Chapter 4

Enhancing an Evolutionary

Optimizer

The optimization task for estimating parameters of S-system is a real difficult one.
Therefore, in this chapter the performance of an evolutionary algorithm namely dif-
ferential evolution was enhanced by hybridizing with a local search strategy. Start-
ing with the original algorithm the chapter presents the proposed new evolutionary
algorithm. Then extensively study the performance of the algorithm using bench-
mark problems, random problems from landscape generators and finally study the
performance of the algorithm for the basic MSE based fitness function of (3.8).

Because of some inherent advantages, like robustness, parallelism, global search
capability, ease of implementation, etc., Evolutionary Algorithms (EAs) have be-
come very popular for nonlinear optimization. However, hybridization with other
strategies, such as meta-heuristics or local searches, can improve the efficiency of
the evolutionary search [19]. GAs hybridized with local refinement procedures are
commonly known as Memetic Algorithms (MAs) [78, 79].

MAs are motivated to provide an effective and efficient global optimization
method by taking advantage of both the exploration abilities of GA and the ex-
ploitation abilities of LS. MAs have evolved in mainly two groups depending on
the type of LS employed, namely Local Improvement Process (LIP) and Crossover
based LS (XLS) [69]. The first category refines the solutions of each generation by
applying efficient LIPs e.g. hill-climbers. LIPs can be applied to every member
of the population or with some specific probability and with various replacement
strategies.

The other group employs crossover operators for local refinement. The crossover

operator is a recombination operator that produces offspring around the parents.
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For this reason, it may be considered to be a move operator for an LS strategy [69].
Over the past few years, much research effort has been spent on developing efficient
crossover operators for real parameters that use probability distributions around the
parents for creating offspring adaptively. Among numerous approaches, the BLX-
crossover, the simulated binary crossover (SBX), the unimodal normal distribution
crossover (UNDX), the simplex crossover (SPX), the parent centric crossover (PCX)
deserve specific mention. And this type of crossover operators can be employed to
create offspring distributed densely around the parents, favoring local tuning. In
order to make the best use of this characteristic of these crossover operators a specific
model of GA has also been suggested. This class of GA actually performs a local
search by generating many offspring around the parents, mating the participating
parents repeatedly using the crossover operator. The most common examples of XLS
based MAs in literature are Minimal Generation Gap (MGG) [109] and Generalized
Generation Gap (G3) [22]. Both of them employ same parents to spawn multiple
offspring. The idea is to induce an LS on the neighborhood of the parents involved in
crossover. The above mentioned crossover operators with inherent adaptive nature
show promise for building effective XLS for continuous search space [69] and has
received much attention recently.

Differential Evolution (DE), proposed by Storn and Price [123], is an effective,
efficient and robust optimization method capable of handling nonlinear and multi-
modal objective functions. The beauty of DE is its simple and compact structure
which uses a stochastic direct search approach and utilizes common concepts of
EAs. Furthermore, DE uses few, easily chosen, parameters and works surprisingly
very reliably with excellent overall results over a wide set of benchmark and real-
world problems. Experimental results have shown that DE has good convergence
properties and outperforms other well known EAs [123, 122].

One key problem of all search algorithms is the “curse of dimensionality” [12].
This expression refers to the exponential growth of the search space’s volume as
a function of dimensionality. Thus even if there is an evolutionary computational
solution to a problem of a particular size, the same problem with increased dimension
might be completely intractable. And DE can not escape this curse. Despite having
a relatively high convergence performance in comparison with the other EAs for
nonlinear optimization of multi-modal functions, DE’s convergence velocity is still
low for optimizing computationally most expensive objective functions, specially at
higher dimensions [29, 86]. In this chapter, DE algorithin has been hybridized with

XLS strategies in an attempt to accelerate the convergence velocity of DE so that
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better solutions can be obtained with higher speed and increased robustness.

4.1 Differential Evolution (DE)

DE is a stochastic search algorithm, related to Fvolutionary Computation (EC),
which exploits a population of potential solutions, individuals, to probe the search
space. New individuals are generated by the combination of randomly chosen indi-
viduals from population. Specifically, for each individual 2%, i =1,--- | P | where
G denotes the current generation, a mutated individual y¢ is generated according
to the following equation

v?:z:f-%F(:tf»»:xf) (4.1)

where j, k and [ are random integers such that j,kandl € {1,--- ,P}andi # j # k # 1
and F' is called scaling factor or amplification factor. This operation is similar to
what is commonly known as mutation to EC community. In order to achieve higher
diversity the mutated individual v¥ is mated with =& using a crossover operation
to generate the offspring or trial individual u¥. Generally binomial or exponential
crossover operations are used in DE. The genes of u& are inherited from z¢ and
v¢, determined by a parameter called crossover factor/rate (CR). In exponential
crossover CR regulates how many consecutive genes of the mutated individual on
average are copied to the offspring. And in binomial crossover CR stochastically
determines the source of each trial parameter from z¢ and v®. Storn and Price
[123], suggested the values for F' and CR are to be chosen from F € [0,2] and
CR € [0, 1] respectively. Finally, the offspring is evaluated and replaces its parent
z¢ in next generation if and only if its fitness is better than that of its parent. This
is the selection process.

