谏

研

空

UDC 621.315.592.4:669.782.69 21.319 4 011

# 金属-酸化物-半導体構造(MOS ダイオード)の容量 -電圧特性曲線に及ぼすバイアス・温度処理の影響

Eeffct of Bias-Temperature Treatments on C-V Characteristic Curves of Metal-Silicon Dioxide-Silicon Structures

## 堀内 重治・栗原由紀子・安達 芳夫 Shigeharu HORIUCHI, Yukiko KURIHARA and Yoshio ADACHI

半導体集積回路への応用面からも MOS 素子のはたす 役割は重要であるが、 MOS 構造の安定性や雑音に関連 して酸化膜中のイオンや表面量子状態の諸性質や、その MOS 素子の電気的特性に及ぼす影響を窮めておくこと が大切である. さて MOS 構造に高温状態下で電圧を加 えると, すなわち, Bias Temperature 処理をほどこす と、MOS 構造の C-V 曲線が時間的に変化し、C-V曲 線のずれの様子からそのずれの原因には SiO2 膜中に存 在するイオンの移動や表面量子状態が関係していること がわかる. 本速報にはこの MOS 構造の BT 処理によ る C-V 曲線のずれの原因についての実験,考察結果を 述べてある(詳細については参考文献<sup>1)</sup>を参照).

### BT 処理による C-V 曲線のずれ

C-V 曲線(図1)の理論値①と BT 処理前②との C -V 曲線のずれ *ΔV* は次式で表わされる.

$$\Delta V = -\phi'_{MS} + Q_{SS}/C_{0X} + 1/W_{0X}C_{0X} \cdot \int_{0}^{W_{0X}} \varphi(x) dx (1)$$

ただし、 $\phi'_{MS}$ は金属と半導体の仕事関数の差、 $Q_{SS}$ は 酸化膜と半導体との界面に存在する表面電荷密度, Cox は酸化膜容量, Wox は酸化膜厚, p(x) は酸化膜中のイ オン電荷密度, そして x は酸化膜外側表面からの距離 である. また, C-V 曲線の理論値とは, ここでは酸化 膜容量と空間電荷容量のみを考慮した値である. (1)式 には表面準位が関係しているので、①と②とはかならず しも平行移動したものではない.次に BT 処理前②と BT 処理後③の C-V 曲線のずれの原因が、BT 処理に より SiO2 中のイオンが移動することのみであるとした 場合、この移動したイオンによって生ずる Si 表面に誘



起される電荷量の変化により、C-V 曲線は

$$\Delta V' = 1/W_{0X} C_{0X} \cdot \left\{ \int_{0}^{W_{0}X} p'(x) dx - \int_{0}^{W_{0}X} p(x) dx \right\}$$

だけ平行移動したものになるはずである(図1参照). ただし  $\rho'(x)$  は BT 処理後の酸化膜中のイオン電荷密 度である.

#### 実験結果

試料はp形 Si 上に SiO₂ を熱酸化により成長させ, 金属電極を蒸着したもので、TO-5 のヘッダーにマウン トし dry N2 中で封止してある。測定回路のブロック図 は図2(測定周波数は 1 MHz と 1 KHz) に, BT 処 理の実験結果の例を図3に示してある.まず注意すべき ことは BT 処理前と BT 処理後の C-V 曲線の関係が 前述のように平行移動したものではなくて、そのずれが ゲート電圧に依存していることである. この原因として はエネルギ分布をもった表面量子状態の影響が考えられ る. もちろん移動したイオンによるずれも寄与している ものと思われるが、分離できなかった、表面量子状態の 発生原因としては Oxygen Vacancy や遊離の Si が Si-









図 5  $V_t$  と 1/T の関係

SiO<sub>2</sub> 界面近くに移動し, Si の不飽和結合が増大するこ となどが考えられる.次に BT 処理時間  $t \ge$  BT 処理 による flat band 状態のずれ  $\Delta V_{FB}$  の関係の1例を図 4に示してある. BT 処理の初期の段階では  $\Delta V_{FB}$  は  $V_t$ に比例し,長時間後にはある飽和値に近づくことが わかる.また,図4から求めた(傾斜)<sup>-1</sup>  $\ge$  1/ $T^{\circ}$ K の関 係を図5に示すが,これから拡散定数の活性化エネルギ を求めることができる.その結果を表1にまとめてあ る.ただし  $V_{BT}$  は BT 処理電圧, $\Delta V_{FB0}$  は BT 処理 前の flat band 状態のずれ,  $N_s$  は表面電荷密度(飽和 値)である.dry O<sub>2</sub> の試料の拡散定数の活性化エネルギ は wet O<sub>2</sub> のそれの約2倍である.dry O<sub>2</sub> の試料の拡散 定数の活性化エネルギはアルカリイオンの拡散定数の活

