漮

生産研究

研 究

UDC 621.838.4

流体継手の振動特性に関する研究

⁴ และสายสายการสายการสายการสายการสายการสายการสายการสายการสายการสายการสายการสายการสายการสายการสายการสายการสายการสา

A Study on Vibration Characteristics of A Fluid Coupling

石 原 智 男·斉 藤 治 彦 Tomoo ISHIHARA and Haruhiko SAITO

緒

石原・江守により、ターボ式流体伝動装置(流体トル クコンバータおよび流休継手)の非定常特性に関する理 論解析および実験研究が発表された¹⁾²⁾.しかし、捩り振 動実験の範囲はタービンの回転変動がきわめて小さく, またポンプ軸1回転当たりの回転変動が2回の場合に限 定されており、理論に対する広範囲にわたる妥当性の裏 付けは十分であるとはいえない. 本研究は流体継手を例 にとり、タービンの回転変動を無視することのできない 場合や、ポンプ軸1回転当たりの回転変動が2回以外の 場合について振り振動実験を行ない、これと理論解析と を比較検討したものである. その結果から流体継手を含 む一般の機械振動系に対して,本理論解析を適用するこ との妥当性が確認された.

論

理

図1に流体継手の子午断面図を示す. 流体継手の基礎 方程式はつぎの3式で表わされる.

$$I_1 d\omega_1/dt = T_1 - \frac{\gamma}{g} Ac(r_2^2 \omega_1 - r_1^2 \omega_2) \cdots \Rightarrow \mathcal{P} \mathcal{P}$$

$$(1)$$

$$I_2 d\omega_2/dt = \frac{\gamma}{g} Ac(r_2^2 \omega_1 - r_1^2 \omega_2) - T_2 \cdots \mathcal{B} - \mathcal{E} \mathcal{V}$$
(2)

 $\Phi dc/dt + \frac{1}{2}Lc^2 = \frac{1}{2}(r_2^2 - r_1^2)(\omega_1^2 - \omega_2^2)$ ……作動流体

(3)

ここに、 φ は作動流体の循環路の長さ、L は摩擦損失

係数, Aは流路断面積, cは循環流速であり,式(3)

の左辺第1項が作動流体 の非定常流れの影響を表 わす. ある定常作動点付 近における振動特性を解 析するため,上式を線形 化して各境界条件に対す る伝達関数を求め、それ より変動量間の振幅比, 位相差を計算することと する.

駖

宔

(1) 出力軸の捩り剛性が小さい場合: タービンの回転変 動が大きい場合の振動特性を調べるため、捩り剛性の小 さい出力軸を用いた実験を行なう. 出力軸系の危険速度 に近い振動数の回転変動をポンプ軸に与え、タービンの 回転変動を大きくする.回転変動は2組の傾角を持つ自 在継手の位相を 90° ずらせることにより与えられる.実 験装置の概略の配置を図2に示す。出力軸を 14[♥]×760 と 16⁴×760 の2 種類とし、その終端に慣性モーメント の十分大きなフライホィールを取り付け、出力軸終端の 回転速度を一定に保つ.実験として、ポンプ軸の平均回 転数を適当な値(500~700 rpm)に保ち,水動力計の負荷 の増減によって速度比を数種の値に変化させ、ポンプの 回転変動と出力軸のトルク変動を測定する.回転変動を 電磁式ピック・アップにより、トルク変動をトルクメー タにより検出し、ともに電磁式ビジグラフに記録した.

> なお作動油を循環させて, 運転 中の作動油の油圧および油温を ほぼ一定に保った.

> (2) 出力軸の捩り剛性が大きい 場合: 無次元周波数μφ すなわち ポンプ軸1回転当たりの振動数 が2.0以外の場合の振動特性を 調べるため、図3に示すように 入力側に歯車式変速機をそう入 する.実験の便宜上,捩り剛性 の十分大きな出力軸を用いてタ ービンの回転変動をきわめて小 さくし、さらに出力軸を固定し

20

19 卷•7 号 (1967.7)

てストール状態に保つ.実験として,歯車式変速機の変 速比を変えて無次元周波数を種々の値とし、ポンプ軸の 平均回転数を適当な値(約 600 rpm)に保ち,ポンプの 回転変動と出力軸のトルク変動を測定する.回転変動の 与え方、作動油の循環方法および測定方法は前の場合と 同様である.

> 果 結

出力軸の捩り剛性が小さい場合の実験結果を図4, 捩 り剛性が大きい場合の実験結果を図5に示す. 図中,μφ

×Ω は

出力軸系の 危険振動数に対す る外乱の振動数の 比,実線は作動流 体の非定常流れの 影響を考慮して求 めた理論解析結果 (厳密解),破線は その影響を無視し て求めたもの(近 似解) である. 縦 軸はポンプの回転 変動率に対する出 力軸のトルク変動 率の振幅比,位相 差を示す.実験結 果は実線とよく一 致し,破線とは相 当に差がある. こ れより, 捩り振動 のような速い現象 に対しては流体の 非定常流れの影響 を無視できないこ と、および流体継 手を含む一般の機 械振動系に対して 本理論を適用する ことの妥当性が確 認されたと考えて 差支えないであろ う.

模型化

流体継手を含む 機械振動系の解析 を容易にするため 捩り振動に対して

流体継手と等 価な振動模型 を示す. 車輌 に流体継手を 用いる場合の ように出力側 の等価慣性モ ーメントが十 分大きく、タ ービンの回転 速度を一定と みなしうる場 合を扱う. こ のとき、図6 に示す振動模 型が流体継手 と等価な振動 系となり,流 体継手と振動 模型のパラメ ータ間の対応 は表1のよう になる.

流体継手と等価な振動模型 ⊠ 6 表 1 パラメータの対応

ų

模型のパラメータ	流体継手のパラメータ
f_1	$\Delta T_1/r_2$
f_2	$\Delta T_2/r_2$
<i>m</i> ₁	I_{1}/r_{2}^{2}
ž	$r_2 \Delta \omega_1$
Ż	r ₂ 4ω ₂
k1	$\frac{r}{g}Ar_{z}\overline{\omega}_{1}^{2}\frac{(1-\rho^{2})(1-\rho^{2}e)}{\psi}$
C ₁	$\frac{r}{g}Ar_2\overline{\omega}_1\frac{\tau}{1-\rho^2e}$
C2	$rac{r}{g}Ar_2ar{\omega}_1rac{ au}{1-e^2}$

結 語

以上、流体継手を含む一般の機械振動系に対し、作動 流体の非定常流れの影響を考慮した理論解析を適用する ことの妥当性が確認された. さらに, 流体継手の振動特 性を模型化することにより、それを含む機械振動系の解 析を容易にした.

終わりに,実験にあたって古屋七郎氏,井上秀夫氏の 助力を受けたことに感謝の意を表する.

(1967年4月25日受理)

参考文献 1) 石原智男, 江守一郎: 機械学会論文集, 第 32 巻 235 号, p. 495 (昭 41). 2) 石原, 江守, 村上: 機械学会論文 集,第32巻241号,p.1380(昭41).

速

報