [56]
for the ray path can be derived, making it possible to transfer such media

into media of the first category.

Referring to Fig. 3.6, from the Snell’s law of refraction, we obtain

H o i 3.1
sin 4; sin9£+1 (3.12)

On the other hand, from the triangle OAB it is clear that

7‘i+1 — Ty (3'13)
sin 65_*_1 sin ;41

Thus
G s, & ___u .1)
sing;  Dtlgng riSing;  rippsinfigy
LA

This result indicates that the quantity c(r)/rsing(r) is a constant along a
ray path, as compared with the c(z)/sin6(z) of media with horizontal plane

interfaces.
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Fig. 3.6 A layered medium with concentric circular interfaces.
3.3 Calculating Travel Times Using Geometrical Paths

Consider a pulse incident upon a layered medium. The acoustic parameters
cx(sound velocity) and pg(density) within each layer are assumed to be con-
stants, so that reflections only occur at the interfaces, and the echo consists
of a series of isolated pulses. As discussed at the beginning of this chapter,
the amplitude of each observed pulse is not very quantitative. The shape. of
thses pulses is in principle the same as the incident pulse, and so contains no
information about the medium. (However, if there is frequency-dependent at-
tenuation inside each layer, it can be estimated by comparing the frequency
component of two adjacent pulses.) Thus the only information about the
layered medium is contained in the positions of the pulses. These positions
indicate how long it takes for the acoustic wave to reach a certain interface

and to reflect back to the receiver.

The reason that we assume spherical wave incidence is because that the
transducers are usually much smaller in size than the medium, so that spher-

ical waves are reasonable approximations to the reality. The exact analysis
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of a spherical wave interacting with a plane boundary is rather complicated:
first it is decomposed into plane waves of different directions and amplitudes,
using the Fourier integral, then the reflection of each plane wave is calcu-
lated and finally the result is summed to give the total field of reflection
(see Appendix B, [18,41]). This procedure is necessary because the reflection
coeflicient for plane waves depends upon the incident angle (see Appendix
A). However, if the frequency of the spherical wave is high enough and the
transducers are not too close to the plane boundary [41], then using the
stationary phase approximation [57,58], the reflected wave can be calculated
in a much simpler way. The result indicates that the reflected wave is also
spherical, and the reflection coefficient is the same as that for a plane wave
which propagates along the main path, i.e., the path of geometrical acoustics
(Fig. 3.7). This fact implies that the delay for the received spherical wave

equals to the propagation time along the geometrical path.

So our problem is transferred into the problem of ﬁndilll‘g the geometrical
path for reflection at a specific interface, which passes through the transmitter
and the receiver, and obeys the laws of refraction and reflection. We will
treat media with non-parallel plane interfaces (Fig. 3.7). First we calculate
the distance between the transmitter and the receiver for an arbitrary incident
angle, and then we adjust the incident angle so that the ray passes tluou;_,h

a specified receiver position.

Referring to Fig. 3.8(a), the downward propagation through the (i + 1)th

layer results in an increment Al; in the horizontal direction:

A = Git1 o li(tany — tan 3i4) (3.15)
: cot f;y1 + tan yi41 .

S0
d,‘+1 + l;(tan ¥ + cot 9,‘_}.1)

=1 = 3.16
l'+1 l‘ t Alt cot 0i+1 -+ tan Yi+1 ( 1 ))

The calculation of Iy is somewhat special (Fig. 3.9(a))
lo = _ o ‘ (3.17)

cot G + tan vy
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t=0 T T, Iy

. B Co
AR ) <« Ist Interface
0 ~o - e 0
Oth Layer d S T~ L2 o
0 Iy S~ <~ 2nd Interface
i
\\ !
e Yo 51 N/
CN~1
1st Layer d;
!
1L On=1 GN_l < INth Interface
(N — 1)th Layer  dy_;
p——l
TN-1 In_1

Fig. 3.7 A ray-path in a layered medium.

The refraction of the ray path at the (i + 1)th interface is governed by

sin(6iy1 — %) _ sin(6; — %)
Cit1 ¢

61 = 7i + sin™! (‘ﬁlsin(a - 7;)) ' (3.18)

=

C
The downward propagation continues down to the Nth interface, at which it
is reflected. The law of reflection requires that (Fig. 3.8(b))

On_1+TIN-1=0N-1— W1 = Oy_1=0N_1—27N-1 (3.19)

It should be noted that the positive direction of ¢},_; is opposite to that
of §y_1. During the process of upward propagation we have (Fig. 3.8(c))

diy1 + liya(tan y; — tan yq1) (3.20)
cot i, —tany;
dig1+lip1(cot 81, — tany,y)
cot 0, —tany;
0! = —v; +sin™! (*Ci—sill(95+1 + ’Yi)> (3.22)

Cit1

Al =

=l + Ay = (3.21)
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\ .
Al
T
l; ' Vi o
' 9N-1I 0}\,_1 J i+1
di+1 \ i+1 9’
| Yigr|
Vi1 J
4 IN-1 : \\ 1,’_*.1
lit1
(a) Downward | (b) Reflection (c) Upward

Fig. 3.8 Downward propagation, reflection, and upward propagation.

These formulae are applied until Iy is obtained, to which the following Al
should be added

Alp = (dp — lptanyp) * tan 6 (3.23)
to get the final answer (Fig. 3.9(b)).

o: &
il ) Z
) Yo b

(a) (b)
Fig. 3.9 The initial and the final part of the calculation.

In this way we can calculate the amount of horizontal offset I for an
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arbitrary incident angle 6. In practice we often need to adjust the incident
angle so that the horizontal offset equals to a given value. By investigating
the relationship between I and 4y for typical settings, it is found that [ varies
monotonically with 8y and the function is close to a straight line (Fig. 3.10).
This property makes it an easy job to find the appropriate 6y for a prescribed
I. Here we adopted the secant method ([59], Fig. 3.11). Specifically, if for
some o x-1 and Oyx, the corresponding Ip_; and I are obtained, a straight
line is drawn through these two points:

= 40
E A
o B
Q
[4p]
roet
O
Eg -0 r
& -0
I o
C' "/ ! ! ! ]
:% -60 1 ! 1
28 -15 -8 -5 B 5 18 15 2@

Incident Angle (deg)

Fig. 3.10 An example of the variation of the horizontal offset [ as a
function of the incident angle 4.

l — lk 90 - HOk g o
= 3.24
lym1 =1l Bpr—1 — Bok (3.24)
and the new angle 6y 41 is given by
-1
8o,k+1 = Oor + —-—-——&-—(Go,k_l - o) (3.25)
o1 =1

The corresponding lx41 is calculated again, and the process is iterated
until I is close enough to the prescribed I. In this way we can make the
reflection from a specific interface to emerge at a specific position, and we

repeat this calculation for each interface to get the paths for all the reflections.
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= (fy)
s Desired [ //

fo

v

/ Jok-1 o

Fig. 3.11 The secant method.

The calculation of travel time is straightforward once the ray path is totally

. known, so will not be discussed here.

3.4 Layered Media with Horizontal Interfaces

Suppose that under two measurement conditions, the observed signals con-
sist of pulses whose positions are T,;,Ths,---, and Ty, Ty, -, respectively
(Fig. 3.12).

For such media, since the plot of t,(z) versus #,(z) is piecewise-linear
(Fig. 3.13), dt,/dt, can be easily obtained from pulse positions:

di, AT, Toipr — T

dty lith tager  ATw  Thit1 — Toi

(i=0,1,2,--) (3.26)

When the probing wave is planar, the calculation of ¢(z) is straightforward
using (3.5), (3.7). This calculation was made possible through (3.2), which
states that dta(z)  cosbu(x)

alT alZ
dty(z) ~ cos by(z) (3.2)

Now, when the transducers are point-like, and the probing wave is not planar

but spherical, this relationship needs to be modified. Under a specific setting
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—
=1,
AT,y ATy AT,

<

<

. 7 Ta(ta)
—
T

"
r—’ul

1
a2

'=h_am, ATy AT

‘bl Tw Tb3

Fig. 3.12 A layered medium with horizontal interfaces, probed by
spherical waves.

ra(ta)
|
3 —é"" _————————— ! :
| |
- ; E i
Al AA 75(ts)
0 I '

Fig. 3.13 The plot of t,(z) versus t,(z) is piecewise-linear for a layered

medium which is uniform inside each layer.
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(Fig. 3.14) we may investigate In AT and Incos@ for any layer as functions

of I, and we always find that the following approximations hold good for a
wide range of I

InAT; ~ al” + b

{ (3.27)

Incosf; ~ cl® +d

" _ Relative Error = 0.0006%

1 ©

Q 7
ﬁ*——f‘i & @ FInaly -~
G e | /

i w0
0o ¥ 1o

do =30mm &1'
co =1.5mm/us T Incos 6y

}0 »]E ] 1 L 1 1 1 1
P
c1 =1.6mm/pus 1/~ J dy =12mm

0
1 95 <58 5 4B -35 -3 -25 -28 -IS
c2 =1.7mm/ us 6, ~ | do =10mm

- [-54.74, -1562] (x10™-3)

5)

-
-

Relative Error = 0.0008%
In AT,

450.00x107-
w

-
<

) In cos 4,

-m L 1 L 1 Il
- -0 -5 48 -} -8 -18

(-62.25, -1767] (x10™-3)

r
0, 821} +

——y

-

—1
-

(-&
S,

AT, ATy AT,

Fig. 3.14 A typicall setting and the approximately linear relationship
between In AT and Incosé

Upon eliminating 2 from these two equations we get
In AT; ~ o;Incos 8; + 5; (3.28)

which means that, when [ varies, the relation between In AT and Incos@ is
approximately linear (Fig. 3.14). This linearity is found to be a very good
approximation. For example, by fitting a straight line to InTj ~ Incos#,, the

relative error (InTy —In7%)/InTy has a mean square value less than 0.001%
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A];O = Y:xl ATbo = :Z;Jl
le 7 . Iy
al < Ty
N : N
é
a0 950
dg do
Co Co
\

Fig. 3.15 Two settings of measurement using point-like transmitter

and receiver.

(1 =10~19mm). Note that the 6’s in Fig. 3.14 does not correspond to any
angles in the real ray-paths. They are choosen merely because that 8; can be
easily determined from ¢, 6y and ¢, or rather, ¢; can be easily determined

from 6;, as done below. From (3.17) we obtain

AT, COS By \
a — a: : .2(
ATy, (cos Hu) (3 , )
which is a modification to (3.2). Thus
(ATa;)Z/“i~ 1-sin6, 1-p2c (3.30)
ATy " 1-—sin®6,; 1-—plc? '

where p, = sinf,0/co, p» = sinfy/co, the same as defined in (3.3), although
the meanings of 6,9 and 6, are somewhat different. The parameters ¢y, 0,0,
0w can be obtained from l, Iy, AT,y and ATy since (Fig. 3.15)

AT, = l,/(cosin b,)
ATbg = lb/(CQ sin Gbg) (331)

lo cot 8,0 = Iy cot Gy
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To use (3.20) to calculate ¢; one still has to know about ;. It is found
that o; varies from layer to layer, and depends on the overall configuration
in a complicated way. In practice we may solve this problem by iteration.
At first we put o; to 1 (plane wave value) and calculate for ¢; by (3.30).
With ¢ and, say T,;41 (or Ty41), we can find the thickness d; from the

simultaneous equations (Fig. 3.16)

: !

Z dy tan 6 = —2“—

k=0

sin 6k+1 Cr+1 .

