Chapter 5

An Adaptive local search for DE

Several studies have shown that incorporation of some form of domain knowledge
can greatly improve the search capability of Evolutionary Algorithms (EAs). As
discussed in previous chapter, among different techniques of domain knowledge in-
corporation in EAs neighborhood exploration is a promising one. However, often the
neighborhood searches are performed in a problem depending manner hampering
the superior quality of EAs of being problem-independent. Therefore, adaptation
of operators and parameters has become a very promising research field in Memetic
Algorithms (MAs). Because of the superior performance of adaptive MAs, this chap-
ter presents an adaptive form of the early presented crossover based local search for
Differential Evolution (DE).

The previous chapter has already presented a study on the use of local search
operation for improving the performance of DE particularly for high dimensional
optimization problems. In this chapter, a more generalized and efficient local search
process in the spirit of Lamarckian learning for accelerating classic DE is presented.

The adaptive nature of the newly proposed local search scheme helps to ac-
complish a more effective neighborhood search and thus significantly improves the
convergence characteristics of the original algorithm. The performance improvement
was shown using a set of benchmark functions with different properties. Performance

comparisons with some well known MAs are also presented.

5.1 Differential Evolution with Adaptive XLS

In order to design an effective and efficient MA for global optimization, we need to
take advantage of both the exploration abilities of EA and the exploitation abilities of

LS by combining them in a well-balanced manner [48]. As mentioned before, in order

5.1. Differential Evolution with Adaptive XLS 64

to incorporate a crossover based LS (XLS) in an EA,| several issues must be resolved,
such as the length of the XLS, the selection of individuals which undergo the XLS,
the choice of the other parents which participate in the crossover operation, whether
deterministic or stochastic application of XLS should be used, etc. Depending on
the way the search length is selected, different XLS can be classified into three
categories

Fized Length XLS generates a predetermined number of offspring to search the
neighborhood of the parent individuals. This type of search has been presented in
the previous chapter and also has been used in [145, 69, 86].

Dynamic Length XLS varies the length of the local search gradually with the
progress of the search, e.g. by applying longer XLS in the beginning, and gradually
applying shorter length XLS towards the end of the search.

Adaptive Length XLS determines the direction and length of the search by taking
some sort of feedback from the search.

In fixed length XLS, identifying a proper length for the LS is most important
because too short an XLS may be unsuccessful to explore the neighborhood of the
solution, and so to improve the quality of the search. On the other hand, too long an
XLS may backfire by consuming additional fitness evaluations unnecessarily. How-
ever, finding a single length for XLS that gives optimized results for each problem
in each dimension is almost impossible [69]. Similarly, determining a robust ad-
justment rate is not easy for dynamic length XLS. Therefore, this chapter proposes
a Lamarckian local search that adaptively determines the length of the search by
taking feedback from the search. This local search strategy was named as Adaptive
Hill Climbing XLS (AHCXLS) because it uses a simple hill climbing algorithm to
determine the search length adaptively. The pseudo-code of AHCXLS is shown in
Fig. 5.1.(a).

Another issue in designing XLS is selecting the individuals that will undergo
the local search process. XLS can be applied on every individual or on some de-
terministically /stochastically selected individuals. In principle, the XLS should be
applied only to individuals that will productively take the search towards the global
optimum. This is particularly important because application of XLS on an ordinary
individual may unnecessarily waste function evaluations and turn out to be expen-
sive. Unfortunately, there is no straightforward way to select the most promising
individuals for XLS. In EC, the solutions with better fitness values are generally
preferred for reproduction, as they are more likely to be in the proximity of a basin
of attraction. Therefore, the best individual of the population was deterministically

5.1. Differential Evolution with Adaptive XLS 65

AHCXLS(/, n,) DEahcSPX

1. P[1]1=1 1. Generate an Initial Population P

2. Repeat i=2 to n, times 2. Evaluate PC

3. Pli] = select random individuals 3. B = Bestindex(FPF)

from the population 4. PS[B] = AHCXLS (PS.[B], n,)

4. End Repeat 5. For each individual / in PG

5. C = Crossover (P) 6. Reproduce an offspring J from /

6. If C is better than P[1] 7. PG+ =pe+i Select (1,J)
Pl1]=C 8. SetG = G+1

7. Else 9. Repeat Step 3 to 8 until termination
Return (P[1]) criteria is met

8. Gotostep5

(a) AHCXLS local search (b) DEahcSPX algorithm

Figure 5.1: Proposed DEahcSPX algorithm and the adaptive local search scheme
AHCXLS. I is the individual on which the AHCXLS is applied and n, is the total
number of individuals that take part in the crossover operation. BestInder return
the index of the best individual of the current generation. Other symbols represent
standard notations.

