報

究 速

UDC 621, 762, 5: 669, 15'71, 018, 95

Fe-Al_oO₃分散合金の抵抗焼結

Flash Resistance Sintering of Fe-Al₂O₃ Dispersion Type Alloy.

坂 井 徹 郎・原 善四郎 Tetsuo SAKAI and Zenshiro HARA

金属 Al 中にアルミナ(Al₂O₃)を分散させた合金 S.A.P は, 1945 年 Irman らによって発見され, 1950 年に公表1)された比較的歴史の新しい耐熱材料であっ て、約500℃までの高温で再結晶軟化せず、高温強度は 他の耐熱 Al 合金よりもすぐれ、しかも安定で熱および 電気伝導率,耐食性,比重などは純 Al とほぼ同程度で あるため、超高温用のサーメットに対し、低温用の耐熱 材として応用されている. このような S.A.P の耐熱性

Table 1 Composition of the samples sintered.

Particle size of iron powder.	—325 mesh			-60+100 mesh		
Kinds of Al ₂ O ₃ and their particle contents of Al ₂ O ₃	Α 7AI ₂ O ₃ (0. 05 μ)	Β αAl ₂ O ₃ (0. 5μ)	C βAl ₂ O ₃ (2μ)	D 7Al2O3 (0.05 µ)	Ε αAl ₂ O ₃ (0.5μ)	F βAl2O3 (2μ)
1%	0	0	0	0	0	0
2%	0	0	0	0	0	0
4%	0	0	0	×	×	×
6%	0	0	0			
8%	0	0	0			
10%		0	\triangle			
12%		0				

O: Both blending and sintering was possible.

 \triangle : Blending was possible, but sintering was impossible.

×: Blending was impossible.

は、金属の素地中に硬質微粒子が分散しているためであ って、この合金の発表以来、各種の金属素地中に炭化 物,酸化物,硼化物,けい化物などを分散させた,いわ ゆる分散強化型合金に関する研究が行なわれている. こ の分散型合金は、高温度で分散相が素地金属と反応しな いことや、分散粒子の間隔が 0.01~0.1 μ というよう に可能なかぎり狭いことなどが必要である. したがって 瞬間抵抗焼結法によってこの合金を製造すれば, 1秒程

> 度の短時間で焼結が完了するから、分散粒 子の粗大化が防止され、しかも加圧と同時 に焼結が行なわれるから高密度製品が得ら れる可能性がある. そこで, 金属粉として 電解鉄搗砕粉、分散相としてはアルミナを 選び、2~3種粒度の鉄粉、およびアルミ ナ粉の組合わせの中で、最適粒度の組合わ せを求めることを主目的として実験を行な い、粒度の組合わせおよびアルミナ量が製 品の焼結密度および硬さに与える影響につ いて検討した.

> 実験方法 試料粉末の鉄粉としては -325 メッシと-60+100 メッシの2種粒 度, アルミナ粉としては $0.05\mu(\gamma Al_2O_3)$,

> > $0.5\mu(\alpha Al_2O_3), 2\mu(\beta Al_2O_3)$ O 3 種粒度を選び、これらを組合 わせて計6種とし、そのおのお のについてアルミナ含量を Table 1 に示すごとく 1~12wt. %の範囲で7段階に変化させ た.

> > 試料重量は7gとし,鉄粉と アルミナを所要重量ずつ秤量し 乳鉢中で混合したのち、混合粉 を雲母箔を内張した金型中にそ う入し、抵抗焼結機にかけて焼 結を行なった.実験条件として は、焼結体の形状を直径10mm の円柱形に選び,通電時間は50 サイクル,極間電圧および電流 量は入力が 700~2000KWCの

368 20 巻・7 号 (1968.7)

Fig. 3 Influence of Al₂O₃ contents on sample hardness after annealing. (iron powder: -325 mesh, αAl_2O_3 : 0.5 μ)

範囲内でいろいろに変えた. 得られた焼結体について密 度,硬さ(常温硬さと高温硬 さ)を測定し,顕微鏡組織の 観察を行なった.

