(1) **K**_p¹¹=diag (**K**_o¹¹), **K**_p¹², **K**_p²² はいずれも行列 としてではなく,部材ごとの小行列 **K**_o を列に並べてお く.

(2) 列に並んだデータ **K**。は,次の方法により **K** 行列の所定位置に格納する.....(図・6 の例について示 す).

E11 および **E**22 における格納:

 A_1 , A_2 で I の現われる行の K_{o}^{11} , K_{o}^{22} のみを取り 上げ. ---->線上を移動して, E 行列の対角 線上に納め る. -----(図·7)

*E*₁₂ および *E*₁₂' における格納:

 $A_1 + A_2$ の行列を作成し, I が2個現われる行の R_0^{12} のみ取り上げ, ---->の指示で定められる E_{12} の指定位置に格納する. E_{12}' ではこれと対称の位置である……(図・8).

これらの小行列の格納を同一行列上で行ない、その和 をとれば、 $K_f = E_{11} + (E_{12} + E'_{12}) + E_{22}$ の作表が完成し たことになる.

7. 代入過程――応力の計算

基本原理の項で述べたように、問題が外力(節点力) で与えられている場合には、K_fの逆行列を求める. K_f⁻¹ は構造全体の柔性行列であり、節点に単位の外力 が作用したときの、各節点の変位を与えるもので、いわ ゆる影響係数の行列に相当する.

外力を与えて部材応力を求めるには、**K**_f⁻¹を用いて 外力→節点変位→部材変形→部材応力

の代入過程の計算が必要である.

まず,(8)式により節点変位 **d** を求める.次に(9) 式に(23)式を代入すると

 $p = K_p Ad$

 $= (\boldsymbol{K}_{p\,1}\boldsymbol{T}_{p\,}\boldsymbol{\bar{A}}_{1} + \boldsymbol{K}_{p\,2}\boldsymbol{T}_{p\,}\boldsymbol{\bar{A}}_{2})\boldsymbol{d} \tag{31}$

K_p,**T**_pはともに対角区分行列であるから,部材ごとに

$K_{g 1}T_{g} = {}_{1}K_{g}$	1	(32)
$K_{g} _{2}T_{g} = _{2}\overline{K}_{g}$	ſ	

を定義すれば

 $p = p_1 + p_2 = \text{diag} \left[{}_1 \vec{K}_{\sigma} \right] \vec{A}_1 d + \text{diag} \left[{}_2 \vec{K}_{\sigma} \right] \vec{A}_2 d$ (32) となる、この演算を図・6 の例題について行なうと、

	(\boldsymbol{p}_a)	1	${}_{1}\boldsymbol{K}_{a} \boldsymbol{d}_{1}$		(0)		
	p_b		${}_1\boldsymbol{K}_b \boldsymbol{d}_2$		${}_{2}\boldsymbol{K}_{b} \boldsymbol{d}_{1}$		
	\boldsymbol{p}_{c}		0		${}_2\boldsymbol{K}_c \boldsymbol{d}_1$		
	\boldsymbol{p}_d		${}_{1}\boldsymbol{K}_{d} \boldsymbol{d}_{4}$		${}_2\boldsymbol{K}_d \boldsymbol{d}_1$		
p=	p_{e}	=	$_{1}K_{e} d_{4}$	+	$_2K_e d_2$		(33)
_	p _f	-	$_{1}K_{f} d_{4}$		0		
	p _a		${}_1K_q d_6$		0		
	D _h		$\mathbf{K}_h \mathbf{d}_6$		${}_{2}\boldsymbol{K}_{h} \boldsymbol{d}_{4}$		
	n .,)	$\mathbf{K}_{i} \mathbf{d}_{6}$)	0)	

となる. この例から解るように、応力を求める代入過程 も、関係する変位 dを結合行列 \overline{A} で指定される順序に 取り上げさえすれば, 演算は部材ごとのデータである小 行列と節点毎の変位の小行列の積のみで処理することが できる.

むすび

以上,マトリクス変位法の具体的な運用の一方式を提 案した. この方法の妥当性は,実際の骨組に関する計算 によってすでに確かめられている.

この方式のねらいは、基本式における行列演算を区分 行列の演算と見なし、部材ごと、節点ごとに成立する小 行列間の演算に分解して演算の機械化と能率化を計った ことである.この方式を電子計算機のプログラムに組む ことは、FORTRAN、ALGOL等を用いれば、割合容易 である.また、連続体の場合に拡張する場合にも同様の 分解方式が成立するであろう.