The above scheme is not the only variant of DE which has proven to be useful.
In order to distinguish among its variants the notation DE/a/b/c is used, where
‘a’ specifies the vector to be mutated which can be random or the best vector, ‘b’
is the number of difference vectors used for mutation and ‘¢’ denotes the crossover
scheme, binomial or exponential. Using this notation, the DE-strategy described
above can be denoted as DE/rand/1/exp when exponential crossover is used. Other
well known variants are DE/best/1/exp, DE/rand/2/exp and DE/best/2/exp which
can be implemented by simply replacing Eq. (4.1) by Eq. (4.2), (4.3) or (4.4)
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respectively. Also each of them has a mate based on binomial crossover.

v =l + F(J;JC — %) (4.2)
v_iG = lJG + F(:rf - .r?) + F(;z:f,’; - ;tff) (4.3)
(= 2+ PG = af) + Pl — ) (1.0

where 7§ , represents the best individual in current generation and m and n €

{1,---,Plandi#j#k#1l#m#n.

4.2 DE with Crossover based Local Search (XLS)

As mentioned earlier, XLSs are applied to search the neighborhood of the parents
locally to improve the fitness of the parents. The same strategy has been applied to
the neighborhood of a single individual from each generation. In other words it can
be said, XLS was used for exploring the neighborhood of an individual by mating
it repeatedly with different individuals. A similar model of XLS has been proposed
by Yang and Kao [145], where they search the neighborhood of each individual and
they have named it Family Competition (FC).

In this proposed variant of DE with XLS, the basic DE (DE/rand/1/exp) is
extended by applying some crossover based local search (XLS) for exploring the
neighborhood of the best individual. That is, in this XLS procedure the best indi-
vidual &, becomes the family father and its family is explored. This family father
and other individual(s), randomly chosen from the rest of the current population,
are mated to generate offspring. And this procedure is repeated L times. Finally, L
solutions (Cy, Cy, - -+, Cp) are produced and among these offspring and family father
zf: . the individual with the best score replaces the family father in next generation.
It is named as crossover based local search for Fittest Individual Refinement (FIR).
In this chapter DE algorithm was augmented by FIR in the general template of MA
and the new algorithm was named as DEFIR. The formal algorithm for DEFIR can
be described, as follows

DEFIR

1. Generate an Initial Population P¢

2. PY — FIR (P%)

3. PEH = {¢}

4. REPEAT for each individual I € P¢
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5 Reproduce an offspring J from [

6. PS1 = Pl y Best (I, J)

7. PG+l = FIR (PY*Y)

8. REPEAT Step 3 to 7 Until Search Converged

The only structural difference between basic DE and DEFIR algorithm is applica-
tion of FIR in each generation for refining the best individual. Now for implementing
FIR, currently two schemes namely DEfirDE and DEfirSPX are proposed.

In FIR strategy of DEfirDE scheme, the offspring is generated using the recom-
bination operation of DE /rand/1/exp. In each generation G, for the best individual
z{l, three individuals ¢, 2 and z{ were selected such that j,k and [ € {1,--- , P}
and best # j # k # I. Then a mutated individual v¥ is generated using Eq. (4.1).
Finally, the offspring C' is generated by crossover operation between mutated indi-
vidual v“ and the best individual z&_, . This procedure is repeated L times and
then selection is performed.

On the other hand, for local search DEfirSPX scheme generates the offspring
using simplez crossover (SPX) operation propsed by Tsutsui et al. [131]. SPX has
various good characteristics, e.g. it does not depend on a coordinate system, the
mean vector of parents and offspring generated with SPX are the same and SPX
can preserve a covariance matrix of the population with an appropriate parameter
setting. These properties make SPX a suitable operator for neighborhood search.
Besides a preliminary study [86], had found SPX as a promising operation for local
tuning. More details about the SPX crossover can be found in [131].

In FIR of DEfirSPX scheme the best individual and other (p — 1) random indi-
viduals are selected from the current generation. Then SPX is applied on these p
parents to generate offspring. Selection is performed after repeating this procedure
L times.

The justification for the design of DEFIR is as follows. The basic strategy of EAs
is many points, few neighbors, i.e. they work by searching the single neighborhood
of multiple individuals in parallel over successive generations of populations. On the
other hand the XLS based MAs work with few points, many neighbors strategy, i.e.
they work by searching on a greater neighborhood of one individual in successive
generations. In MAs often LS is applied to a selected portion of the population.
This is because each application of the LS for exploring the neighborhood of an
individual requires additional function evaluations. But there is no straightforward
way of selecting the most promising individual which will undergo LS. However, the

solution with best fitness value possibly is in the proximity of a promising basin of
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attraction. Therefore, some extra fitness evaluations can be allowed to search the
neighborhood of this solution for a better solution. DE applies a more directive
search in a greedy way. Augmenting this FIR process in the structure of DE the
search was made more directive or greedier in a sense. In the context of continuous
search space, it can be assumed that the solutions close to the current best individual
are also potential good candidates that form the neighborhood of the current best
solution. With the progress of the search, by exploring the potential candidate
solutions in the vicinity of the best individual, it is expected to reach the global
optimal at a higher speed. This is similar to few points, many neighbors strategy
but a greedier one. Hence, analogously it can be called best point neighborhood
strategy. Using the above analysis it can easily be observed that the FIR strategy
makes DE greedier by replacing the fittest solution of the generation with the best
individual in its neighborhood through local refinement and thus accelerates the
search.

In designing a XLS method several decisions involved, like LS application strat-
egy, length of the LS, selecting parents for crossover operation. In this work a very
simple approach has been selected for applying the FIR strategy, i.e. only on the
best individual of each generation. However, the FIR strategy can also be applied
selectively where some other random individuals also will undergo LS. The length
L of the FIR strategy was kept fixed, whereas it can be varied dynamically with the
progress of the search. In the beginning of the search, the populations is randomly
scattered in the search space an extended local search will be useful to identify a
better solution, but in later generations, as the individuals come closer, brief local
searches will suffice to explore the neighborhood. In current implementation the
other parents participating in FIR strategy were selected randomly. In order to pro-
mote high degree of population diversity, other mating schemes such as assortative
mating, or roulette wheel based selection can be used. In current implementation
it was tried to keep the model simplest and in every case the most straight forward

decision was made.