- = , t=10,1,---,i—1 3.32

sin oy Ck (k ’ ) ( )

i dy  _ Toit

=5 ¢k COS b 2

la/2 1,/2
|
do 8o } co
. |
]
|
|
|
!
|
]
|
d; 6 : G

Fig. 3.16 A ray path in a horizontally layered medium.

There are i+ 2 equations in (3.32) and there are i+ 2 unknowns: d;,

o, 01, ---, 6;. These equations can be solved numerically, so that d; is

obtained. Then the medium is totally known (though temporarily) down to

- 50 -




CHAPTER 3 INVERSE SCATTERING IN LAYERED MEDIA

the 4th layer, and the propagation times AT, and AT, can be calculated

for the temporarily reconstructed medium, as well as the angles 6,; and 6,

corresponding to 6,0 and 6. Now from (3.29) we can recalculate o; using
__In(AT,/ATY)
v In(cos 8,/ cos Oy;)

(3.33)

and ¢; is again calculated by (3.30). This process is repeated until convergence
is reached, which can be examined by comparing either the values of «; or
¢; before and after each interation. The procedure of calculating cg, do, c1,
dy, -+, ¢, di from Toy, Tog, -+, Tagqr and Ty, Toay oo, Tyi41 is summarized
in the flow-chart in Fig. 3.17.

The basic idea behind this procedure is that, the sound velocity of a new
layer is first calculated roughly, then its thickness is calculated from the real
propagation times, and these results are applied to improve the calculation

of the sound velocity.

3.5 Layered Media with Non-Parallel Interfaces

When it comes to non-parallel interfaces, the calculation is much complicated
by the fact that no simple connection between AT (the time elapsed between
two observed pulses) and cos@ (6 is an angle which can be easily determined
from the sound velocity) has been found. Although one still observes that

In AT and Incos@ are approximately parabolic functions of I (Fig. 3.18), i.e.,

INAT =~ a(l - b)? + ¢
(3.31)

Incos = p(l—q)% +r
the problem is that the centers of these curves b and ¢ are unequal, so that

at most one can obtain a relationship like the following
(Alncosd+ BInAT)2 4+ Clncosd+ DIn AT =1 (3.35)

which has 4 parameters in it, whereas in (3.28) only 2 parameters are needed.
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& " 0.0002% o - 0.0002%
o. — o
— R —

> < 30 ///
S 6 -// Spr 7
&) H o oo -
e R <t

s -
v / Yo 7
r— I~ rd —_ o
= = 1n ”
— ‘2 i — ey
8 ,/ S s
..é.i -B 1 I3 1 i ‘(_'qu 1] 1 1 H
5 0 2 q b B 18 5 i 2 4 6 ) 19
1 1
0.0416% 0.1647%

. 7o F
o L Joap b
g 1o \ 5 _\\
-+ \\\\ RS \\\\
= - = -0 "~

S o3g . ® .

-8 _ |
3 N g N
3 -9 AN o8 F ~
5 _EB ] ] 1 ! ,E; _7@ 1 L ] 1

@ 2 q B 8 18 8 e 4 B 8 10
Fig. 3.18 In AT and Incosd versus I, for a 3-layer model.

We abandoned the search for “eflicient” algorithms and considered a more
general approach, in which the medium parameters are determined by solving

a minimization problem.

First of all we notice that, since the determination of one layer needs
three parameters ¢;, d; and v (Fig. 3.19), three signals received at different
locations I,, I, and I. are necessary. Denoting the pulse positions by T, Tha,
ooy To1y Tey -+ Te1,y Tea, -+, the problem is to calculate from these data ¢,
do, Y0, ¢1, d1, 71, ---. Of course the locations I,, I, and I, are also assumed

to be known.

The calculation of ¢y, dy and 4y depends upon T,;, Ty and T, only, and
can be carried out accurately. Referring to Fig. 3.20, it can be shown that

(eoT)? = (dg cos vg + dg cos yg — Isin 70)? + (1 cos 70)°
= 4d% cos® vy + 12 — dldsin Yo COS Yo
= 4d® cos* g + (I - dsin 2y5)? (3.36)
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from T3; and T},

01:1

Calculate ¢y from oy,
AT,1, ATy, where

ATy =Ty — 1y

Calculate d, | (3.32)

Calculate co and do | (3 31)

ATp =Tog —Tay | (3:30)

From the reconstructed medium,
calculate AT,,, ATy, a1 and 6y

Yes

a1 has changed much?

Next Layer

Modify the value of o | (3.33)

Forward Problem
(see Fig. 3.14)

Fig. 3,17 Flowchart of inverting pulse position data for sound velocity

and depth of a layered medium with horizontal interfaces,

probed by spherical waves.
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I
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Y |

do o Ty T2
Yo — A,!\ I'A
¥
i dl: “ . i e

gl

Fig. 3.19 A layered medium with non-parallel plane interfaces, mea-
sured under 3 different settings.

Fop N -~ 70//\
{ \
\ B
\

do

Fig. 3.20 Calculation of the first layer.

It is clear from (3.36) that T2 is a parabolic function of I, so that if by
parabolic fitting to (L,7%), (,73), (I,7%), we obtain
T? = bol? + byl + by = by (z+—bl—)2+bz——b—’2-—
2o by
=po(l+pm) +p, S (3.37)
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then, comparing (3.37) with (3.36), we arrive at

1 P1 P
co = ——, = —tan"}{ —£L_ dg = — —— 3.38
0 Yo an (CO \/ﬁ;) 0=~ nom (3.38)

However such simple derivation is no longer available for the subsequent layers,
and generally we may assume the medium to be totally known down to the
(k — 1)th layer, and determine the kth layer from Topt1r Topyr and Tppyy.

This may be done by minimizing the following

N1 = (Typpr=—Taps1)’+
+ (Tregr = Topt1)* + (Tlggr = Topgr)’? (3.39)

where the dashed quantities are calculated from the model, with assumed

values of ¢k, dr and v, for the kth layer.

To save computation time we did this in a different way, treating ey
differently from dj, and ;. First we assume a value for ¢, and determine dy

and 7y, by minimizing
Jo = (Ty 41 = Tapp1) + (Thpyr = Tengr)’? (3.40)

(Jy can be made arbitrarily close to 0, just as J;). Next we calculate Ty ki1
which is generally different from the observed Tjjy;, because the value of
¢ is incorrect. However, if we view Té,k 41 35 a function of ¢, under this
condition (i.e., di and x have been adjusted by minimizing Jy), we find
that the curve is again very close to a straight line (Fig. 3.21). Thus the
secant method (Fig. 3.9) is suitably applied here to modify ¢, so that Ty ka1

approaches Ty g1

The minimization of (3.40) with respect to dj, and 7 is not an easy job.
In Fig. 3.22 the contour lines of Jy is shown. It can be seen that the ordinary
gradient method leads to a zig-zag searching path in the parameter space, and
the convergence is very slow (this phenomenon is known as hemstitching [59]).

To resolve this problem we employed the Marquardt-Levenberg algorithm [60],
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Layer 1 Layer 2
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Fig. 3.21 An example of the linear relationship between Ty 4y and

cx, when di and v, have been adjusted to minimize Jy.

which is a combination of the gradient method and the Gauss-Newton method
[61,62]. It provides a search direction which is in between the vectors provided
by these two methods. Since the gradient method looks at local properties
only, it is unsuitable when the searching region is still far from the optimum.
On the other hand the Gauss-Newton method approximates the square-of-
error evaluation function by quadratic forms, and aims at the optimal point
in one step. This makes it diverges easily when the searching is near the
optimum. By adjusting a parameter in the Marquardt-Levenberg algorithm,
one can combine the merits of these two methods, shifting from the Gauss-
Newton method to the gradient method as the searchihg goes on. We will
not go into the details of this algorithm, but only mention that it has been
working well for our purpose.

The selection of the initial valuse for ¢, d; and v can be made rather
arbitrarily. We have tried the following two methods, and both leaded to
convergence in processing simulated as well as experimental data. In the first
method, we calculate cx, di and v, from T, T and Ty using (3.37) and
(3.38), as if it were the Oth layer. Then we recalculate dy by

1 , . , . .
dy = Z(’k(ja,k-i-l = Tor + Topgr — Ter) (3.41)
It is found that v, obtained in this way is close to the final answer, bul e
is a kind of average of the sound velocities of the 0~ (k—1)th layer, and d,

is proportional to c.

- 56 -



CHAPTER 3 INVERSE SCATTERING IN LAYERED MEDIA
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Fig. 3.22 Hemstitching of the gradient method in the searching space
of di and ;.

Another method is even simpler. We just guess about the average sound

velocity ¢ (which is not difficult in most cases) and use

Cp = 2¢C

1 &
di = 2ox(Tapt1 = Tu + Teptr — Tor) (3.42)
e =10

as the initial values.
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4

Estimation of Pulse Positions

4.1 Modelling the Reflection from a Layered Medium

We assume that the reflection occurs only at the interfaces among the
layers, and the impulse response of the layered medium consists of a series

of impulses. That is,
R(t) = ri6(t — t1) + reb(t — t9) + -+ + 16(t — 1,,) (4.1)

is the impulse response.

In practice A(t) is not directly measurable, owing to the finite band-width
of the measuring system. Denoting the impulse response of the measuring
system by g(t), the reflected signal is the convolution of g(t) with k(t), and
there is always the unavoidable measurement noise m(t), which we assume to

be additive. Thus a simple model of the received signal s(t) is obtained:

s(t:)‘ = /_100 g(r)n(t — r)dr + m(t) = g(t) * h(t) + m(2) (4.2)

where * denotes convolution. The graphical counterpart of (4.2) is illustrated
in Fig. 4.1.

The characteristics of the measuring system g(t) is mainly determined by
the transducers, although the driving and amplifying circuits also play a role
in it. Usually the spectrum of g(¢) has its energy centered around a certain

frequency range (say 2 to 4MHz), acting as a bandpass filter upon Ah(z). On
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g(t)

h(t) M + IU)
impulse | + received signal
response bandpass filter

m(t)

measurement noise

Fig. 4.1 Modelling the signals reflected from a layered medium.

the other hand the signal A(t) is wide-banded. In fact the Fourier transform
of n(t) is

n
Tk COS Wiy — 1 }: Tk SIN Wiy (1.3)
k=1

H(iw) = /+oo h(t)e™™idt = i e Wk
- k=1

It can be seen that H(iw) is a periodic function of w, with discrete “fre-
quencies” 1y, tz, -+, tn. Our interest is in recovering h(t) from r(z) and g(z).
Because of the existence of the measurement noise m(t), and the bandlim-
itedness of g¢(z), the information about H(iw) is only available in a certain
frequency range. To calculated h(t) in the time-domain means to extrapolate
H(iw) from that range to the whole frequency domain. Generally this would
not be possible, but as discussed above, if h(t) consists of sparse spikes, this

becomes possible because of the strong periodicity in H (iw).