selected for exploring its neighborhood using the XLS and thereby it is expected
to end with a nearby better solution. The other individuals that participate in the
crossover operation of XLS are chosen randomly to keep the implementation simple
and to promote population diversity. And the final decision is about the crossover
operation could be used in the XLS scheme. Tsutsui et al. have proposed simplex
crossover (SPX) for real-coded GAs [131]. The SPX operator uses n, parental vec-
tors for recombination and offers various advantages as mentioned before. Besides,
it was shown in previous chapter that SPX was a promising operation for local
tuning, and therefore SPX was used as the fundamental crossover operation in this
study for comparison purpose. More details about the SPX crossover can be found
in [131]. The new version of DE with the AHCXLS and SPX operation is titled as
DEahcSPX and is described in Fig. 5.1.(b).

The primary difference between the newly proposed DEahcSPX algorithm and
previously proposed DEfirSPX algorithm is that we are no more required to look
for a good search length for the XLS operation. The simple rule of hill-climbing
adaptively determines the best length by taking feedback from the search. Hence,
using the best length (according to the heuristics) for the local search adaptively,
the new algorithm makes best use of the function evaluations and thereby identifies
the optimum at a higher velocity compared to the earlier proposal. Furthermore,
the earlier DEfirSPX is only suitable for high-dimensional optimization problems

5.2. Experiments 66

because of its fixed-length XLS strategy that consumes a fixed number of function
evaluation in each call. On the other hand, because of the adaptive XLS-length
adjustment capability of AHCXLS, the newly proposed DEahc¢SPX algorithm is
applicable to optimization problems of any dimension. Finally, because of the simple
hill-climbing mechanism, the new adaptive local-search does not add any additional

complexity or any additional parameter to the original algorithm.

5.2 Experiments

Different experiments have been carried out to assess the performance of DEalic-
SPX using the test suite described in Appendix C. The focus of the study was
to compare the performance of the proposed DEahcSPX algorithin with the orig-
inal DE algorithm in different experiments. Also the performance of DEahcSPX
was studied comparing with other EAs, and the efficiency of AHCXLS comparing
with other XLS strategies. Here, DE was used to denote the 'DE/rand/1/bin’ vari-
ant (if not otherwise specified) of the algorithm and the DEahcSPX algorithm was
implemented by embedding the AHCXLS strategy in the same variant of DE.

5.2.1 Performance Evaluation Criteria

For evaluating the performance of the algorithms a criteria similar to that defined
in [125] was used. The performance of DEahcSPX was compared with DE for the
test suite using the function error value. The function error value for a solution x
is defined as (f(xz) — f(z*)) where z* is the global optimum of the function. The
maximum number of fitness evaluations allowed for each algorithm to minimize this
error was 10,000 x N, where N is the dimension of the problem. 50 trials were
repeated on each function. The fitness evaluation criteria were as follows

1. Error: The minimum function error value that an algorithm can find, using
10,000 x N fitness evaluations at maximum, was recorded in each run and the
average and standard deviation of the error values were calculated. The number of
trials in which the algorithims could reach the accuracy level £ (explained in next
paragraph) using maximum 10,000 x N fitness evaluations was counted. For this
criterion the notation AVGg, + SDg.(CNT') was used in different tables.

2. Evaluation: The number of function evaluations (FEs) required to reach an
error value less than ¢ (provided that the maximum limit is 10,000 x N FEs) was
also recorded in different runs and the average and standard deviation of the number

of evaluations were calculated. For the functions F; to Fs the accuracy level ¢ was

5.3. Effect of AHCXLS on DE 67

fixed at 1075 and for the functions Fg to Fjo ¢ was fixed at 1072 as in [125]. The
accuracy level € was fixed for the rest of the functions at 107%. For this criterion
the notation AVGg, + SDg,(CNT) was used where CNT is the number of runs
in which the algorithms could reach this accuracy level ¢ using 10,000 x N FEs at
maximum.

3. Convergence Graphs: Convergence graphs of the algorithms for N = 30.
These graphs show the average Error performance of the total runs, in respective

experiments.