4.3 Experiments with Benchmark Functions

In this section, the results of different experiments on the test suite described in
Section 4.3.1 are presented. These minimization experiments were carried out in
order to analyze the performance of the proposed DEfirDE and DEfirSPX algo-
rithms comparing with DE. As mentioned in Section 4.2, DEfirDE and DEfirSPX
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algorithms are implemented by augmenting FIR with DE/rand/1/exp.

4.3.1 Test Suite

Five test functions commonly found in the literature, which includes Sphere model
(fspn), Ackley function (faex), Griewank’s function (for,), Generalized Rastrigin’s
function (frqs) and Generalilzed Rosenbrock’s function (fr.s) were used. All bench-
marks chosen are minimization problems. The definitions of the functions are as

follows

N
Fopn(F) =Y _al; ~100 < z; < 100; Frp=Fan(0,--+,0) =0
=1

Fer(T) = 20 + exp(l) — 20exp | —0.2

i==1

1 N 1 N
w2 b o e = N end . .
N Ewl @ exp (N E cos(Q?rJtz)) ;

M32§$IS32) 4;Ck:Fa(;k(O,"',,O)$O

N 2 N N
Foro(®) =Y 4360—Hcos %4—1; ~600 < &; < 600; Fryy = Fyry(0,-++,0) =0

N
Fras(#) = 10N+ (a7 =10 cos(2m2;)); =5 < 2 < 5: Fyyy = Fras(0,-+,0) =0
g==1

N-1
Froo(%) = > (100(xi1—2?)?+(1=2)%); =100 < z; < 100; Flyy = Frog(1, -+, 1) = 0
=1

fsph, and fres are unimodal functions; on the other hand fack, farw, and fra are

multimodal functions. f* denotes the global minimum for the function.

4.3.2 Experimental Setup

In this section, the general setup for different experiments in which the performance
of DE, DEfirDE and DEfirSPX were investigated are specified. Targeting high
dimensional optimization, N= 100 was chosen for most experiments. In order to
make the performance comparison fairer the same sets of initial random populations
were used for evaluating all algorithms. Each experiment was repeated 30 times.
Maximum number of evaluations allowed for each algorithm was 500,000. For DEs

most commonly used parameter setting were chosen and was not tuned to the best
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parameter values for each problem. The value of F' was set to 0.5 and CR was
chosen 0.8. Based on some preliminary experiments for FIR algorithms, L = 10
was chosen[85]. For simplex crossover operation, the number of parents p = 3 was
used. The algorithms were evaluated by calculating average (AVG) and standard
deviation (SD) of their attained minimum fitness value within the maximum number
of allowed evaluations. The experiments were performed on a computer with 1700
MHz Intel Pentium processor and 512 MB of RAM in JBuilder X environment.
Notation: In different tables the data is presented using the following three

notations:

1. AVG = SD : represents the average and standard deviation of the best fitness

values obtained after 500,000 evaluations of different trials.

2. 0.0 [ AVG + SD | : represents the average and standard deviation of the
number of fitness evaluation required to reach to optimal value (when all trails

reach optimal).

3. AVG +£ SD (c %) : represents the average and standard deviation of the
best fitness values obtained after 500,000 evaluations and the percentage of

trails that reached optimal value.

In all tables the best results are shown in bold letters.

4.3.3 Effect of Problem Dimensionality

As specified earlier, the proposed DEfirDE and DEfirSPX schemes are intended
to speed up DE in high dimensional optimization because the original problem of
genetic network inference using S-system is a high dimensional problem. Therefore,
in the experiments presented in this section, the effect of problem dimensionality
on the performance of DE, DEfirDE and DEfirSPX algorithms was studied. Here,
the benchmarks were studied in six dimensions N=>50, 100, 200, 300, 400, and 500
with population size P=N. Other parameter settings are the same as mentioned in
section 4.3.2. In these experiments if the fitness value was less than 1079 range of
actual optimum point, it is assumed solution was detected. The results are shown
in Table 4.1 and some representative graphs from different functions in different
dimensions are presented to illustrate the convergence properties of the algorithms.

Inspecting Table 4.1 it can be found that DEfirDE and/or DEfirSPX strat-
egy succeeded to reach to the optimal value in all trails for some cases (e.g. fspn
(N=100), fact (N=100) ) in which DE failed for some trials (also showed in Fig.
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4.1(a) and 4.1(b)). Even in cases, where DE could reach the optimal value in all
trails it took higher number of function evaluations compared to that needed for
DEfirDE and/or DEfirSPX. This can also be verified looking at the graphs of Fig.
4.1(c) and 4.2(a). And if the cases, where none of the four schemes could hit the
global optimal, are considered, then it is found that the proposed DEfirDE and DE-
firSPX scheme attained AVGs which are significantly better than that achieved by
their parent algorithm (Fig. 4.2(b)). For example in Rosenbrock’s function none of
the above schemes were able to reach the optimal within the maximum number of
evaluations. But in all experiments DEfirDE and/or DEfirSPX were able to reach
the average minimum fitness values. Another observation from Table 4.1 is that
with the increase of dimensionality the minimum fitness achieved by all the algo-
rithms after 500,000 fitness evaluations increased polynomially. Nevertheless, with
the increase of dimension, the performance difference between the proposed schemes
and their parent scheme becomes more significant. And this testifies the claim that
the proposed FIR schemes will speedup DE for higher dimensional function opti-
mization.