4.2 Deconvolution via Spectral Fitting

Clearly to estimate A(t) from r(t) and g(t) is a deconvolution operation. We
have developed a spectral fitting procedure for this purpose.
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Suppose that H(iw) is known in a certain frequency range (wy,wy), from
which the parameters (t1,71), (¢2,72), ---, (tn,7) are to be estimated. Denoting
the estimated parameters by (r1,01), (72,02), --+, (Tn,en), first we determine
(71,p1) by minimizing

N
, ~tw)T 2
J(r,p1) = Z IH(jwl) — preTim (4.4)
=1
where we have considered discrete frequencies
I-1
wlzwL+L~1(w;;—wL), l=12,---,L (4—.5)

This minimization problem can be solved eflectively using the FI'T. As a
matter of fact, for a fixed 7, to minimize J(7(,p;) with respect to p; we

calulate 8J/8p; and put it to zero:

or_ 9 [i (][(iwl) - ple""’“"’l) (]{*(z’w;) - plei‘”'rl)J

dp1  9p1 |
— Z (-—H(iwz)eiwm _ H*(iwz)e_iwlﬂ) + 2L/Jl =0 (4.6)
=1

where H*(iw;) is the complex conjugate of H(iw). Thus

L
2—%; [H iwy)e™im 4 J1* (iwy)e """‘71]

L
Re [2 H (ian)e } (4.7)
=1

1:

I

’**I

The coresponding minimum of J is obtained by substituting (4.7) in (4.4)

. _
J(r1,p1) = > [H (i)l — N p} (4.8)

1=1
Now, to minimize J(r,p;) with respect to 7, we can calculate py using (4.7)
for every m and choose the one that results in the maximum of p}. This
is nothing more than calculating the IFFT of H(iw) (zero-padding the data

for frequencies outside of (wz,wy)) and choosing the one that has the largest
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absolute real part. The position of that point gives 7, while the real part,
after multiplication with N/L where N is the number of FFT points, gives

p- The factor N/L is needed because in IFFT the calculated quantity is
N-1
something like 1 > H(k)e!2mnkIN,
N
k=0
Once m and p; are obtained, the term pje™™™ is subtracted from H (iw;),
and the same process is repeated, giving successively (9, 09), (73,p3), ---, etc.
This process can be terminated by observing the decrease in J, or equivalently,

the magnitude of p;.

Clearly we are solving the minimization problem in a sequential manner.
One may doubt if the result is the same as minimizing the following J with

respect to all the parameters simultaneously:

&

L
J = Z ’H(z’w;) — preTHITL _ peTIT L e (4.9)
l==

1

The answer is a conditional yes. To see this let us consider the simple case

of n=2. The above J becomes
L
J=3, [H(iwz) —pre” T — Pze""w'r"’] [H*(iwz) ~ pren — Pzeiw'rg]

=1
= Z |H|* - p1 Z (]fei‘”'rl + Ii*e“iw‘rl> — po Z (]] ewIT2 | ]I*C"fu'tfz)

+ o102y (772 emerlnmm)) o [ 4 1k (4.10)
If the term
L . . L .
p1oay (e'Wl(Tl"TZ) + eﬂwu(fr'fz)) = 20,3 Re [Z e'wl(Tl”‘TZ)} (4.11)
=1 ' 1=1

is very small so that it can be neglected in (4.10), the solution of simultaneous
minimization is almost the same as that of sequential minimization. By
differentiating (4.10) with respect to p; and p, while neglecting the term in
(4.11), we obtain

! Re [ H(iw)e“m], oy = %Re [Eﬂ(iw,)e“’"ﬁ] (4.12)

- 61 -

P =

|




CHAPTER 4 ESTIMATION OF PULSE PQSITIONS

and on subtitution in (4.10)
< 2
J =3 |l (iwr)|]" ~ Lpi - Lp} (4.13)
=1

Thus we choose 71 and 75 that correspond to the points of the IFFT of
H(iw), that have the largest and the second largest absolute real part. On

the other hand, in sequential minimization, py is calculated from

1 - : —twT fwp T
p2 = —ERe Lél (H(zwz) — pre”™ 1) et 2}
1, [& : 1 < o (ry=73)
= -ERe L:El H(zwl)e“"”?} - flee [,._.E 1 H (i )e ™12 (4.14)

and by assumption the second term is much smaller than the first term, so
that (4.14) is almost the same as (4.12).

The assumption that the term in (4.11) be small means that the base
functions ™"t and e~ be orthogonal on [wy,wy]. Since these are har-
monic functions of w, if the “frequencies difference” 7, — r is big enough so

that there are many cycles in the range [wp,wy], i.e.,
|1 — 12| (wg —wr) > 1. (4.15)

then our assumption becomes true. To get some idea about the condition
(4.15), let us see a numerical example: wy =2.5MHzx27, wy =4.5MIlzx2r,
thus (4.15) requires

I — 72l >

1
T or 0.1ps
which means that any layer should be much thicker (say 10 times thicker)
than 1.5mm/usx0.1ps/2 = 0.075mm, where 1.5mm/us is the assumed sound

velocity. This condition is usually met in practice.

In conclusion, we have suggested a procedure for estimating the parameters
(t1,71), (t2,72), -+ (tn,ms) from H(iw) in (wp,wy). Note that the estimated

(r1,01), (12,02), -+, (Tn,pn) do not have one-to-one correspondence with the
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t’s and r’s. In fact ¢y <ty < .-+ <1, while py > p3 > -+ > g, s0 they are
sorted in quite different orders.

An improvement to this procedure is possible. Instead of cutting out
a frequency band and performing spectral fitting in that band, one can do

weighted fitting, 7.e., to minimize

N
. 2
T(rip1) = 3 alwn) [H (i) = prem (4.14)
1=0

instead of (4.4). Here w; is redefined to cover the whole frequency range. For

example, if H(iw) is obtained by 2N-point Fourier transform, then

W 2rFy, (1=0,1,--- N-1) ~ (4.15)

TV
where Fy, is the sampling rate. The function ¢(w;) in (4.14) is the weighting
function, which can be chosen to emphasize certain frequency components.
The rest of the derivation can be carried out following exactly the same line

as done above, so will not be repeated here.

We also notice that it is possible to determine the 7’s to a fraction of the
sampling interval, by utilizing the fact that zero-padding in the frequency-
domain corresponds to over-sampling in the time-domain [63,68]. If zeros are
added to the high frequency side of the spectrum H(iw) so that the length
of the Fourier analysis becomes K times longer, the ratio of over sampling
in the time-domain is also K. The case of K =2 is illustrated in Fig. 4.2.

The final question to be answered is how to estiamte H(iw) from the
signals s(t) and g(t) (see Fig. 4.1). If we take into consideration the existence
of measurement noise and perform least-squares estimation, we arrive at the
well-known Wiener filter. But to apply the Wiener filter we need knowledge
about the cross power spectrum of h(t) and s(t) [64], which is unavailable in
our case. On the other hand we may ignore the measurement noise and use
the simple solution #(iw) = FFT[s(¢)]/FFTg(t)]. In practice we find that this
provides satisfactory results when the noise level is not too high. IHowever
we agree that this problem, together with the determination of the weighting
function ¢(w) in (4.14) is still open for further investigations.
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IFFT 7]
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Fig. 4.2 Zero-padding in the frequency-domain corresponds to over-

sampling in the time-domain.

4.3 Fluctuation of the Peak Position of Cross-Correlation
Function

In this section we will discuss the fluctuation of the position of the estimated
pulses, caused by the additive measurement noise. Since this is a time-
domain quantity, a time-domain approach is preferable from the stand point
of analysis. We notice that it is also possible to estiinate the delay between
two pulses using the peak position of the cross-correlation function [65,66].
By analysing the fluctuation of the peak position we can get an evaluation of
the influence of measurement noise on the problem of delay estimation. By
the way, this analysis can also be applied to the delay between two random
signals, which is encountered when travel time differences are estimated from

randomly scattered signals [67].

Without loss of generality we consider the cross-correlation function be-
tween two signals s;(t) = g(t) + m(t) and sy(t) = ag(t) + ma(t),

R = [ :°° 51(8)s2(1 + 7)dt
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— / t) + my(t)] [ag(t+7)+ my(t + 7)]dt

= a/g(t)g(t + 7)dt + /(gmg + agmq)dt + /mlmgdt. (4.16)

The first term equals al'(r) where
+oo
() = / g(t)g(t + 7)dt (4.17)
is the auto-correlation function g(¢), which has its peak at = 0. Noticing
that I(0) =0, we have in the neighborhood of 7 =0 that

D(r) = T(0) + 5 " (0)r2. (4.18)

Further more, from the connection between the correlation function and the

power spectrum

1 +co .
——/ |G(iw)[Pe' dw (4.19)

I(r) = 2 J-

one can derive

I(O———~——/ G(iw)|*dw

(4.20)
I(0) = ——/ w?|G(1w)* dw

Here G(iw) represents the Fourier transform of g(z).

The second and the third terms of (4.16) are the influences of measurement
noise. If the signal-to-noise ratio (SNR) is high enough (which we assumne),
the third term can be neglected compared to the second term. Denoting

n(r) = / [9(t)ma(t + 7) + ag(t + r)mq (¢)] dt, (4.21)

and assuming that m;(¢) and my(t) are stationary random processes obeying
the same distribution, independent of each other, we have

n(r) ~ g(r) * ma(r) + ag(r) x my(1) = g(r) * [my () + ama(7)]
~ g(1) * V14 a2m(7). (4.22)

where m(7) is a common notation for m;(r) and my(7) since they are statis-
tically the same. Concequently we have obtained a model for R(r) (Fig. 4.3)

R(r) = al'(r) + n(r) = al'(7) + V1 + a2g(r )*777 7). (4.23)
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m(r)
T V1 +a?y(7)| n(r)
A
+ + .

r(r) ,\N R(r)

Fig. 4.3 Modelling the cross-correlation function between two pulses

which are corrupted by additive noise.

We note that I'(7) and n(r) have nearly the same frequency content (so,
comparable speed of variation), determined by the spectrum of g(t). When
the SNR is high, the amplitude of n(r) is much smaller than that of I'(r),
which means that the peak of R(7) will only fluctuate slightly about the peak
of T(r) which is at 7= 0. To analyse this fluctuation caused by n(r), one

only has to investigate dn(r)/dr, because in the neighborhood of 7 = 0,

R(r)~a {F(O) + %—I‘“(O)rz} + {n(0) + n'(0)7}

2
__al'(0) n'(0) [n/(0)]? o
The amount of peak fluctuation is
n'(0) .
€= ) (4.25)
which has zero-expectation because
1
E(¢) = ———————ar”(o) ER'(0)]=0 (4.26)
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So it is bias-less. To estimate its variance E[¢?], we mneed to evaluated

E[(n'(0))?]. By assuming m(t) to be white so that
Elm(t1)m(ts)] = 2,6(t, — ta) (4.27)

m

we obtain from (4.22) that

: , , Foeo Foo ‘
B[(n'(0))]=E [(1+a2)/ g'(tl)m(tl)dtl/ q'(t2)m(ty)dis
+ o0
= (1+a?)od [ lo'(o)]Pa
= —(1+a?)aZT"(0). (4.28)
Thus finally
2y - E[(W'(0)?] _ 144 o2
M) = 2moF =~ )
1442 2702,

4.29
& FEAGG )

~ In summary, under the condition that mi(z) and my(t) are white and have a
small amplitude, the peak position of the cross-correlation function of r(t)
and ry(t) as defined in (4.16) fluctuates around the zero point, the amount
of which can be estimated by (4.29). The applicability of this result to the
spectral fitting method will be investigated using computer simulation, in

chapter 5.

From this result it can be seen that, the fluctuation becomes smaller if
% the noise level is lower, and/or the auto-correlation function of g(¢) has a
| sharper peak at 7 =0 so that the curvature I''(0) around r =0 is greater.

4.4 The Influence of Errorneous Pulse Positions on the Re-
sult of Sound Velocity Calculation

For the sake of simplicityywe will only consider the case of plane wave
incidence on a layered medium with parallel interfaces. From equations (3.5)
and (3.26)

[ 1- (o) .
o JPE = P} (ATui/ ATy:)? (4.50)
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where p, and p, are defined in (3.3). It is clear that fluctuation of the

estimated pulse positions directly influences the calculated sound velocity. To

get an idea of this influence, let us examine a numerical example.