骨組の応力解析に関して残った問題,すなわち,立体 骨組への拡張と,構造の分割解法については,次回に述 べる. (1966年3月22日受理)

参照文献

- F. de Veubeke (Ed); Matrix Methods of Structural Analysis, Pergamon Press, 1964.
- IBM 7090/7094 FRAN Framed Structure Analysis Program (7090-EC-01 X), 1964.
- The Department of Civil Engineering, M. I. T.; STRESS: A Reference Manual, M. I. T. Press, 1965.
- 4) 小野 薫: 剛節ラーメンの解法における適合条件について、日本建築学会大会論文集,1934
- 5) 田中 尚: ベクトル解析を応用せる不静定ラーメンの解 法, 日本建築学会論文集 No. 40, 1950
- 6) 小野 薫: 撓角法, 紀元社, 1956
- E. C. Pestel and F. A. Leckie; Matrix Method in Elastomechanics, McGraw-Hill, 1963.

"サウジアラビア,, 正誤

Vol. 18, No. 2, p. 42 (右上から 15 行目) の 4, 511, 275, 698 は cumulative の数字で, バーレル/日の数字は 1,406, 974 である. ほかに間違いはない.

アラビア石油案内の 誤植によるもので, 当社から訂正の申 出があった.(原文は Oil and Gas Journal 1961, 12, 25) 指摘された藤高教授に感謝する. なおバーレルの単位は 1 キロリットル=6.3 バーレル.また 1964 年のバーレル/日 はアラビア石油株式会社からつぎのように通知された.

ク エ ー ト: 2,116,980
中 立 地 帯: 361,192
サウジアラビア: 1,716,105

一坪井一

(a) 搬送周波数 2.8 MHz vertical 上段 入力 0.5 v/div 下段 出力 0.2 v/div horizontal 100 μ sec/div

(b) 搬送周波数 2.8 MHz vertical 上段 入力 0.5 v/div 下段 出力 0.1 v/div horizontal 100 µ sec/div

(c)
搬送周波数 2.65 MHz
vertical 上段 入力 0.5 v/div
下段 出力 0.05 v/div
horizontal 100 μ sec/div
いずれも入力パルス幅 100 μ sec,
繰返し周波数 100 Hz
図・19 分散型遅延回路出力(矩形波パルス)

生 産 研 究 133

た、周波数によって遅延時間が変化する様子がよく示さ れている.また、同じ遅延回路を非分散型遅延回路とし て用いた場合の入力、出力波形を図・18 に示してある が、波形の歪は認められず、周波数によって遅延時間が 変化していないことがわかる.

一方,矩形波パルスによって変調された搬送波を分散 型遅延回路に加えた場合の入力,出力波形は図・19のと おりである.この図より周波数により遅延時間が変化す ることはわかるが,矩形波パルスによって変調された搬 送波パルスの占有周波数帯が広いために遅延時間の相違 により出力パルス波形の歪が大きく,特に周波数対遅延 特性の変化の大きい所ではその影響が顕著である.した がってこのような矩形波パルスを用いたのでは正確な周 波数対遅延特性を測定することが困難であることが認め られる. (1966年3月15日受理)

謝辞 本研究に関しご援助いただいた日本電気KK 古後・塚田・沢田の諸氏に厚くお礼申上げる.

文 献

- 1) たとえば W.P. Mason, ed.; "Physical Acoustics", vol. 1, Pf. A, Ch. 6, Academic Press, New York, (1964).
- T. von Pfeiffer; "Filter zur Vmformung von Rechteckimpulsen in Gaussimpulse", Frequenz, 17, 3, p. 81 (1963.3).
- 片桐,瀬崎,中里: "2 乗正弦波パルス発生の一方式" テレビジョン, 18, 6, p. 345 (1964.6).

_		-	1 4	-	11 \
1 E	114	-	(4	E	(日)
	125	12	1 -1	15	5)

頁	段	行	種別	正	誤
		6	目次	アイソトープ	アイトソープ
90	左	19	本文	半値幅 15 ms ピ	半値幅ピ
105			表・1	9.5×10 ⁻¹ 1.9×10 ⁻¹	9.5×10 ₀ ¹ 1.9×10 ⁻ 1
"	右	下10	本文	二つの変動がある	二つの変動率がある
"	"	下7	"	出力測定における変動は	出力測定における変動率は
"	"	下3	"	管内温度の上昇に	管内温度の上昇率に
106	"	下4	"	関してお世話になった	関して世話になった

	次	号	予	告	(6月号)			
研究解説								
不安定リンク機構の姿勢制御						村上	: 公	克
鉄鉱石の還元について						雀部	高	雄
マトリクス変位法による骨組の解析								ほか
——その(2) 分割解法と立体構造へ	の拡張ー					川股	重	也
						坪 井	: 善	勝
平面応力問題について						川 股	重	也
						塩 屋	繁	松
研究速報						-212 -14	78	
レーザ用光検波光電子増倍管の特性						膝 廾	· 吻	
						日日日	全化。	上のない
Al-Zn 抗勤対の得入曲線にあらわれ	t- tail.					山 山	「」」「」	立
加加」以前の反大曲線にあられた	/c tun					本間	前禎	\simeq
						由良	隆	司
白金電極を用いる光起電力の研究…						本多	健	
						菊 池	1 真	