5.2.2 Experimental Setup

In these experiments, the same set of initial random populations were used to eval-
uate different algorithms. Though classic DE uses only three control parameters,
namely Population Size P, Scaling Factor F and Crossover Rate C,., choice of these
parameters is critical for its performance [68, 32]. F is generally related to the con-
vergence speed. To avoid premature convergence it is crucial for F' to be of sufficient
magnitude [101]. F = 0.9 is suggested as a good compromise between convergence-
speed and convergence-probability in [106]. Between C, and F, C, is much more
sensitive to problems property and multimodality. For searching in non-separable
and multi-modal landscapes C, = 0.9 is a good choice [106]. Therefore, F' = 0.9
and C, = 0.9 were chosen for all the functions in every experiments without tuning
them to their optimal values for different problems. These parameter settings are
also studied elsewhere [106, 68]. Population size is a critical choice for the per-
formance of DE. Here, the performance of the DE and DEahcSPX was investigate
with population size P = N. The effect of population size was also studied . For
the proposed DEahcSPX no additional parameter setting is required. For the SPX
operation the number of parents participating in the crossover operation was chosen
to be n, = 3 as suggested in [131].

The experiments were performed on a computer with 4400 MHz AMD Athlon
TM 64 dual core processors and 2GB of RAM in Java 2 Runtime Environment.

5.3 Effect of AHCXLS on DE

The results of this section are intended to show how the proposed AHCXLS strategy
can improve the performance of DE. In order to show the superiority of the newly
proposed DEahcSPX, it was compared with DE carrying out experiments on the
test suite at dimension N=30 and the results are presented in Table 5.1 and Table

5.3. Effect of AHCXLS on DE 68

5.2. The functions for which no convergence was achieved were removed from Table
5.2. All the settings are the same as mentioned in Section 5.2.2. Some representative
graphs comparing the convergence characteristics of DE with DEaheSPX are shown

in Fig. 5.2.

Table 5.1: Best Error values at N=30, after 300,000 fitness evaluation

DE DEahcSPX — DB DEahcSPX
Foon | 573817 £ 203516 | 1.75E-31 = 4.096-31 || Fy | 3.87E-14 £ 2.71E-14_| 0.00B+00 £ 0.00E+00
Fros | 5.00E 01 £ 8.565501 | 4.52E+00 = 1.565E401] Fu | 8.505-02 £ 7.04E-02 | 6.52E-05 & 4.845-05
Facr | 1.37E-00 £ 1.32E-00 | 2.66E-15 % 0.00E+00 || F; | 3.635+06 3 2.06E 106 | 1.20E+06 £ 0.22B105
Fyrw | 2.60E-03 £ 5.735-03 | 2.07E-08 & 5.80E-03 || F4 | 5.54E101 6.375+01|4.62E+00 £ 8.785+00
as | 2555401 £ 8.14E700] 2.14E201 £ 1.236+01 || Fs | 1L.OBEL03 £ 5316402 | 9.00E402 & 4.79E+02
Foop [4.00E702 £ 2.34E+02| 4.70E+02 £ 2.965+02 || Fs |6.67E+01 * 1.51E+02 | 3.84E+00 £ 3.756E+00
Fooi | 2.50E-01 £ 4.78E-02 | T.80B-01 £ 1.086-02 || Py | 7.50F-03 & 8.96E-03 | 7.30E-03 * 6.32E-03
Foone | 3.10E702 £ 1.076+02| 3.06E+02 £ 1.10E+02 || Fs | 2.005+01 £ 1.936-01 | 2.00B401 £ 119601
Foni| 456502 £ 1.31E-01 | 2.07B-02 8.46E-02 || Fy | 2436101 £ 6.235100| 2.04B+01 £ 8.19E+00
Fyms] 144501 £ 7.195-01 | 1.71B-81 & 5.85E-31 || Fyo | 7.33E+01 £ 6.625+01 | 5.27E+01 & 4.84E+01

Table 5.2: FEs required to achieve accuracy levels less than € (N=30)

DE DEahcSPX

Fupn | 1486508 £ 6977.7 (50) 87027.4 3067.3 (50) |
Fros - 209913.0 510.5 (2)
Foor | 2154561 & 9721.4 (50) | 129211.6 5168.6 (50) |
Fyrw | 100292.5 & 634788 (38) | 1215679.2 + 79563.4 (43) |
Fpn1 | 1600552 63176.3 (43) | 96148.0 + 61787.7 (46) {
Fpnz | 1560169 £ 315158 (48) | 85360.2 £ 6390.6 (50)