実験結果 鉄粉粒度があら いとき (-60+100 メッシ) には、アルミナが4%以上に なると混合も焼結も不可能で あった (Table 1). これは鉄 粉の見掛け密度がアルミナの それに比べて著しく大きいた めである.鉄粉粒度が細かい とき (-325 メッシ) には、 アルミナ粒度が 0.05 μ およ び 2 μ のときはアルミナ8 %まで,アルミナ粒度が 0.5µ のときはアルミナ 12% まで 混合および焼結が可能であっ た(Table 1).

同一電流で焼結した焼結体 の密度は,アルミナ粒度を一 定とすると,鉄粉粒度が細か いほど低密度となった(Fig. また同一電流で鉄粉粒度 が一定のときには、アルミナ 粒度が 0.5 µ のときに最高密 度となり、アルミナ粒度 0.05 $\mu \geq 2\mu$ のときには、ほぼ 同程度の密度になった (Fig. このようにアルミナ粒度

0.5µの場合に最高密度となり、かつ添加限界量が大き いのは、アルミナ粒度 0.5 μの場合のアルミナの分散が 他のアルミナ粒度のときよりも悪いためであると考えら れる.

また Fig. 2 から, 焼結体の密度は入力が増加するに つれて高くなり²⁾³⁾, アルミナ含量が増加するにしたが って低下することがわかる.

Fig.3 は焼結試料を 200~1400℃の範囲の数種の温度 で焼なましたのちの硬さ値(R_H, B スケール)の変化を 測定した結果である. この図を見ると、アルミナ含量が 増加するほど焼なましによる硬さ値の低下が少ない. す なわちアルミナ含量が低い試料は,900℃の焼なましで 硬さ値が著しく減少しているが、アルミナ含量が6~12 %の試料は、1400℃の焼なましでも硬さ値の低下がわず

← Fig. 4 Vickers hardness at elevated temperature. (iron powder: -325 mesh, αAl_2O_3 : 0.5μ)

56

報

4 % Central zone (1385 KWC, d=7.25) × 216

8% Central zone (1705 KWC, d=6.97) ×216 12% Central zone (1361 KWC, d=6.58) 2%Nitahl etched×216 Photo. 1 Microstructures of 2, 4, 8 and 12%Al₂O₃ samples. (iron powder: -325 mesh, αAl₂O₃: 0.5μ, density ratio 93~97%)

かであった.

Fig. 4 は焼結試料の常温より 800℃ までの 200℃ご との高温硬さ(明石ビッカース硬さ試験機, 荷重5kg, 30秒)をアルゴンふん囲気中で測定した結果である. こ の図から, 焼結体の高温硬さは 400℃以上では急激に低 下するが, アルミナ含量の多い順に高温硬さも大きいこ とがわかる.

試料の顕微鏡組織を観察すると,試料中のアルミナは すべて加圧方向に垂直に配列した一定の方向性を有し, アルミナの分散状態は 0.5µ が最も悪く, 0.05µ, 2µ

はほぼ同じであるが、2 μ の方がやや良好であった. Photo. 1 にはアルミナ (α Al₂O₃, 0.5 μ) が2~12%の

4種の焼結試料(Fe, -325 メッシ)の縦断面の顕微鏡 組織を示した. (1968年4月19日受理)

煉 文

- 1) A.v. Zeerleder: Z. Metallkunde, 41(1950)228.
- 坂井,島崎,板橋,原:粉体および粉末冶金,12(1965) 260.
- 3) 坂井, 板橋, 原: 粉体および粉末冶金, 14(1967)164.

			112 104	ac (0/3/5/		
ページ	段	行	種別	正	誤	
2	右	上10	本文	掃引	帰引	
30	左		図 5	板厚変動率	影響係数	
"	右		図 7	板の形状変動率	影響係数	
41	左	上1	本文	直流増幅器の利得	直流, 增幅器, 利得	
46	左	下2	本文	図 5	$\boxtimes 4$	
54	右		筆者紹介	上村幸守 技官	上村幸守 技術員	

正誤表 (6月号)

57