Looking at the graphs of Fig. 4.1 and 4.2, it can be found that in every case
DEfirSPX started with the steepest convergence curve and continued to produce best
fitness value compared to other strategies with the progress of the search. In the
beginning of the search SPX performs local searching using individuals randomly
scattered in the search space and becomes very successtul in generating offspring
with high fitness, but at later generations it generates individuals around the dense
populations which slows down the effect of local search. On the other hand DEfirDE
strategy, makes use of the operators of DE, starts slowly compared to DEfirSPX
but continue to improve the fitness to the end of the search and in later generations
approaches towards DEfirSPX steadily. Results presented in Table 4.1 imply that,
for both multimodal (fgrw. fras and fae) and unimodal (fsn and fre,) functions
DEfirDE and DEfirSPX exhibited superior performance compared to DE.

4.3.4 Sensitivities to Control Parameters

To assess the robustness of the proposed schemes to the variation of population size
and other control parameters some experiments comparing with original DE were
accomplished. During the experimentation, one of the three parameters, P, CR and
F was varied within a certain range keeping the remaining two constant to their
values specified in Section 4.3.2. For all the experiments in this section, the problem

dimension N=100 was selected. The results are shown in Table 4.2 to 4.4.
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Table 4.1: The effect of problem dimensionality (N)
N DE DERDE DEATSPX
50 | 0.0 145703.7 & 22113.7] | 0.0 [ 137500.5 £ 31588.9] 0.0 [ 101649.4 + 14842.6 |
Foon | 100 | 175E-05 & 8.95E-5 (93.3%) | 0.0 [ 3923707 + 27285.6 ] 0.0 [ 345124.5 + 22515.7
Seh 1 200 50 + 16.38 36.67 + 20.49 1.503 + 0.846
300 7950.1 + 866.86 2155.12 + 374.88 281.77 + 66.03
400 71987.92 + 3678.58 20752.26 + 2406.303 3085.62 + 289.15
500|  258627.11 + 7064.83 79685.98 + 6286.47 11576.36 + 1530.79
50 | 0.0[161401.9 £ 17471.5] | 0.0 [ 153469.2 + 20731.4 ] 0.0 [ 138447.63 + 9712.05]
100| 1.08E-06 + 4.87E-7 (90%) | 9.37E-07 % 1.23E-7 (96.7%) 0.0 [ 404276.2 + 10553.6 ]
200 0.452 + 0.0486 0.146 + 0.021 0.049 + 0.0055
Jack | 300 7.015 £ 0.107 4.39 £ 0.14 3.02 + 0.106
400 14.21 + 0.083 9.7 £ 0.27 5.84 + 0.241
500 17.87 + 0.075 13.75 + 0.26 7.942 + 0.316
50 | 0.0 ] 1295450 = 28418.3] | 0.0 | 120002.6 + 23006.7 | 0.0 [ 114993.8 + 17656.1]
100| 0.0 [ 340765.7 + 35477.28] | 0.0 [ 318334.93 + 43484.48 | 0.0 [ 207807.5 + 50001.4]
200 0.78 + 0.08 0.229 + 0.0838 0.052 + 0.028
Jeru | 300 41.409 £ 1.54 10.52 + 1.17 3.167 % 0.256
400 603.47 £ 16.84 168.21 £ 18.2 33.92 + 4.059
500 2317.95 + 55.5 701.12 + 51.97 115.803 + 9.332
50 | 0.0 | 988400 £ 26608.15 ] | 0.0 [ 98333.7 £ 29017.8 | 0.0 [ 70041.6 + 14065.3 |
100 0.0 [ 261150.7 £ 17976.1] | 0.0 [ 243793.0 + 24529.1] 0.0 [ 204120.8 + 19879.2]
200 0.395 + 0.168 0.0377 £ 0.0362 4.54E-04 + 6.65E-04
fRas | 300 674.018 + 28.33 116.98 + 21.22 50.66 + 93.97
400 2864.027 + 53.045 867.25 + 90.87 400.94 + 170.87
500 7651.92 + 245.1 2574.38 + 122.86 1353.606 + 101.199
50 79.89 £ 102.61 72.467 £ 75.578 68.070 I 68.079 42.34
100 130.09 + 47.83 119.896 + 37.426 107.82 + 107.82 26.94
200 9370.17 + 3671.11 4581.29 + 2959.51 1483.42 + 1483.42 472.46
Jros |300| 1.98E+07 = 5278030.01 | 3580853.11 + 224040271 | 63937.322 + 63937.322 17040.933
400| 4.88E+08 + 5.74E+07 6.54E407 £ 1.66E407 | 1197718.51 + 1197718.51 330262.21

500

3.55E+09 + 2.34E+08

4.98E4-08 4 9.53E4+07

8541688.2 + B8541688.2 1477062.22
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Figure 4.1: Convergence Graphs for (a) Sphere function N=100 (b) Ackley’s function
N=100 and (c) Griewank’s function N=>50
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Storn and Price suggested a larger population size (between 5N to 10N) for DE
[123], although later many others found DE’s performance good even with a smaller
population. In this study it was found that for high dimensional optimization if
the maximum number of evaluation is fixed then the choice of population size may
be crucial for the performance of DE [91]. For example, consider the case of fp.s:
where with a smaller population size (say P=N=100) convergence was found for
all 30 trails, but DE failed to reach even below the fitness value 10 with much
high population size (say P = 7N or P=10N). In this study, it was found that
in high dimensional search spaces DE works better with a population size near to
dimension of the problem (in this case P=N). Since DEfirDE and DEfirSPX are
Just augmentations of basic DE with XLS, it is expected that their sensitivity to
the variation of population will be more or less similar to basic DE and the results
of Table 4.2 show that. However, the performance of DEfirDE and DEfirSPX were
found less susceptible to population variation compared to that of DE (Table 4.2).
So it can be stated that use of FIR has increased the robustness of DE against the
variation of population size.