Fy | 153450.1 + 5780.4 (50) 89417.8 + 4117.6 (50)

I - 200270.4 & 3685.9 (3)
Iy | 211778.8 & 70080.3 (33) | 148067.7 & 068096.3 (42) |

t The ¢ value is significant at a 179 level of significance by two-tailed t-test

Depending on the relative performance of DEahcSPX and DE we can divide
the functions into three classes. The first class contains the functions (Fipn, Fock,
Fyrw, Fomi. Fpna, Fi and F7) for which DEaheSPX reached the target accuracy
level using fewer fitness evaluation, or achieved that in an equal or higher number
of trials compared to DE (Table 5.2). The second class consists of the functions
in which none of the algorithms achieved the desired accuracy level but the newly
proposed one reached at a smaller error value. This class contains the functions
Fros, Fy, Fy, Fy, F5, g and Fyy (Table 5.1). The third class contains the functions
in which no significant difference was observed in the achieved error values attained
by the algorithins. This class consists of the functions Fras, Feen, Fyat, Fune and Fy.
Although no significant difference was noticed in the error values, it was revealed
by the convergence curves that these error values were achieved using fewer fitness
evaluation in DEahcSPX algorithm compared to DE (Fig. 5.2). Only in the case of

Fy no significance difference was observed in the algorithms performance. It seems

5.3. Effect of AHCXLS on DE 69

1E+04 - 1E+03 - —— —
1E+03 - —_— — w
1E+02 | e 1E+02 - —o—DE

1E+01 —— DEshcsPX —— DEshcSPX| |
1E+00 1E+01 4 |
1E-01 1 |
1E-02 |
1E-03 4 s ‘
1E-04 - \ |
1E-05 - 1E-01

E-i |
1E-07 - " : . 1E-02 -

50000 100000 150000 200000 250000 300000

0 50000 100000 150000 200000 250000 300000 0
(a) (b)
e - 1E+06 _——— —_——
1E+00 \ 1E+05
1E+04 - -o—DE
1E-02 X s - DEshcSPX
1E04 | 1E+02 -
1E+01 -
1E-06 1E+00 A
1E-01 -
i 1E02 |
1E-10 A 1E-03
1E-04
1E-12 . v - . 1E-05 . ' . = -
0 50000 100000 150000 200000 250000 300000 0 50000 100000 150000 200000 250000 300000
(c) (d)
1E+05 1E+11
1E+10 A
—a—DE
1 4 1E+09
A —— DEshcSPX 1E+08 -
1E+07
16403 1 1E+08
1E+05 -
tEr0a 1E+04 -
1E+03
1E+01 - 1E+02
T 1E+01 1
1E+00 ’ ‘ ’ = ' : 1E+00 x s v y
0 50000 100000 150000 200000 250000 300000 0 50000 100000 160000 200000 250000 300000
(e) (H
8000 1E+18 R
7000 1E+16
—e— DE —e—DE
00 —— DEshcSPX Lot b —— DEshcSPX
5000 1E+12
4000 1E+10 |
3000 1E+08 |
2000 1 1E408 -
1000 - 1E+04 -
0 . : . . 15«»02 ~
0 50000 100000 150000 200000 250000 300000 50000 100000 150000 zoooou 250000 300000
(8) (h)

Figure 5.2: Convergence curves of DE and DEahcSPX algorithm for selected func-
tions (N=30). X-axis represents fitness evaluations (FEs) and Y-axis represents
Error values. (a) Fi, (b) Fr, (¢) Fack, (d) Fa, (€) Fy, (f) Fros, (8) Fsen and (h) Fyup

5.3. Effect of AHCXLS on DE 70

that the learning strategy of Eq. (4.1) together with the binomial crossover operation
used in DE was not good enough to locate the global optimum for the functions
belonging to the second class and the third class. Since the DEaheSPX algorithm
depends mostly on the working principle of DE, it is natural that it also could not
locate the global optimal using the same learning strategy. However, hybridization
of DE with the AHCXLS scheme notably speeds up the original algorithm. In
general, the overall results of Table 5.1 and Table 5.2 and the graphs of Fig. 5.2
substantiate the claim that the proposed AHCXLS strategy accelerates the classic

DE algorithin.