Suppose that the sound velocity in the first layer is cp=1.5mm/pus, and

that the two incident angles are 6,0 = 0°, 0,y = 15°. Trom (3.3)

sin g sin g . .
a=—0 =0, py="0"% 172546
co co

Suppose that the real value of c; is also 1.5mm/us, and we wish that the calcu-
lated value of ¢; to be within 1.485~1.515, so that its error does not exceed 1%.
This requires AT,;/ATy to be within 0.96662~0.96523. AT,/ ATy=0.96593
makes ¢; just equal 1.5. Thus the requirement on the relative error of

AT, /ATy is about £0.07%, which in turn requires the relative error of AT};,
ATy; to be within +£0.035%. If the layer is 5mm thick, AT;=5mmx2/1.5~6.67us.

‘So the error of AT,; should be within #0.00233us, and each pulse position

cannot fluctuate more than =40.00117us.

From the above example it is seen that a small error in ATy, ATy of
£0.035% results in a large error in ¢ of %1% under the condition that the
two incident angles are 0° and 15°. The amplification of relative error is
about 30 times. This is a reflection of the fact that the inverse scattering
problem is ill-conditioned [10,72]. A similar calculation reveals that if the two
incident angles are 0° and 30°, the amplification is abodt 8 times.

The above process of error propagation can be seen more élearly if we
put v = AT,;/ATy; in (4.30). By differntiation we obtain

de pi -1
— = 2 udu 4.31
e T T w)6E - ) 3

If the two incident angles 6,9 and 6, are not very different, then u is very

close to 1, so that (4.31) becomes roughly

1 p vt du
udy = ——mr —
1~ u? 1-u?u

- 68 -

[y

(4.32)

—

d
c




CHAPTER 4 ESTIMATION OF PULSE POSITIONS

Or, if p, =0, L
dc u
—— e — 4.3
c 1—u? u (14.33)
u?
All these equations say that the relative error of ¢ is m times
—u? 2

the relative error of u. This amplification of error can be

very large if u

is close to 1, and to avoid such a situation, ome should try to make the

difference between the incident angles as big as possible.
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Computer Simulation

Q 5.1 Deconvolution by Spectral Fitting

This is to show the usefulness of the spectral fitting approach, described
in §4.2, in recovering a 6-pulse train from its band-pass filtered and noise-

corrupted version.

The received signal is generated according to the model in Fig. 4.1. Signals
are sampled at 20MHz, and the length of s(t) is 256 sampling points. h(t)
consists of 4 impulses, two of which are made very close to each other—only
10 points apart, to test the ability of this algorithm to distinguish two closely

spaced pulses. For g(t) we have used the following pulse:

g(t) = e~ (=1 P2 sin (¢ — doy) (0 < < 8oy) (5.1)

because its logarithmic power spectrum has a parabolic form, similar to those
of practical ultrasonic pulses. Outside of the above range g(t) is assumed to
be zero. The parameters wy and o, have been determined with reference to

practical ultrasonic pulses:

1 1 1
= 2 . .r .(‘ M / fl = = 'r.
o ™ x 3.5(rad - Mllz), o 2ro0p  27-0.0 (lrad M ,ll'/,) (52)

The length of g(t) (80:) is about 43 points under the sampling rate of 20M1Hz.
To simulate the received signal the final problem is to determine the amplitude

of the measurement noise, so that it simulates a prescribed signal-to-noise ratio
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(SNR). This problem tends to be ignored, but is not as simple as it may

appear.

Suppose that we are going to simulate a white process
E[m(t)m(t +r)] = 02,6(7) (5.3)

under the sampling rate F,,. We cannot directly sample the process m(t)
because its energy is distributed in the whole frequency range, far beyond
the Nyquist frequency range [-F,,/2, F,/2]. m(t) must be first filtered by
a low-pass filter, whose frequency response is

1 —1F <w < 1l

U(iw) = { (5.4)

0 otherwise

and the corresponding impulse response is denoted by u(t). The low-pass
filtered noise m’'(t) is the signal that can be sampled:

m(t)= | O o )ult — r)dr (5.5)

—00

The auto-correlation function of m/(t) is

Em/(t)m'(t+7)] =E [/ u(ry)m(t — r)dr -/u(rz)m(t + 7 —ry)dr
400 ptoo
= / / u(ry)u(ry)ol6(r + 1 — 73)dridry
o

= o5 /_oo w(r)u(r + m)dm v (5.6)

However, from the fact that the auto-correlation function and the power

spectrum are a Fourier transform pair, we have

+oo 1ot
/ w(r)u(r + m)dry = 7 |U(iw)|“e"“ dw

1w sin(w Fypr) -
Z_W./_"Fxpe dTwFsp‘W (5/)

Thus ()

NNTRUN _ o sin(mFyr .
| E[m/(t)m/(t+ 7)] = 0, Fyp TFar (5.8)
which is plotted in Fig. 5.1. In particular

E[(m'(1))’] = o7, Fsp (5.9)
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~/
N\

Fig. 5.1 The auto-correlation function of a band-pass filtered white

E[m'(t)m/(1 4 7)]

2
/"’.o.ynFsp

N\
/\/\ > T
1 2

F, ‘f;

noise.

- The result (5.9) is interesting because it says that the variance of the
sampled white noise is proportional to the sampling rate, so that it is different

for different sampling rates.

Now we can answer the question of how to determine the variance of
the numbers which simulate the measurement noise m(t). Defining the SNR

around a particular pulse ag(t) by

SNR = ‘/_+m[ag(t)]2dt/o,%l (5.10)

then from (5.9) the variance of the random numbers is given by

+oo 2
2 7 — — 00 [ag(t)]ﬁdt A '
O'm‘r'sp - SNR Isp (51[)

Now we will show the results of our simulation. Waveforms of the signals
g(t), h(t) and s(t) are shown in Fig. 5.2. The SNR is set at 20dB around the
first pulse in s(t), which is cut out as “g(t)” and used as the reference signal

of deconvolution. Spectral fitting is performed to FFT[s(¢)]/FFT[“g(2)”], in
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the range of 2.5~4.5MHz. The decrease of J versus the number of fitted

pulses, as well as the finally recovered A(t), are also illustrated in Fig. 5.2.
From the results in Fig. 5.2 it can be seen that

1. the two closely spaced impulses have been successfully recovered, even

though they cannot be resolved visually from the original s(t);

2. the amplitude of /(t) can differ from the original h(t) by a constant
multiplication, because of the lack of knowledge of the real g(t) (in fact
fz(t) always contains a unit impulse at the position from where the reference

44

pulse “g(t)” has been cut out).

No over-sampling has been performed in this simulation. We will consider

it in the next section.

.2 -The Fluctuation of Estimated Pulse Positions

In this section we will apply the analysis made in section 4.3 to a specific
pulse signal expressed by (5.1). We assume that the £4a, range is big enough
for g(t) to be recognized as if it were defined from —co Lo <Feo. Aller some

calculations we obtain

2
IG(jw)|? = Lgt- [ —of(wtwg)? 4 o =of(w—wo)? _ 26-0?(w2+u'§)]
+o0 T E
/ g% (t)dt = ——/ IG(jw)]? Utf(l R0 (5.12)
—oo .

1.

I'(0) = ——/ W |G(jw)| dw = —Utf [wg + ;—2-(1 - e_”?‘”g)J
t

The parameters wy and o, are the same as those of (5.2). Since wyo,=3.5/0.6x6,
the term ™0 is far less than 1, so it can be neglected in (5.12). From
(4.29) and (5.12) we obtain

1+a? o2 —02,(1+a?)/a?
= E 2 = —_ S — RS e 513
oE) = [ gy S |+ o

-
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o¢ is the standard deviation of the fluctuation of the peak position of R(r),
which is the cross-correlation function of ¢(t) + my(t) and ag(t) + ma(t). As-
suming a =1 and the SNR defined in (5.10) is

1 on/T o/
SNR = o7 = 20T (5.14)

Combining this with (5.13) we obtain

l')

&

7= \/SNR- (W@ +1/202)

Setting SNR to 10000(40dB), 1000(30dB) and 100(20dB), the corresponding
o¢ can be calculated to be respectively 0.000683, 0.00202 and 0.00683 1S.

(5.15)

The above values are obtained from analysis, which we wish to verify
by computer simulations. First two signals are generated according to the
following:

(5.16)
s9(t) = g(t — 1) + ma(t)

7 is varied from 0 to 0.05xs (one sampling period) at a step of 0.01us. s1(2)

{81(t) = g(t) +my (1)

and s3(¢) are sampled at 20MHz, and using the sampled data the discrete
values of the cross-correlation function are calculated. To get the peak position
we applied the natural spline interpolation [69] to the discrete values. In this
way the peak position can be determined to a fraction of the sampling interval
(Fig. 5.3).

The simulation of a specific SNR is realized by adding computer-generated
white Gaussian numbers to g(t) and g(t—7), whose variance ol is given by
(5.11)

2

v _ Jgt(t)dt o Py /T -

“ml = TGNR Y 2.SNR (5:17)

Suppose that the generated numbers are m; (i=0, 1, ---, N — 1), and by

multiplying a number 7 to m;, we wish to make

1 N-1

7 > (rmi)? = o2y (5.18’)
t=0 . .
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&— Peak

#

A o

Fig. 5.3 Spline function interpolation is used to detect the peak

position.

. then r is determined from
__No? N ow/mF,

ml __

T ymf  Tm?2-SNR

(5.19)

For a specific SNR (40, 30 and 20dB) and a specific delay 7, 30 pairs
of sy and s, are generated, their cross-correlation function calculated over
+5 sampling intervals, and the peak position detected. The average and
the standard deviation of these peak positions are tabulated in Table 5.1,
together with the theoretical values. It can be seen from this table that the
peak position is indeed an unbiased estimation of the delay, and that its
fluctuation agrees well with that predicted by our analysis. When the noise
level gets higher, the fluctuation becomes slightly larger than the theoretical
value, which may have been caused by the decreased accuracy of the Taylor
expansion (4.18) used in the analysis. If the noise level is too high, the
correlation method may break down by detecting a peak position which is
about 1 period away from the true position (Fig. 5.4).

Next we will investigate the performance of the spectral fitting approach.
Since the theoretical value of the standard deviation of the random fluctua-
tion is 0.000683 at SNR=40dB, a sampling interval smaller than this value
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Without Noise

With Noise

Fig. 5.4 When the noise level is too high, the peak position of the

correlation function may jump over to a neighboring crest.

is necessary. The original sampling interval is 0.05us (20MIlz), so an over
sampling rate of K=128 or 256 is necessary. If K'=256, the sampling interval
after over sampling becomes 0.05/256~0.0002us, which is small enough so that
the quantization effect of sampling will not interfere much with the observa-
tion of the fluctuation. In this case the length of FFT calculation becomes
64K=16384 points, where 64 is the original length of s,(t) and s3(t). Typical
waveforms and the spectra of s1(t) and s5(t) are illustrated in Fig. 5.5. The
results of simulation are summarized in Table 5.2, from which it can be seen
that the estimated delays are biasless, and their variances are somewhat larger
(about 10 to 30%) than the values predicted by theory. It is noticed that the
spectral fitting approach breaks down when SNR=20dB. The reason can be
found by examining Fig. 5.5, from where it can be seen that the spectrum of
the signal is almost buried in noise at SNR=20dB. Furthermore, the needed
amount of calculation is much greater than that of calculating the discrete

correlation values and using the spline interpolation to find the peak position.