Experimental results obtained varying the crossover rate (CR) and amplification
factor (F) are shown in Table 4.3 and 4.4 respectively. From these tables it can be
seen that at any parameter setting the FIR scheme can be effective and DEFIR
can produce better results than basic DE. So it can be stated that DEFIR schemes
show lower sensitivity to the variations in control parameters than the original DE
does. Among the proposed two schemes DEfirSPX is found to be more robust to the
changes of parameters. DEfirDE scheme also exhibited less sensitivity compared to
DE against parameters changes. Only for F=0.1 and some cases of CR=1.0 setting
DEfirDE’s performance was slightly inferior compared to that of DE and for all other
cases it showed superior performance. So it can be concluded that for all control

- parameters, P, CR, and F, DEFIR schemes showed less performance fluctuation
compared to DE in an overall. In other words, because of hybridization with FIR

strategy the overall robustness of DE has improved.

4.3.5 Comparison with Other Hybrid GAs

In this subsection, a performance comparison, among the proposed algorithms and
some other hybrid GAs that have been proposed for solving real-parameter opti-
mization problems, is presented. Since MGG and G3 are two of the most promi-
nent models of EAs and one of the proposed enhancement makes explicit use of

simplex crossover operator it is well justified to compare the proposed algorithms
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Table 4.2: Sensitivity to the population size (P)
N DE DERDE DERISPX
100 0.15E-9 + 3.04E-8 T.922F-10 = 4.415E-10 1.562E-12 + 5.005E-12
f 400 9.23 + 2.92 2.225 + 1.159 0.247 + 0.100
Skt 700 443.79 £ 36.75 113.823 & 29.070 18.665 + 7.50
1000 2495.99 + 233.25 694.734 £ 163.311 140,728 + 38.049
100 05767 = 8.26E-8 T.6685-7 + 1.5071-7 8.556E-8 + 7.195E-8
400 0.336 = 0.023 0.128 + 0.027 0.055 + 0.0133
700 4.159 + 0.069 2.625 + 0.140 1.687 + 0.152
fack | 1000 7.735 + 0.153 5.163 + 0.206 3.568 + 0.195 ,
100 1.918E-9 + 9.050E-9 1.802E-12 &+ 1.706E-11 4.437E-14 + 1.64E-13 (30%)
400 0.652 + 0.069 0.195 + 0.065 0.030 + 0.0126
700 3.319 + 0.206 1.613 + 0.128 1.137 + 0.027
Jerw | 1000 19.586 % 1.357 6.430 + 1.039 2.286 + 0.294
100 | 0.0 [356115.4 = 13528.2] | 0.0 | 330468.7 & 18951.11 ] 0.0 [ 284680.4 + 156508.1]
400 0.0503 + 0.022 0.003 + 0.002 4.17E-5 + 3.36E-5
700 61.798 + 7.422 8.383 + 3.480 1.716 + 1.67
Fras | 1000 232.302 + 17.008 50.41 + 12.10 36.307 4 39.07
100 130.004 + 47.826 119.806 & 37.427 107.823 + 26.943
400 5734.962 + 1877.322 1975.71 & 874.12 758.604 + 228.396
700 | 334837.399 * 140158.682 70747.33 £ 30688.68 5446.84 + 2115.32
Fros | 1000 | 4174082.14 + 864876.99 756465.43 + 318283.99 34114.58 4 12611.29
Table 4.3: Sensitivity to the crossover rate (CR)
N DE DERrDIE DERSPX
0.1 1487.44 £ 2300.48 1132.47 & 1238.66 1.04 & 3.83
s 0.3 173.65 + 315.43 102,60 + 195.24 0.069 + 0.29
Seho g6 0.028 4+ 0.06 0.0199 + 0.095 3.36E-8 & 1.76E-7
0.8 9.15E-9 £ 3.04E-8 1.922E-10 + 4.41E-10 1.56E-12 + 5.90E-12
1 14276.60 + 3066.88 14121.71 + 2934.80 12340.09 4 3133.27
0.1 0.017 = 0.015 0.014 + 0.026 0.002 + 0.003
0.3 0.007 £ 0.014 0.855-4 + 7.57E-4 1.87E-4 + 1.33E-4
0.6 2.16E-4 + 7.80E-4 2.12E-5 £ 4.68E-5 1.57E-6 4 2.43E-6
fack | o8 2.06E-7 = 8.26-8 1.67E-7 + 1.51E-7 8.56E-8 + 7.2E-8
1 11.73 & 0.536 11.79 + 0.699 11.36 + 0.83
0.1 0.006 = 0.021 0.0026 £ 0.008 0.0018 + 0.0055
0.3 0.0015 + 0.0046 2.79E-4 £ T.47E-4 5.42E-5 + 1.12E-4
0.6 2.97E-5 £ 1.36E-4 1.25E-5 4+ 6.297E-5 7.38E-6 + 2.7TE-5
ferw | g 1.92E-9 + 9.06E-9 4.802E-12 + 1.796E-11 4.43E-14 + 1.64E-13 (30%)
1 116.94 + 23.94 128.65 + 29.98 113.11 + 19.21
0.1 332564 £ 0.0017 (6.7
0.3 L71E-7 & B.22E-7 (16.7%) | 7.74E-8 + 2.75E-7 (40% ) | 1.84E-12 + 9.26E-12 (80% )
0.6 | 6.22E-15  2.396E-14 (93.3%) | 0.0 [389469.9 + 26722.2] 0.0 [ 356382.9 + 20942.0 |
fras | gg 0.0 [ 356115.4 + 13528.2 ] 0.0 [ 330468.7 = 18951.1 0.0 [ 284680.4 + 15508.1 |
1 305.036 + 41.46 304.47 + 34.07 311.02 + 37.87
0.1 3099490.58 + 2659045.68 2055312.81 & 2805028.06 52458.93 + 34150.37
0.3 187368.44 + 308193.45 147354.10 + 246626.38 4984.48 + 5090.42
0.6 677.16 + 580.44 387.42 + 162.55 235.44 + 116.89
fros | g 130.09 + 47.83 119.896 + 37.43 107.82 + 26.94
1 2.508E7 + 7974512.96 2.64E7 + 1.01E7 2.501E7 + 1.01E7
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Table 4.4: Sensitivity to the amplification factor (I)