| 主 | 1 | MOG | Capacitor | σ        | BТ | hn 199 |
|---|---|-----|-----------|----------|----|--------|
| 叐 | 1 | MOS | Capacitor | $\omega$ | ы  | 処理     |

| A I MOD Capacitor of DI KEE |                    |                 |    |                        |                          |                                     |                                     |  |  |  |
|-----------------------------|--------------------|-----------------|----|------------------------|--------------------------|-------------------------------------|-------------------------------------|--|--|--|
| 試 料                         | 酸化条件               | リン処<br>理の有<br>無 | 電極 | V <sub>BT</sub><br>(V) | ΔV <sub>FBO</sub><br>(V) | $N_{s} \ (/cm^{2}) \ 	imes 10^{12}$ | 拡散定数の<br>活性化エネ<br>ルギ<br>(kcal/mole) |  |  |  |
| #a1                         | wet O₂             | 無               | A1 | 1                      | 8                        | 3.34                                | 14                                  |  |  |  |
| #b1                         | wet O <sub>2</sub> | 有               | A1 | 20                     | 2.4                      |                                     |                                     |  |  |  |
| #c5                         | dry O₂             | 無               | A1 | 1                      | 2.4                      | 6.67                                | 24                                  |  |  |  |
| #c6                         | dry O2             | 無               | A1 | 1                      | 2.5                      | 4.87                                | 24                                  |  |  |  |
| <b>#</b> f1                 | dry O2             | 無               | Au | 5                      | 2.5                      | 5.75                                | 28                                  |  |  |  |

性化エネルギ (Na<sup>+</sup>…32 kcal/mole, Li<sup>+</sup>…22 kcal/mole)<sup>29</sup> に近く, wet O<sub>2</sub> のそれは H<sup>+</sup> イオン (10.37 kcal/mole)<sup>39</sup> Si<sup>++</sup> イオン (8.2 kcal/mole)<sup>49</sup>, Oxygen Vacancy V<sup>+</sup> (10.1 kcal/mole)<sup>59</sup> の拡散定数の活性化エネルギに近い. Al 電極と Au 電極の差異は拡散定数活性化エネルギに あらわれず, BT 処理電圧にあらわれている. 図6に BT 処理電圧と  $\Delta V_{FB}$  の関係を示す. これは Au が Al



図 6 BT 処理による flat band 状態

理電圧 VGの関係 (5 min, 150°C)

における電圧シフト $\Delta V_{FB}$ と BT処

結 論

以上の実験結果から次のように結論できる. C-V 特 性曲線の BT 処理によるずれの原因は、Si-SiO<sub>2</sub> 界面近 くの現象にだけよるものではなく、SiO<sub>2</sub> 膜の外側の表 面から SiO<sub>2</sub> 膜全体にわたった現象に依存している.ま ず,Oxygen Vacancy または遊離の Si が Si-SiO<sub>2</sub> 界面 近くに移動し、それらが電子を捕獲したり放出したりし て表面量子状態を形成することが考えられるが、この表 面量子状態の時定数は 1 msec よりも大きい. もちろん Oxygen Vacancy や遊離の Si だけでなく、さまざまな イオンが寄与しており決して単一種類のイオンだけが C-V 曲線のずれを生ずるものでなく、試料の製作条件 に強く依存し、最も優勢な原因が観察されるものと考え られる.

**謝辞**:多大なる時間と労力をさいて試料を製作し,非 常に好意をもって測定器を使用させて下さった日本電気 株式会社の黒沢敏夫氏,白石正道氏,藤江明雄氏,また 有益な議論をして頂いた松倉保夫氏,菅野卓雄助教授お よびお世話になった諸氏に心から感謝の意を表する.

(1967 年 6 月 13 日受理)

#### 献

 1) 堀内重治 東京大学大学院 電子工学専門課程修士論 文(昭和 42 年).

文

- 2) E. H. Snow et al., J. Appl. Phys. 36, p. 1664(1965).
- 3) R.W. Lee, Phys. Chem. Glasses, 5, p. 35 (1964).
- 4) H. Hirose et al., J. J. Appl. Phys. 3, p. 179(1964).