In summary, we have shown through simulation that our analysis of the

fluctuation of the estimated pulse position is correct, whether it is estimated
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by spectral fitting or by the correlation method.
the better the degree of agreement. Typical signals encountered in practical

measurements have appearances like those of SNR=40dB, so we expect both

calculation, the best combination would be to use the spectral fitting technique

to scan the whole signal, which provides rough positions of the pulses, and
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Fig. 5.5 Spectra of the pulses with different noise levels.

get accurate estimation of the positions.

The forward problem, to calculate the reflected wave from the incident

wave and medium parameters, can be solved using the Goupillaud’s method

- 79 -
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methods to work well in practice. However, on considering the amount of

then to use the correlation technique, together with spline interpolation, to

5.3 A Layered Medium with Horizontal Interfaces, Probed
by Plane Waves
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described in section 2.3. The parameters of the medium are assumed as the

following, with reference to practical tissue parameters [1]:

(co = 1.52mm/us(water) po = 1.00g/ml dy = 5mm
¢y = 1.35mm/ us(fat) p1 = 0.92g/ml d; = 10mm
¢y = 1.69mm/ps(muscle)  py = 1.07g/ml di = 10mm (5.20)
c3 = 1.52mm/ps(blood) p3 = 1.06g/ml d3 = 10mm

[ c4 = 1.56mm/us(liver) ps = 1.06g/ml

13

. 7

Wat 4

do EW / / / ater . |
| I

dl 01P\/ / / Fat ]}. 1:3

dy Muscle

ds \/ Blood
\ Liver

Fig. 5.6 The assumed non-uniform medium.

The medium is illustrated in Fig. 5.6. It can be seen that there are 4
primary reflections, whereas the number of multiple reflection is essentially
infinite. To apply the Goupillaud’s method we must decide the number of
division along the depth direction. From the discussion in §4.4, we know
approximately that the error in pulse position should not exceed 0.001us.
Since the total propagation time between the first and the last pulse is about

10 10 . 10
2x (1.47 tisg T 1.56) ~ 39.0us
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the number of division should be about 39.0/0.001=39000. To apply the
Goupillaud’s method with so large a number of division needs a lot of calcu-
lation. On the other hand the meaning of using the Goupillaud’s method lies
in the investigation of multiple reflection. For this purpose a much smaller

number of division is sufficient. So we do this simulation in two steps.

First the reflected waves are calculated using the Goupillaud’s method
with a small number (1000) of division. The observation is made at 20MHz,
lasting 102.4us (2048 points). Since this time is more than twice of the round-
trip travel time, it is believed that multiple reflections, if any, are included in
the observation. The results are illustrated in Fig. 5.7, from which it can be
seen that multiple reflections, though exist, are almost negligible compared

to the primary reflections.

Thus we can calculate the reflection response considering only the primary
reflections. The positions of these reflections are determined from geometrical
path, which is exact for plane waves:

k d;

Te=2- §=:1 T cosTh (5.21)
whereas the amplitudes are calculated from the equivalent impedances (sce
Appendix A). The results are shown in Fig. 5.8, which are basically the same
as those in Fig. 5.7, except that no multiple reflection is present, and that the
positions of the impulses are almost accurate, unlike those of Fig. 5.7 which

are limited by the number of division in applying the Goupillaud’s method.

The impulse trains of Fig. 5.8 are convolved with g(t) of (5.1) and the
results are sampled at 20MHz. Then random numbers are added to make the
SNR around the first pulse of s,(t) to be 40dB (Fig. 5.8). The two signals
sa(t) and sy(t), together with 6,9 = 0°, 6y = 15°, ¢y = 1.52mn/pus, are the

input data for solving the inverse problem.

The solution of the inverse problem begins with spectral fitting, as done

in §56.1. As a result the approximate positions of the pulses are obtained.
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Fig. 5.7 Impulse responses of the medium of Fig. 5.6 calculated
by the Goupillaud’s method with 1000 as the number of

division.

Then the correlation and spline interpolation method is applied to find more
accurate estimation of the pulse positions. The results are summarized in

Table 5.3. Finally, to calculate c; and dx, we notice that

Qdk COos eak

Tat — Top—1 = o
5.22)
2dy cos @ (
Ty — Ty 1 = — Ttk

Ck
Combining (5.22) with the Snell’s law, as done in (3.4), we obtain

(T~ Top)

2/1 - p2ct
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Fig. 5.8 Impulse responses of the medium of Fig. 5.6, containing

only the primary reflections.

Table 5.3 Results of simulating a horizontally layered medium, probed

by plane waves.

k Tox Error To Error Ck dp.
1 6.45 -0.128 6.22 -0.135 152 4.90
2 21.23 -0.159 20.61 -0.166 1.36 10.03
3 33.10 -0.128 31.97 -0.134 1.69 10.00
4 46.24 -0.146 4466 -0.153 1.53 10.02
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where
P sin 9a0 P sin 950 Tak - Ta,k—l
a = —— b = = —
cg ’ cg Tok = Top—1

If the amplitude information contained in the pulses is utilized, the acous-
tic impedance, and the density of each layer can also be obtained. The
relationship is (see (A.7)) ’

_ PrCi/ €O fak, — pr_1¢_1/ COS O, 1

 (5.24
P/ COS fok + pr—1Ck—1/ €OS B, 1 (5:24)

where 7 is the kth reflection coefficient obtained from s4(t). Since this kind
of relationship can always be used to find p; from ry (if known), we will
not consider it further in our discussion. The ¢y and dy calculated using
(5.23) are also included in Table 5.3. The results compare favorably with the
assumed values of (5.20), the only source of error being the error of pulse

positions.

5.4 A Layered Medium with Horizontal Interfaces, Probed
by Spherical Waves

The only purpose is to check the validity of the inversion algorithm proposed

in §3.4 (Fig. 3.17), and since we already know that multiple reflections are
@ unimportant, we used directly the positions of the primary reflections, calcu-
lated according to §3.3, as the input data. The assumed medium is the same
as that of Fig. 5.6, and the two transmitter-receiver distances are Iy = Omm,
l,=5mm. To simulate the influence of measurement noise, random numbers
are added to the calculated travel times, whose variance is (0.000683us)? for
an assumed SNR of 40dB (see (5.15)). The results are summarized in Table
5.4. It can be seen that the influence of measurement noise is larger compared
to Table 5.3. This is expected because the transmitter-receiver distance of
Smm corresponds to an incident angle of only tan“1(5/35 /2)~ 4° with respect
to the last layer.

__84_
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Table 5.4 Results of simulating a horizontally layered medium, probed

by spherical waves.

k Tak Error Tix Error Ck dg
1 6.58 -0.0001 7.36 0.0004 1.52 5.00
2 21.40 0.0015 21.69 -0.0008 1.36 10.06
3 33.23 0.0004 33.39 0.0007 1.68 9.93
4 46.39 -0.0007 46.50 0.0003 1.50 9.87

5.5 A Layered Medium with Non-Parallel Interfaces, Probed
by Spherical Waves

Here the situation is in parallel with that of the last section. Parameters

of the medium are assumed as the following:

(co = 1.52mm/ps(water) po = 1.00g/ml do=5mm vy =5°
c; = 1.35mum/ us(fat) p1=092g/ml dy =10mm v =0°
q c2 = 1.69mm/pus(muscle)  py = 1.07g/ml  dy = 10mm 7y = —5°
c3 = 1.52mm/ us(blood) p3 = 1.06g/ml d3=10mm 3=3°
(

[ c4 = 1.56mm/ps(liver) ps = 1.06g/ml

The only difference with those of (5.20) is that the planes are inclined. To
solve the inverse problem signals measured at 3 different locations are neces-
sary, and we selected I, = Omm, I/, = 5mm, I, = 10mm. The traced rays are

shown in Fig. 5.9.

Finally, the results of inversion using the approach described in §3.5 are
summarized in Table 5.5. As before, random fluctuations corresponding to
SNR=40dB have been added to the pulse positions, Tox, Tpr and T.

5.6 The Influence of Various Kinds of Errors
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ak T, Ter

6.5539 7.0722 8.8725
21.3934 21.7246 22.6248
33.1207 33.5779 34.3503
46.3103 46.2628 46.4504

!
=W N e

Fig. 5.9 Results of ray tracing in a medium with non-parallel inter-
faces.

Table 5.5 Results of simulating a layered medium with non-parallel
interfaces, probed by spherical waves.

k ak T T Ck dr. T

1 6.55 7.07 8.87 1.52 5.00 5.03
2 21.39 21.72 22.63 1.35 9.99 0.02
3 33.12 33.58 34.35 1.68 9.93 -4.92
4 46.31 46.26 46.45 1.51 9.93 3.02
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In this section we will investigate the influence of the following kinds of

errors:

1) All the pulse positions are shifted by the same amount, which might
P g

happen because the beginning of a pulse is hard to identify.

(2) Random fluctuations of varying amplitudes of pulse positions. correspond-

ing to different signal-to-noise ratios.
(3) Mistaking non-parallel interfaces by horizontal interfaces.
(4) Inaccurate knowledge of the positions of the transducers.

The inversion algorithm employed in this study is the one described in §3.4,
which is for point-like transmitter & receiver, and horizontally layered media.
The assumed parameters of the medium is the same as those of (5.20), and
the two transmitter-receiver distances are I, = Omm, I, = 5mm, the same as
those of §5.4.

The results are summarized in Fig. 5.10, from which it can be seen that

(1) The influence of shifting all the pulses by the same amount is only ap-

parent in the values of the first layer.

(2) Random fluctuation of the pulse positions, the non-zero inclination of each
interface, and inaccurate knowledge of the position of the transducers,

affect the results significantly.

The problem of random fluctuation of the pulse positions can be solved
to a certain extent by taking the average of many trials. One can average
to get more accurate pulse positions, or perform the inversion with noisy
data and then average the results. Probably both approaches lead to similar
results (see §6.4), but the latter requires more calculation. The inclination of
the interfaces can only be dealt with by considering a layered model of non-
parallel interfaces, whereas inaccurate knowledge about transducer positions

should be made more accurate before calculation.
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The drastic variation in the results caused by small variation of the condi-
tions indicates the ill-conditioned character of the inverse problem. However,
it should be pointed out that, if our interest is not in the reconstructed
medium parameters, but in applying them to compensate for the additional
amount of variation in travel time brought about by the layered medium,
then we may find that the results are not that bad. This can be shown by
calculating the travel time from the transmitter down to the last interface,
and back to the receiver, as a function of I (see Fig. 5.9), for the original as
well as the reconstructed medium. One example of this calculation is shown
in Fig. 5.11, in which it can be seen that, even though the calculated values
differ much from the original values, the travel times are almost the same
for the two models. This means that, although the reconstructed model is
inaccurate in itself, it can still serve the purpose of calculating the additional

amount of travel time variation caused by the nonuniformity.
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Fig. 5.11 The travel times from the transmitter to the last interface,
and back to the receiver, calculated for the original model

and the (inaccurately) reconstructed model. It can be seen

that their difference is of the same order as the error of

the data for inversion.
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Experimental Measurements

6.1 The Deterioration of the Image Qualities Caused by a
Distortion Plate

The experimental setup is shown in Fig. 6.1. Two wire targets are put at
about 40 and 60mm below a linear transducer, and all these are immersed
in water (22°C). A distortion plate made of silicon resin, with 6mm wide,
0.36mm deep ditches cut on one side, is inserted between the transducer and
the targets. The sound velocity of the plate is about 0.96mm/us, whereas
in water it is 1.488min/us, so that the difference in one-way travel time

introduced by this plate is about 0.133us.