N DE DERDE DERSPX

0.1 10723.19 & 4324.80 11191.92  4148.83 4238.12 + 1005.65
o | 05 9.15E-9 + 3.04E-8 1.92E-10 & 4.41E-10 1.56E-12 + 5.90E-12

Sk 0.8 0.0086 = 0.0070 0.0042 % 0.0046 1.396E-4 + 3.26E-4

1.2 29.50 & 12.85 22.397 & 14.07 0.982 + 0.545

1.6 812.064 + 264.901 540.29 + 337.85 29.54 + 11.566

1.9 3407.372 + 1091.70 2006.70 + 802.73 115.80 + 55.76

0.1 4.367 + 0.779 5.72 + 1.137 3.708 & 0.681

0.5 2.06E-7 + 8.26E-8 1.67E-7 + 1.51E-7 8.556E-8 + 7.195E-8

0.8 0.0070 % 0.0018 0.0040 + 0.0015 6.52E-4 + 1.94E-4
faek |y 0.94 + 0.188 0.578 £ 0.1598 0.125 + 0.041

1.6 4.25 + 0.27 2.371 + 0.264 1.53 & 0.182

1.9 6.68 + 0.429 3.72 £ 0.471 2.67 & 0.254

01 11.56 + 6.388 17.314 % 6.943 10.58 + 8.96

0.5 1.918E-9 + 9.059E-9 4.80E-12 + 1.796E-11 4.427E-14 + 1.64E-13 (30%)

0.8 0.0024 + 0.0053 0.0017 + 0.0036 1.39E-4 + 6.31E-4
Jorw | 19 0.665 + 0.113 0.395 & 0.123 0.087 + 0.071

16 1.88 + 0.251 1.284 + 0.136 0.978 + 0.077

1.9 6.201 + 1.019 2.642 + 0910 1.225 + 0.060

01 11.46 = 4.72 20.139 + 18.796 9.55 + 4.35

0.5 | 0.0]356115.4 + 13528.2 ] | 0.0 [ 330468.7 £ 18951.1] 0.0 [ 284680.4 + 15508.1]

0.8 6.52E-9 + 2.088E-8 1.610E-9 % 2.659E-9 2.212E-12 + 3.176E-12
Ras | 19 0.038 % 0.029 0.032 + 0.104 8.232E-5 + 8.50E-5

1.6 14.467 & 5.206 3.0132 & 2.48 1.141 + 3.54

1.9 63.978 + 16.173 14.468 + 5.584 18.61  20.57

0.1 1.91E7 £ 1.4921E7 3.987ET7 + 2.23E7 1.073E7 + 8120281.74

0.5 130.094 + 47.83 119.896 4 37.43 107.82 + 26.94

0.8 304.12 + 125.53 281.046 £ 120.70 144.22 + 50.60
JRos | 12 | 37500.90 + 18865.15 21902.69 + 13750.01 2521.26 + 1106.97

1.6 | 2848245.75 + 1740160.20 | 1342155.42 + 71885.38 34883.58 + 46325.42

1.9 | 1.35E7 £ 8343132.99 | 5765649.67 + 3514865.16 102106.28 + 55769.57
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Table 4.5: Comparison with other algorithms (N=100)
Alg fSph Tack Jerw
MGG+SPX 337312 + 45.66 376 £ 0.148 388 £ 0.401
G3+SPX 286.69 + 41.66 3.67 + 0.141 3.676 + 0.33
RCMA+XHC | 0.0 [421451.0 + 22622.9 | 4.24E-4 + 2.82E-4 0.027 % 0.0461 (56.67%)
DE L.75E-5 + 8.95E-5 (93.3%) | 1.08E-6 = 4.87E-7 (90%) | 0.0 [ 340765.7 + 35477.28 |
DEfirDE 0.0 [ 392370.7 + 27285.6 | | 9.37E-7 + 1.23E-7 (96.7%) | 0.0 [ 318334.93 & 43484.48 |
DEfirSPX 0.0 [ 345124.5 = 22515.7] | 0.0 [404276.2 + 10553.6 ] | 0.0 [ 297807.5 & 50001.4]
Alg fRas f!i’os -
MGG+SPX 4014 x 0.744 25807.84 = 6601.02
G3+SPX 3.13 £ 0.941 18773.114 + 4812.72
RCMA+XHC | 0.0 [ 355635.8 +/- 43611.3 ] 157.268 + 73.192
DE 0.0 [ 261150.7 & 17976.1 | 130.00 + 47.83
DEfirSPX 0.0 [ 243793.0 % 24529.1] 119.896 + 37.426
DEfrSPX 0.0 [ 204120.8 + 19879.2] 107.82 + 26.94