The transducer has 128 elements, each spaced 0.64mm apart. Each ele-
ment can work independently as a transmitter or a receiver. We used only
the central 64 elements, and collected the signal for all combinations of trans-
mitting and receiving element numbers, so that in all we get 64x64=4096
signals. This dataset can be processed by a computer to test any focusing
or compensating algorithms. Signals are sampled at 40MHz with 10-bit pre-
cision. The first 500 points have been skipped and the following 4096 points
are recorded. For the sake of comparison, signals have been collected with

the distortion plate present, as well as absent.

The synthesis of a B-scope picture from one dataset is simple in the
case of a uniform medium. Only geometrical factors need to be compensated

for. Consider the synthesis of a scan line. The most complicated processing
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Fig. 6.1 A distortion plate is inserted between the transducer and

the wire targets.

is fixed focusing in transmitting and dynamic focusing in receiving., Suppose
that 2N 41 elements are involved in this scan line, and the (2N+1)x (2N +1)
signals are available:

si; (1) (4,7=0,1,---,2N)

where i is the transmitting, j is the receiving element number.

Referring to Fig. 6.2, fixed focusing in transmitting can be realized by

delaying s;;(t) by ;, where
1 : ;
= {\/d~ + (VA -\ Jar (i - N)A]~}. (6.1)

7; is zero for elements at both ends of the aperture (=0, 2N), is maximum

for the central element (i = N).

Next we consider dynamic focusing in receiving. We only have to move
the focal point from near region to far region. At time instant ¢, the focal
point is at d(t) = cot/2, so that the delay introduced into the signals received

by the jth element should be

60=5 {J(‘S‘t)z roar- (%) - N)AP} . (62
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N - N+1

o\

1) 111 L

Co

Fig. 6.2 Focusing the array at a point.

However this formula has some defects in it. Putting j = N we get

enlt) = ;}g {\/(%ﬁ)z +(NA)? - (igf-)} . (6.3)

which depends on ¢. Under the assumption that the medium is uniform,

the signal received by the central element can be uniformly mapped to the
physical depth. If a time dependent delay is added to it, this merit of uniform
mapping is lost. To avoid this problem of time distortion, we considered
shifting forward the signals received by the elements which are not at the

center. The amount of shifting is

G0 == {\/ (%) 416~ map- (—g—t-)z} (6.4)

which also compensates for the travel time difference.
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Summing up all the signals which have been appropriately shifted to
incorporate the focusing requirements of transmitting and receiving, finally

we get
2N 2N

s(t) =2 ) st —ri4¢) (6.5)

1=045=0

where 7, ¢; are given by (6.1), (6.4), respectively.

One can further improve this processing by introducing a weighting func-
tion along the aperture to compress the side lobes. As is well known [56],
the far field directivity is approximately the Fourier transform of the intensity
distribution, so the problem is analogous to the selection of an appropriate
window function for spectral analysis, compromising between the contradictory

requirements of high resolution and low sidelobe level.

Because of limited computer resources we only performed a very simple
processing on the dataset: dynamic focusing in transmitting and non-focusing
in receiving. By the principle of reciprocity this is equivalent to non-focusing
in transmitting and dynamic focusing in receiving. The reason that such a
peculiar focusing has been adopted is because that the dataset consists of
64 files, each file contains all the signals received by an element when the
transmitting element is varied over the whole aperture from 1 to 64 (Fig. 6.3),
so that it is relatively easy to access the signals for one receiving element

and arbitrary transmitting element.

Finally there is the problem of interpolation: s;;(t) are sampled data
so that their values are only available on the sampling instants, whereas
the needed amount of shift cannot be expected to be integral multiples of
the sampling interval. One may use linear interpolation, spline interpolation,
or the Fourier interpolation. The final method is based on the sampling
theorem, so is theoretically exact. However the calculation requirement is very
great, even using the ellicient FI'T' algorithm. Here we used the cubic spline
interpolation [69]. Using an aperture size of 2N + 1=31, the results are shown

in Fig. 6.4 (without distortion plate) and Fig. 6.5 (with distortion plate). It
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##1 receiving #2 receiving

#1 transmitting s11(t) s12(1)

#2 transmitting s21(1) 522(1)

#64 transmitting se4,1(1) sg4,2(1) (64 Files)
File 1 File 2

Fig. 6.3 Structure of the dataset.

can be seen that the image qualities are greatly affected by the distortion
plate. The computation time for the generation of one such B-scope picture
is about 9 minutes using an Hewlett-Packard 9000 series 360CI engineering

workstation.

6.2 Compensating for the Distortion Effect Using Travel
Time Residuals

#

The introduction of a distortion plate between the transducer and the traget
(Fig. 6.1) disturbs the acoustic wave ficld, the most important disturbance
% being the variation of the travel time. In this section we will show the results

of compensating for this variation using the reflection from a point target.

When a point target is insonified it generates a secondary field which is
spherical and propagates outward (Fig. 6.6). So, if the positions of the pulses
are ploted as a function of element number, under ideal conditions we obtain

an arc (Fig. 6.7) which is part of a circle.

However, when there is a non-uniform medium lying between the trans-
ducer and the wire target, there will be another component of fluctuation
superimposed on the circle (Fig. 6.7). By fitting a circle to this curve and

subtract it from the curve, we can obtain the additional amount of delay
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Fig. 6.4 Without a distortion plate.
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Fig. 6.5 With a distortion plate.
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—
l/

4
|
|

NN

Fig. 6.6 An insonified point reflector generates a spherical wave field
which propagates outward.

1 g 0sition of the 2nd pulse

2.5 b
2.0
1.5 F
1.8 |
8.5
0.8
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3B 48 38 @ B 83 W |80
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Fig. 6.7 Pulse position versus element number.

(micro-sec) +85.0

caused by the non-uniform medium, which we call the travel time residual.
Specifically the ideal curve of ¢; versus i is given by

(coti)? = (iA + a)? + 42 ‘ (6.6)

Since fitting a circle to the #; ~ i is not so easy, we may instead fit a parabolic
curve to the t2 ~ i curve. The 3 parameters are cy, a and d (A is the element
pitch, which is assumed to be known). The insonification can be made by

any element and the results are the same, Using the principle of reciprocity
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again, we may also obtain the ¢; ~ i curve from the “varying transmitter, fixed
receiver” data, so that we need only one file and do not have to open up all
the files (Fig. 6.3). Finally the obtained travel time residual is displayed in
Fig. 6.8. It can be seen that the results agree well with the expected values.

Travel Time Residual

0.18
. Obtained " Expected
'—:@' I
g ditch | ~10 6mm .,
Lot width |elements | 0.64 mm
.
Q
E0.05 | ditch
E-. ~ 0.14 .
depth s 0.133 us
-8.18 i 1 1 ! 1

B 4@ S0 6@ @ 8 9 oW
Line ‘No.
Fig. 6.8 Travel time residual estimated from the dataset with the
distortion plate present.

Once the travel time residual is obtained, it can be used for compensation.
The modified formula is

IN 2N
s() =232 sii(t =i+ G+ ui+ ;) (6.7)
1=075=0
where u; is the ith residual. The B-scope picture generated with this formula
is shown in Fig. 6.9, which should be compared with the pictures of Fig. 6.4

and Fig. 6.5. the improvement of the image qualities after compensation is
obvious.

In achieving this improvement we have used the reflection from a point
reflector. However in clinical diagnosis we are not so lucky as to always have
a point reflector in the region of interest. So we must seck to other means
to find the travel time residual. One of the approaches is to perform inverse
scattering to find the spatial distribution of sound velocity in the non-uniform

medium. And the simplest model of the non-uniformity is a layered medium.
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Fig. 6.9 With a distortion plate, after compensation
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6.3 A Layered Medium with Horizontal Interfaces

The calculation of a one-dimensional sound velocity profile has been treated
in §2.4, §3.1 for plane wave incidence, in §3.3 for spherical wave incidence
(using the ray approximation). In the following experiment we used individual
elements of a linear array transducer (the same as the one used in the previous
section) to transmit and receive acoustic waves. Since the elements are very
small (~0.64mm) in size, the waves are approximately spherical, and the

procedure (Fig. 3.15) described in §3.4 should be applied.

128 elements

0 - — 127
| {
L=
- —94 0.64mm h

~50mm

l |
'\ Acrylic
Water Plate
(23.3°C)

Fig. 6.10 Experimental setup for inverse scattering measurement.

The setup of the measurement is shown in Fig. 6.10. An acrylic plate
(a kind of plexiglass) is put at about 50mm below the tranducer and both
are immersed in water (23.3°C). The elements are numbered 0, 1, .-, 127
from left to right. Firing the 20th element, the reflection is received by all
the 128 elements. These signals are sampled at 40MIIz with 10-bit precision.
The first 2000 points have been skipped, and the following 4096 points are

recorded. Part of the data are shown in Fig. 6.11.
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Fig. 6.11 Signals measured with the setup in Fig. 6.10.

The processing of these data follows exactly the same line as that of
simulation (§5.4), with only one exception: although we have tried to put the
transducer and the plate parallel to each other, there is still a small angle be-
tween the two. From the results in §5.6 we know that even a small inclination
can result in great errors in the calculated sound velocity. To compensate for
this inclination we collected another dataset, which also contains 128 signals,
which are obtained by firing the 128 elements one by one, and receiving the -
reflection by the same element that is used in transmission. the position of

the first pulse of these signals is ploted as a function of element number in
Fig. 6.12.

By fitting a straight line to this plot, the slope is found to be 0.0042us/
0.64mm. Assuming the sound velocity of water to be 1.492mm/ps, the angle
between the plate and the transducer can be found

y = tan~1(1.492 x 0.0042/0.64/2) ~ 0.28° (6.8)

Using this angle, the correction of the pulse positions and transmitter-receiver

distances before being input to the inversion algorithin is performed in the
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Position of the 1st Pulse
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Fig. 6.12 Data used to estimate the inclination.

following way (Fig. 6.13)

"= 1lcosy
(6.9)
T,ir:Tk—-lsin(?/co (k=1,2)

|
I
!
S

Imaginary Transducer
do

Co

Fig. 6.13 Compensating for the inclination.

It is possible to calculate the sound velocity cp, ¢; and the thickness

do and d; (Fig. 6.13) using any two received signals corresponding to two

- 108 -




CHAPTER 6 EXPERIMENTAL MEASUREMENTS

different transmitter-receiver distances I, and l,, but the difference between
lo and I, should not be too small. Or the results will be very sensitive to
errors in pulse positions (see §4.4). On the other hand it is not suitable to

use too large an I because the signal-to-noise ratio falls down as I gets larger.

The pulse positions are estimated using the cross-correlation function, and
are ploted in Fig. 6.14. It is observed that there is a periodic variation among
the neighboring positions, which might have been caused by some electronics
of the array transducer. To avoid the error caused by this factor, we used
only the signals received by even-numbered elements (of course odd-numbered

data will also be all right).

The results are summarized in Table 6.1. Using the signals received by
the elements (20, 30), (20, 32), ---, (20, 50), 11 answers are obtained, and

their. average + standard deviations are as the following:

474 +£0.004, dp=51.96+0.13

Cp 1
2.767 £0.026, d; = 10.38+£0.10

I

€1

The real value of thickness d; is measured to be 10.0mm, while the sound
velocity in the acrylic plate, calculated from the time interval between the two
pulses in the signal received by the 20th element, is found to be 2.729mm/ps.
There are some biases in our preliminary results, which might have been
caused by the existence of a thin acoustical lens on the surface of the array

transducer.

6.4 A Layered Medium with Non-Parallel Interfaces

"There is nothing new in the setup, except that the non-uniformity is replaced
by two acrylic plates, making an angle to each other (Fig. 6.15). It can be
viewed as a 5-layer model, made up of water, acrylic plate, water, acrylic

plate and water again.
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Fig. 6.14 Pulse positions estimated from the data shown in Fig. 6.11.