with MGG+SPX (MGG with Simplex crossover) and G3+SPX (G3 with Simplex
crossover). Recently Lozano et al. [69] have proposed a real coded memetic algo-
rithm (RCMA) that uses a real-parameter crossover hill-climbing (XHC) and using
an extensive study the authors have shown that their proposed RCMA+XHC algo-
rithm can outperform or competitive with many well known models of RCMAs like,
Hybrid steady-state RCMA, G3, Family Competition (FC), Hybrid CHC. There-
fore, this study also included this model of RCMA+XHC for comparing with the
proposed algorithms. All the benchmarks were studied at dimension N=100. The
control parameters of each algorithm were set according to the recommended pa-
rameters of each algorithm. For G3 and MGG population size P = 1500, the number
of children generated by the simplex crossover per selection = 50, the number of
parents participated in the crossover operation = N+1. For RCMA+XHC algo-
rithm, P=300 was chosen and all other parameters are set to the values used in
[69]. Maximum function evaluation allowed for each algorithm was 500,000 and the
optimum was considered to be found only when the best fitness value reached less
than 1076,

Table 4.5 shows the results of comparison. In this study none of the MGG or
G3 models with simplex crossover could reach the global optima for any of the
objective functions in any run using 500,000 function evaluations. Comparatively
the performance of RCMA+XHC was better. However, RCMA+XHC could perform
better than DE only for the simplest function fg,,. And both of the proposed
algorithms DEfirSPX and DEfirDE outperform all the three algorithms for each

benchmark function.
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4.4 Experiments with Landscape Generator

According to No Free Lunch (NFL) theorems [139] no algorithm is superior to others
when their average performance over all possible problems is considered. Therefore,
any general comment made about the performance of any algorithm based on results
of experiments with a couple of test problems is similar to general conclusion made
about a very large data set depending on a few samples; and such conclusion is
often incomplete and misleading. In fact, algorithms operate on landscapes, not
on problems, so the information about how an algorithm interacts with landscapes
and the relationship between its performance and properties of landscapes will be
more useful to predict its performance on other problems [149]. Therefore, it is
more useful to use landscape generators, which do not take into account any specific
problem rather landscapes on which an algorithimm will conduct searching, as the
ground for algorithms evaluation and testing. Another advantage of using landscape
generators is that they can remove the opportunity to hand-tune algorithms to a
specific problem. Furthermore, by allowing a large number of problem instances to
be randomly generated, the predictive power of the simulation results can be also

increased [52].

4.4.1 The Gaussian Landscape Generator

The proposed algorithms were compared with their parent algorithm evaluating
them using a Continuous Landscape Generator proposed by Yuan and Gallagher
[149]. The basic component of this landscape generator is N-dimensional Gaussian
Function (GF) and each landscape contains M GFs, each constituting a “hill” in
the landscape. The fitness of an individual is given by the maximum value of any
of the Gaussian components at that point. So individuals are evaluated using the

following fitness function

gz=]

P00 =l [ e (- X )| @

where X is the N-dimensional individual to be evaluated and Zz and p; are the
N-dimensional vector of mean and (N x N) dimensional covariance matrix of i-th
[i = 1,---, M] Gaussian component respectively. According to Eq. (4.5), given a
point X in the search space, its value is calculated regard to each GF and its fitness

is set to the highest value returned among all GFs. So, the mean vector of each GF
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corresponds to an optimum and the mean vector of the GF that has the highest
peak value corresponds to the global optimum.

The multivariate Gaussian functions often produce very small values (i.e. probal-
itity) in high dimensional spaces. Since test problems in high dimensional spaces

were desirable the original fitness function was transformed as follows

_ 1/n
F(X)= I{i":&% { ‘:(27{.)11/‘2 T ALE exrp (“%(X - M)Zi l(X - lii)T)] } (4.6)

So the parameters of the landscape generator are the number of GFs (M), the di-
mensionality of the landscape (N), the range of the search space, the mean vector
and the covariance matrix of each GF. Again a Gaussian with arbitrary valid co-
variance structure can be conveniently generated through a series of rotations of the
variable coordinate system [108]. Hence, each ), is parameterized using rotation
angles and variance values. Using these parameters the landscape can be tuned to

have specific geometric characteristics e.g. hills, valleys or other landscape features.

4.4.2 Experiment Setup

As specified earlier, the motivation of experimenting with landscape generator is to
gain insights about the performance of different algorithms evaluating them using
random test problems. In these experiments the above specified landscape generator
was employed for investigating the performance of DE, DEfirDE and DEfirSPX using
one set of randomly generated problem instances with similar structural features.
Here the dimensionality N=50 and number of GFs M=100 was chosen. The rest of
the parameters were chosen randomly. The search space was restricted to the interval
[-10.0, 10.0] in each dimension. For covariance matrices the range of variance values
was set to [0.50, 5.50] in order to avoid very sharp peaks and many flat areas, and
the range of rotation angles was set to [-7/4, 7/4] (according to the suggestion in
[149]). Ten random problems were generated using the above specified configuration
and on each of them each algorithm was run for 20 trials. The parameter settings
for the algorithms were P=N=50, F=0.5, CF=0.8 and L=10. Each algorithm was

allowed to evolve for maximum 10,000 times.