Table 6.1 Results calculated from the data of Fig. 6.14.

Co do c1 dy
(20, 30) 1.48 52.21 2.81 10.56
('20, 32) 1.47 51.99 2.81 10.52
(20, 34) 1.47 51.71 2.76 10.34
(20, 36) 1.47 51.78 2.72 10.22
(20, 38) 1.47 51.89 2.79 10.47
(20, 40) 1.47 51.98 2.76 10.34
(20, 42) 1.47 52.89 2.77 10.37
(20, 44) 1.48 52.02 2.75 10.33
(20, 46) 1.48 52.01 2.74 10.28
(20, 48) 1.48 52.03 2.76 10.36
(20, 50) 1.48 52.05 2.77 10.38
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128 elements

~ =~

L=

0.64mm

1) ]
N
1]

~10°

Acrylic
Water Plate
(25.5°C)

Fig. 6.15 Experimental setup.

The primary reflection consists of 4 pulses, as shown in Fig. 6.16. The
signals are obtained using the 63rd element as a transmitter and all the

elements as receivers. The pulse positions are plotted in Fig. 6.17.

For the same reason as mentioned in the previous section, we used only
the signals received by even-numbered elements. These signals are divided
into groups, with 3 signals in each group, and the parameters c;, d;, v (i=0,
1, 2, 3) are calculated from the pulse positions in the same way as done in
simulation (§5.6). The results are summarized in Table 6.2.

We may also process the data by first fitting parabolic curves to the plots
in Fig. 6.17, and assuming 3 arbitrary distances I,, Iy, I, for which the pulse
positions are obtained from the fitted curves. In this way the influence of the
random fluctuation of the pulse positions caused by measurement noise can
be suppressed. Numerical calculations indicate that the accuracy is higher if
we fit parabolic curves to T2 ~ i instead of to T; ~ i directly. One result with

lo = —6mm, I, = 0mm, I, =4mm is tabulated in Table 6.3.

Finally we notice that the horizontal-interface mediuin treated in the
previous section is a special case of non-parallel media. So we reclaculated
for the c;, di, % (i=0,1) using the data of Fig. 6.11. We adopted the parabolic
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Fig. 6.16 Signals measured with the setup of Fig. 6.15.
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Fig. 6.17 Positions of the pulses plotted againsf the element number.
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Table 6.3 Results after fitting parabolic curves to the data in Fig. 6.17.

k Ck ‘ dy Tk
1 1.49 29.2 4.31
2 2.71 10.0 4.34
3 1.53 14.0 -6.03
4 2.65 9.8 -5.96

fitting approach as described above, with I, = Omm, I, = 4mm, . = 8mm.

The results are tabulated in Table 6.4, which agrees well with those in Table
6.1 and (6.10).

Table 6.4 Results after fitting parabolic curves to the data in Fig. 6.11.

k Ck d Tk
1 1.48 52.2 -0.32
2.75 10.3 -0.26
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Conclusions and Prospects

7.1 Concluding Remarks

In this dissertation we have considered the imaging of a non-uniform medium

by ultrasound. If the non-uniformity can be divided into two groups: one is
like a totally random field, while the other is structurally non-uniform, then
our interest has been in the latter. Although our research is still preliminary
and has not been applied to actual tissue samples, we have confirmed the
validity of our analyses by computer simulation, as well as by experimental

measurement of some simple geometries.

The main results of our research can be summarized as the following:

Demonstrated that it is possible to calculate the sound velocity profile of
a one-dimensional medium using only a relationship between the travel

times corresponding to two different incident angles;

Developed algorithms for calculating the sound velocities and thicknesses
of layered media with either horizontal or non-parallel plane interfaces;

Proposed a spectral fitting approach to recover an 6-impulse series from its
filtered and noise-corrupted version. Evaluated the error of the positions
of these 6-impulses caused by measurement noise.

Some more detailed descriptions about our results are available:

After reviewing some of the most important results on the inverse scat-

tering problem, we confined ourselves to one-dimensional problems and later,
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to layered media with either horizontal or non-parallel interfaces.

Our treatment of the one-dimensional problem is unprecedented so far as
we know. On comparing two signals measured at different incident anglse, it
is noticed that waves coming from the same depth resemble each other, even
though they arrive at the surface at different time instants. This fact indicates
that it is possible to make the two waveforms nealy the same (according to
certain criteria) by stretching or contracting the time-axis of one of them. In
this way a functional relationship is established between the two travel times.
A simple derivation is then given which shows that the one-dimensional sound
velocity profile can be recovered as a function of depth from this travel time

relationship, under the assumption that the probing wave is a plane wave.

Next we turned our attenuation to layered media. Apparently a layered
medium with horizontal plane interfaces is a special case of the general one-
dimensional media. The new problem here is that the probing wave is not
planar, but spherical. Using the ray approximation we investigated the de-
pendency of increments of travel time on the propagation angle, and found
the relationship dt ~ cos® 6 to be a very good approximation. Based upon this
observation we modified the analysis which is derived under the plane wave
assumption, and developed an algorithm for the processing of data obtained

with spherical waves.

Layered media with non-parallel interfaces are treated quite differently. Al-
though some relationships have been established between increments of travle
time and propagation angles, the final solution is based upon a minimization
formulation, i.e., the medium parameters are varied so that the travel times
calculated from the reconstructed model agree with those of observation. The
adjustment of the sound velocity cx of the kth layer is made through the
secant method, whereas the thickness dx and the inclination angle 7y, are
obtained by solving a minimization problem, using the Marquardt-Levenberg
algorithm, which is a combination of the Gauss-Newton method and the gra-
dient method.
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The problem of estimating pulse positions from signals which contain
measurement noise has been considered. The reflection from a layered medium
i1s modeled by the convolution of an incident pulse with the impulse response
of the medium, which consists of a series of ¢-impulses. The problem is to
estimate the accurate positions of these é-impulses from the received signal.
We propose to solve this problem by a spectral fitting approach, in which
we fit terms like p;e™™7 to the estimated spectrum of the impulse response.
This fitting problem can be solved efficiently using the FFT. Furthermore we
analysed the fluctuation of the estimated pulse positions caused by additive
noise, using the peak position of the cross-correlation function. This not only
leads to the analytical result of (4.29), but also provides an alternative way
for estimating the delay between two pulses. In fact this latter approach is
less time consuming when the rbugh positions of the two pulses are known,

and the purpose is to make an accurate estimation of the delay between them.
"There are several points which should be mentioned:

The inverse scattering problem is known to be ill-conditioned [71,72], in the
sense that small errors in the input data are amplified during the process of
inversion, and emerge as larger errors of the results. As an example, we have
considered probing a one-dimensional medium with plane waves of incident
angles 0° and 15°, and arrived at the conclusion that, the relative error in
estimating the interval between two pulses is amplified by about 30 times
when it appears as the relative error of the calculated sound velocity. This
amplification equals 8 times when the two angles are 0° and 30°. Simulation
studies of more realistic settings (§5.6) show similar results. To avoid this
ill-conditionedness, the only way is to employ signals whose incident angles
have as large a'difference as possible. However, as noted in §5.6, even if the
recovered sound velocities and thicknesses are not accurate by themselves, the
travel times calculated from them are usually accurate enough to be applied

to improve the focusing.

When it comes to real biological tissues, there are several problems which

need consideration:
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1. Multiple reflections. We paid no special attention to multiple reflections
in our processing, because results of simulation study show that multiple
reflections may be negligible compared to the primary reflections, for the
soft tissues found in human body.

2. The generation of transverse waves, which might happen if there is a bony
interface, has not been considered here, because we are malnly interested
in the bodywall in the abdomen.

3. Attenuation inside each layer. If the attenuation is independent of fre-

quency, then it has no great influences to the estimation of pulse positions;
on the other hand, if it is dependent on frequency, then we can estimate
it from the spectrum of the two pulses reflected from the two interfaces
which sandwiches that layer. So in any case, the attenuation in a layered

medium seems to be an unimportant problem.

4. The interfaces not only may have arbitrary shapes, but also may be not
specular at all. This presents a real difficulty. If it can be approximated
by a one-dimensional model, then we may consider a one-dimensional
problem with continuous profiles, as done in §3.1. But the more general

case is out of our scope.

0 7.2 Some Prospects for the Imaglng of Non-Uniform Me-
dia :

The research reported here is a mere start of a long journey of imaging a non-

uniform, refractive medium with accuracy. It is not even clear if the present
approach—starting from a simple layered medium and adding complexities to
the model step by step—is promising, or is it better to attack the problem
in one step, for example, by assuming a two dimensional spatial distribution
of sound velocity and density. Inspite of this question, let us consider several

directions in which the present research may be continued:

1. The estimation of pulse positions:
More elaborated studies are necessary to obtain a method-independent

- 118 -




CHAPTER 7 CONCLUSIONS AND PROSPECTS

lower bound to the error of position estimation in the presence of mea-
surement noise. Such a lower bound will provide a solid fundation to the

estimation of the error of reconstructed profiles.

. We have only considered inclination of the interfaces within one plane. In

a three-dimensional world the inclination represented by a normal vector
has two independent components. Planes pitch not only from left to right,
but also in the forward-backward direction. To inverse data from such
media we may need to collect signals with transducers arranged in a cross

(Fig. 7.1) instead of only along a line.

I

Fig. 7.1 Transducers arranged in a cross are needed to get data for
the inversion of layered media, whose interfaces are planes

of arbitrary inclination.

3. Interfaces of arbitrary shapes.

This is a big step toward reality. However it is also much more difficult
to measure and process the data of such media. First we need a way
to specify the interfaces. Omne may use some base functions, but it is

perhaps simpler to specify N points on one interface, and use spline or
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other interpolation to obtain the whole surface. One must be careful in
doing this because a small error in the inclination of the surface may
cause the ray to be reflected to a totally different location. To inverse
for such a medium we need N + 1 signals (N for the surface and 1 for
the sound velocity of that layer) measured at N 4 1 different locations.

Minimization is perhaps the only method of solution.

. New forms of data acquisition.

The data used in this research are collected with a fixed transducer and
a moving receiver. Taking the position of the transmitter as the abscissa
and the position of the receiver as the ordinate (Fig. 7.2), this collection
corresponds to a vertical line. Other forms of data collection are imagin-
able. For example, the transducer and the receiver may be moved at the

same time in opposite directions so that their middle point is unmoved,

or they may be moved in the same direction so that their distance is

unchanged (a special case is that their distance is always zero). More
investigations are necessary to judge which form is most suitable for our

purpose.

Receiver
Position
AN Fixed Distance
vd Fixed Mid-point
Fixed Transmitter
Transmitter

Position

Fig. 7.2 Transmitter positions and receiver positions, and different

data collcetion schemes.
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We finish by commenting that, so long as we are imaging a non-uniform
refractive medium, we should not close our eyes to this reality. Focusing in
such a medium cannot be perfect unless we know the distribution of sound
velocity. What we have been doing is like shouting aloud at mountains and
listening to the echoes with many ears. The question is, can we hear the
shape of the mountain, and the variation of sound speed (probably caused
by temperature differences)? This is a difficult task, but is worth trying.

~ The End ~
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Appendix A

N on—Pefpendicula,r Plane Waves in
One-Dimensional Media

Consider the incidence of a plane wave on a interface between two media
(Fig. A.1). The wave motion can be represented by the velocity potential 4,

whose gradient is the opposite of partical velocity, i.e.,
T=-Vy (A.1)

From wave equations (2.1) and (2.2) the connection between p and % can be

obtained:
p=p5- (4.2)

¥

Co, Po

@ Y

€1y P1

(7

v

T

Fig. A.1 A plane wave incident on an interface between two media.
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There are 3 components of wave motion in Fig. A.1: the incident field, the
reflected field, and the transmitted field, represented ¥i, ¥, and 1 respectively.
Their dependencies on z, y and t can be summarized in one variable because
they are intrinsically one-dimensional:

( Yi(z,9,1) = ¢ (t - %(x cos 6; + ysinG;))

S Yr(z,9,t) = ¢, (t - %(—z cosf, + ysin 6,)) ' (A.3)

1 .
wt(x,y, t) = 1; (t - ;(SE cos 0; + y sin Gt))

The boundary condition on the interface requires that the pressure and the

normal partical velocity be continuous. The former leads to

po¥i + po¥; = p1¥il,—q

or

sin 6; sin 6, sin @
PO (w: (t - y) + ¢r (t - y)) =y (t - t:t/) (4.4)
co co co
which cannot hold unless ¢;, 1, and y; have the same time dependence, and

sinf; _sinf, sin6,
€o o 1

(4.5)

This equation gives the law of reflection and the law of refraction (the Snell’s
law). The requirement of continuous normal velocity across the interface -

reduces to ; ;
cos b; cos

—— (W) = —= (4.6)
0 c1

From (A.4) and (A.6) we can solve for ¥, and v

; __ P1C1 COS 6; — Pocp COs 0; /

= : !
p1c1 cos 6; + pocg cos b (4.7)

' 2ppcy cos 6; '

£ preq cos b; + pgcg cos 8,

From this result we see that, if new sound velocities are defined by

' o ' 1
ch = ch = A8
0™ cos6;’ 17 cos 6y (4.8)
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then the amplitudes of the reflected and the transmitted waves can be cal-

culated as though the waves are perpendicular waves.

This same fact can also be derived from the wave equation. Since the
partical velocity has only the z and y components v, and »,, (2.1) and (2.2)

can be rewritten as

(0p _ 0Ovg
o "ot
dp vy

$ 3y v (A.9)
B__L(2, )

L 9t &k \Oz dy

Consider harmonic wave motions such that 8/dt can be replaced by multi-
plication with iw. Furthermore, from (A.3) and (A.5) it is clear that any

derivation with respect to y can be calculated in the following way:

&  —sinf 9 wsin g
5}; T T (A.10)
Thus (A.9) can be transformed into
(
%;Z = —WpPU,
{ - iwsncl Bp = —wpyy
o — lavx l{wS1119v
\ P= KOvy K c 7
Eliminating v, from the second and the third equation, we get
?-E = —1WpU,
0z (A.11)
E)vx . 2
— = —iwk cos” fp
0z

If we define an equivalent compressibility «' = xcos?#4, then equation (A.11)
becomes exactly the same as the equation for perpendicular waves. In this way

the non-perpendicular waves can be treated without any additional difficulty.

The calculation of equivalent compressibility is straightforward given p(z),
x(z) and 6.
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First the sound velocity c(z) is calculated: o(z) = 1/y/p(z)k(z). Then the
propagation angle 6(z) is obtained by using the Snell’s law repeatedly:

sinf(z) _sinf(z—Az)  sing,
c(z) T ls—Az) T T PO (4.12)

Thus 6(z) = sin™" (poc(z)), and finally

x'(z) = k(z) cos? 6(z) = x(z)[1 ~ pict(z)] | (A.13)
The equivalent sound velocity ¢/(z) at z can be obtained from p(z) and «'(z):

1 _ 1 _ c(z)
\/p(x)fc’(x) V/PE cos 6(z) \/1 ~ p3c2(z)

d(z) = (A.14)

Some intuitive explainations are in need to understand the meaning of
‘this equivalent veloc1ty Referring to Fig. A.2, consider the incidence of a
wavefront 9; on a flat plate. It impinges on the plate at point A, and a
reflection ¢, and a refraction 3 are generated. Y3 propagates on, and after
reflection at B and refraction at C, emerges as 4. Now 1 is reflected not
only at A, but also at C (because it is infinitely large). The reflection at C
will be denoted as 5, which is on the same plane as 1. The time interval
T between %4 and ¥s5 1s calculated from the time difference tABC —ipc. With-
the help of Fig. A.2, we can write down

7= 2d _ 2dtané; singy (A.15)
c1 €Os 61 co

Using sinfy/cop = siné;/c; the above expression can be reduced to

2d cos 6,
€1

T= (4.16)

So we see that the time interval is proportional to cos 01, and the equivalent

sound velocity is 2d/T = c1/ cos 6;.
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Fig. A.2 Non-perpendicular plane wave in a one-dimentional medium.
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Appendix B

Reflection of a Spherical Wave by
a Plane Interface

The materials in this appendix can be found in some text books [18,41].
We included them here not only for the convenience of the reader, but also

because that these are the basis of travel time calculations for spherical waves.

Let us consider an incident spherical wave with center at o:
- 1 R
pi(7]7%0,1) = Ef (t - Ea—) (B.1)
where R = |7—p|. Denoting the Fourier transform of f(t) by F(iw), we have
pi(#fo,1) = —1—/+°° F(iw)e~ "Rl . giwtgy, (B.2)
’ 27R [
If the reflection to a harmonic component
o 1 _iwry .

Piu (i) = Ze™ M (B.3)

is known, then the reflection to signals which have arbitrary time-dependencies
can also be determined by virtue of linearity. Using the three-dimensional
Fourier transform, p;, of (B.3) can be written as

3 1 +°°+°°+°°ei1?-(f'—ro)
piu(#1%) = 55 / / / KL dK, K, (B.4)

where k = w/cp, K = (K, K, K,), K?=KX+ K?+ K2. This equation decom-
poses the spherical wave into a sum of plane waves, represented by e&(F~7),
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f1,C1

Fig. B.1 A spherical wave incident on a plane interface.

Referring to the coordinate system in Fig. B.1, the plane wave along the
direction K incidents on the interface at an angle 6y = cos™!(Kk,/K). From
the results of Appendix A, we know that the reflection coefficient for this
plane wave depends on 6, and the reflected plane wave can be represented

by
Ka iy 7=ir]
()

B = (-K,, K,, K,)
. (Iiai) _ pie1/cos by — pocg/ cos by
K p1c1/ cos by + poeg/ cos by
6y = cos‘l(Kx/I{), 61 = sin~!(cy sin 6o/co)
The reflection to the spherical wave can be obtained by summing up all the

where

reflections to the plane waves:

]\1 7‘—"1\ To]
Prw (7o) = ﬁ/// (X /iz ) dK,dK,dK, (B.5)

This integration cannot be carried out analytically, but a very good approxi-

mation, valid in the limit of high frequencies, is available. This approximation
is based upon the stationary phase approximation [41,57], which is encountered

in evaluating integrations of the following form:

I= / “)dz | (B.6)
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If ¢(z) is a slowly changing function with respect to one oscillation of e*/(=), the
various contributions to the integral will cancel out by anulling plus and minus
values. However, if there is a value of z for which f(z) is stationary, then
in the neighborhood of this point, there will be a nonoscillating contribution
to the integration (Fig. B.2). Denoting this point by o and using Taylor’s

series, we obtain

f(:c)=f(a)+L2(!al(z—a)2+-~ | (B.7)

A $(z)e' (=)

>

Stationary Phase

Fig. B.2 The main contribution to the integration comes from near

the stationary phase point.

Since the integration has an appreciate value in the neighborhood of o

only, and ¢(z) is a slowly changing function, we may approximate it by
+oo v fa f—”—(,?—l z—a)?
% [ g(ae [+ 5] (B.8)

which can be easily evaluated.

Turning back to the integration of (B.5), first we change variables to the
cylindrical coordinate:
Ky=pcosf, K,=usinf
Yy=wcosp, z=wsing.
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We also assume that the center of the spherical wave to be on the z axis:
70=(~d,0,0). With these changes (B.5) becomes

1 Foo 2 oo K il Kz(z—d)+pw cos(f—g)]
prw 7—‘]7‘0) - é—-‘é‘ / /.Ldﬂ/d / dI{.’L’ - = ]-'2 2 ]C2
T ! J e /K.%‘*'ﬂz Cf+ps —
(B.9)

The integration with respect to K, can be obtained using residuals

+oo ,~iKz(z—d) - )
/ c -7~< Ko )df(m=—2mw($“d) 7‘(~o/k)-% (B.10)

—o K2 — 02 K2 + 2

where we have defined o =/k7 — 4%, and used only the residual at K, = —o,

because the reflected waves are propagating in the —z direction.

Substituting this result in (B.9),

400 2w . R
. 1 oio(z—d)+ipw cos(f—¢)
Pro(7170) = 5 / udﬂ/dﬁ r(~o k)% - (B.11)
0 0

and using the relation [27ecosv = 2mJo(u), where Jy is the Oth-order Bessel

function, we get

gl +00 /'1' kz - /’L ’ 1 2—1 r— 1¢
Pro (7o) = /0 m - (__T_) Jo(pw)e' VE H2( Dy (B.lZ)

If the frequency component which we are considering is high enough (% is

large enough), then the phase of
Jo(pw)eVF w2 (z=d) (B.13)
is rapidly varying either around x =0 or 4 = k, while the rest of the integrand

is slowly varying. So we may apply the stationary phase approximation. Using

the asymptotic form of Jo(u):

1 t(u—m —i(u—~nr
To(#) e = | g (07710 719
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the phases of (B.13) are approximately

51(0) = /8~ (e = d) + (- )
fa(u) = \/k? = p¥(z —d) - (uw - ;})

fi(1) has no stationary value for positive w and negative z (so the associated

(B.14)

integration is almost zero), but fy(x) has. By putting dfy/du to zero we get
the stationary point:

w w

k= ="k (B.15)

o=
V(e —d)?+w? 1

and the corresponding stationary phase approximation to (B.12) can be found
to be

i

(4 —tkR
d z)e : (B.16)

Pro(F170) & 7 ( ) &

Referring to the coordinate system in Fig. B.3, we see that the reflected wave
is also approximately a spherical wave, whose center is the mirror image of
the center of the incident wave, and the reflection coeficient is the same as

that for a plane wave which propagates along the geometrical path.

The condition under which the approximation (B.8) is valid can bhe derived

by considering an additional term of ¢(z)
¢(z) = ¢(a) + ¢'(2)(z — @)

in (B.7) and see how much the modification is. A result has been derived in
this way [2]:
kRi[(cofc1)? —sin? 6p]%/% > 1 (B.17)

For applications in medical ultrasonic imaging, as a numerical example, the
following values can be assumed:
fo=1~6MHz, ¢y =c =15mm/us, 6y=15°
kR1[(co/c1)? —sin® go]*/? = 3.77 ~ 22.65R;
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fo
7 \ z -z
d/ fo 0 ’,JI/
- I
”’/ E)/\y
“ /}d >
| 4 EY
£ ]

Yz

Fig. B.3 The stationary phase approximation leads to the conclusion
that, the reflection to a spherical incident wave is also a
spherical wave, the reflection coefficient being equal to that
of a plane wave which follows the geometrical path from

the source point to the observation point.
So, if the propagation path R; is more than a few mm, then the stationary
phase approximation can be applied.

The reflection of an arbitrary pulse f(t) can be obtained by summing
up the reflection of individual harmonic component. Combining (B.2) and
(B.16), the result is

— +oo . .
pr(7Fl7, 1) = ! r(d x)/ F(iw)e~whila . giwtg,

27FR1 Rl —o00
1 d—z
= —Er ( R]_ ) f(t - Rl/Co) ’ (B18)
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