4.4.3 Results

For performance evaluation the fitness value of the best individual found during

the run of each algorithm was used. Since different landscapes may have different
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global optima in terms of fitness value, in order to have a uniform representation
for different landscapes, raw fitness values were normalized in the range [0, 1]. For
representing different algorithm’s performance box-plots were used where each box
shows the fitness distribution of an algorithm on a specific landscape over 20 run.

Graphs of Fig. 4.3 show the performance of DE, DEfirDE and DEfirSPX on
different landscapes respectively. From these graphs it is clear that after equal
number of evaluation the best fitness attained by DEfirDE and DEfirSPX algorithms
are significantly better than that attained by DE. In Fig. 4.3(a), 4.3(b) and 4.3(c)
fitness distribution of the same landscape takes the same position in the graph. So
if these three graphs are compared then it will be found that if some landscape was
comparatively difficult for DE (e.g. landscape 10), it was also difficult for DEfirDE
and DEfirSPX. This is not unlikely as the proposed FIR schemes work with in the
general framework of DE. Still, by searching locally in the neighborhood of the best
individual of each generation, the memetic versions of DE was successful to reach a
better fitness value compared to that attained by DE. Therefore, from these results
it is obvious that because of using FIR schemes the performance of DE has become
much better.

Fig. 4.4 shows the convergence curve of different algorithms for the first land-
scape. This graph of Fig. 4.4 is sort of representative graph for all other landscapes.
As shown in this graph, performance of all algorithms faded with time, but starting
with a steeper curve DEfirDE and DEfirSPX attained better fitness compared to
DE. The convergence curve of DEfirSPX is especially notable. Because of the supe-
riority of simplex crossover operation, the FIR strategy generated offspring of very
high quality resulting in a sharp increase in fitness in the beginning of the search.
Though in a substandard way, DEfirDE scheme also showed better convergence ve-
locity than DE. Moreover, the relative performance of DEfirDE and DEfirSPX is
similar to what observed in previous results. However, the results of these experi-
ments were helpful to establish the claim about the use of FIR strategy for improving

the performance of DE for highly multimodal problems.

4.5 Application to Optimize the S-System Model

Finally, the optimization capabilities of the proposed variants of DE were tested
by applying them in the S-system model parameter optimization. In this problem
the best set of parameters were searched for the target S-system model of a genetic

network through minimization of the basic MSE oriented fitness function of (3.8).
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Figure 4.3: Experimental Results on Landscapes using (a) DE (b) DEfirDE and (e)
DEfirSPX
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Figure 4.4: Mean Performance of DE, DEfirDE and DEfirSPX on landscape 1

Noman and Iba [86] have proposed an algorithm that finds the parameter values
for S-system model based networks with higher accuracy using Differential Evolution
(DE). They performed some experiments to evaluate the performance of DE for the
deceptive and highly multimodal search space of gene network inference problem. In
their experiments they found DE exhibited better performance compared to other
conventional EC algorithms like GA or ES. In order to study the performance of
DEfirDE and DEfirSPX compared to that of DE for genetic network reconstruction
problem they were applied for optimizing the S-system based gene network. A
comparison among the optimization performance of the parent-algorithm and the
proposed algorithms will give insights about the suitability of the new algorithms
for highly nonlinear and multimodal problem of gene regulatory network inference

which is the principal theme of this study.

4.5.1 Experimental Setup

In this experiment an artificial gene network representing typical gene regulation
process with N’ = 5 was used. Every details about this particular network can be
found in the Chapter 6 where it was studied extensively. This particular network
has become a sort of benchmark for evaluating the algorithm performance as it has
been widely studied by many other researchers [54, 56, 87, 77, 130]. Artificial time
series data was created by integrating the S-system model parameters in [54] from
to = 0 to tmaee using fourth order Runge-Kutta algorithm and taking equidistant
sample points. The time series data used for optimization are same as used in
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[54, 87]. From each time-course of the network, 50 sample points were used for
optimization. These artificial microarray data sets were reverse engineered by DE,
DEfirDE and DEfirSPX algorithms for estimating the underlying gene network and
their performance were compared.

Like in other experiments, the same sets of initial random populations were used
for evaluating different algorithms. Each experiment was repeated 20 times in this
manner. Maximum number of evaluations allowed for each algorithm was 2,000,000.
The parameter setting was as follows: P=60, F = 0.5, CF = 0.8 and L=10.

100

Fitness

0 500000 1000000 1500000 2000000

Number of evaluations

Figure 4.5: Convergence courses for different algorithms for optimizing the MSE
fitness function for S-system

4.5.2 Results

Fitness transitions for different algorithms in the experiment are shown in Fig.
4.5. None of the algorithms succeed to reach the optimal after 2000,000 numbers of
evaluations. Though not clear from the graph, all the three schemes, initialized with
same and equal number of individuals, started with same fitness value. The proposed
memetic DEs, augmented with FIR, started with steeper convergence curves and
continued to produce better fitness values compared to that by basic DE, in equal
number of fitness evaluations. However, based on the convergence curves that do
not seem to be converged at the end of optimization, it can be predicted that
the proposed memetic versions of DE will reach the optimal value or a targeted
minimum fitness value with fewer evaluations than that will be required by original
DE. Nevertheless, between DEfirDE and DEfirSPX the later started with steepest
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convergence curve as usual and managed to find the best average fitness value.
The performance of DEfirDE was marginally better than that of DE. These results
prove the superiority of DEfirSPX scheme once again. Briefly, Fig. 4.5 suggests that
DEFIR algorithms are able to find a network structure as well as parameter values

with higher accuracy and velocity compared to that by DE.