Table 5.3: Best Error values for varying PopSize at N=30, after 300,000 FEs

PopSize=50 PopSize=100
DE DEaheSPX Dl DEaheSPX
Foon 3315-02 ¥ 1.926-02 6.03K-09 + 6.866-08 (560) Fuph | 3765703 ¥ 1145103 FI1TEF0T £ 1T H8ET01
Froc | 3.70B+02 ¥ 4816102 3.08EF01 & 6.22E-401 Frow | 4.03E108 & 2.59E+08 1.B0E 06 F 1.47E--05
Fuck 3.60E-02 F 1.82E-02 1.80E-056 F 1.10E-05 Frook | 1.36E101 £ 1485400 §5.28E 400 + §.418-01
Foyru 5.00E-02 ¥ 6.40E-02 1.68E-08 + 4.25E-03 (42) Forw | 3676401 £ 12015401 1.2054-00 & 1.74E-01
Frasx | BOIEF0I £ 2.655401 2.77E401 + 1.31E4-01 Fran | 2.08L+02 & 2.705401 1.646402 & 2.10L+01
Foch | 7-68E+02 £ B.04B102 2.515402 & 1.70E402 Foel, | G.565103 & 4.2505402 G.30155-08 + 4.801+02
Foal 8.726-01 + 1.806-01 2.44E-01 3 5.065-02 Foat 5.075400 & 6.5415-01 1208400 & 2.1215-01
Fiont | 8.65E+02 £ 1.OGE+02 4.68E+02 + 7.665401 Fooht | 1.2005+14 & 1.60E414 5.1614-08 + 4,48EF08
[2.055-04 & 1.82B-04 1.12E-00 + 2.085-09 (50 Fpul | 6.04B104 ¥ LBBET05 3.62E400 & 1.831E400
Fyon2 5.035-03 + 2.035E-02 4.30E-04 £ 2.208-03 (47 Fn2 | G.GOEL05 £ 7.005105 4.86E4-00 & 1.50E4-00
2 1.691-02 £ 1.80BE-02 1.67E-08 + 2.10E-08 (50 I3 5.08151-00 & 2.635103 4. 81B401 £ 2.16E401
Ty B.38E102 £ 7.20E+02 1.56E401 % 1.00E401 Ty 5705404 £ 1.58E+04 4.34E4-08 F 1.B7E+408
I3 5 86E+07 2.61E+07 4756406 + 1.82E400 Ty H 8215408 F 2.61E108 T.07E4-07 ¥ 4.84E4008
Fs 3.65E103 T 2.03E+03 2.31E+02 + 1.42B402 Ty G 4BE+04 & 2.77E+04 §.55R108 & 3.08E-403
Fy 3.206403 * 1.316+03 1.04E+08 + 8.67TE+02 s 3335404 & 4.035403 B.88E408 & 1.24E+083
Fy 5.64E+02 ¥ 7.585402 7.00E+01 % 1.28E402 6 737E108 & 508408 4.06E406 * 3.01E406
Fy §.546-01 & 9.7515-02 3.10F-08 * 5.14E-03 (44) Fy | 65.73E402 + 1.855402 1.18B401 + 5.78E4+00
Fa 3.0964-01 ¥ 5.045-02 2.09E+01 & 5.25102 Fa 209401 F 3.846-02 3.005+01 ¥ 5.895-02

F01 3.68E401 F 1.48E+F01 " 27315402 + 1.58B401 1.83E-4-02 T+ 2.26E+401

Fag 5.23E4+0] + 2.3

Fip 3245102 + 1.85E401 155102 & 4.586L+01 Fiq T3IET02 & 335101 2.08E40% F 1.668F01
PopSize=200] o PopBilze=300
DE DEahcSPX } DI BEaheSPX
Fop | A.01E+04 T 6.26E+03 1.I0EF08 + 2.085402 Fun | 1O06E+04 % 2.006+03 6.08EF02 & 1.94K4-02
Fros 1.53E+10 + 4.32E+09 1.40E4-07 £ 7.8214006 Fron | 3.07E1+00 & B.O2E 108 B.3BEF00 + 2.82EF04
Fock F02E+01 £ 2.206-01 9.11E4-00 & 7.81BE-01 ook 5101 & 3.6115-01 7.285%4-00 £ 4.6015-01
Forw | 3.735102 + 6.03E+01 1.08E+401 + 2.02E4-00 Fovw | 1995102 £ 1.00EF01 .26854-00 & 1.74154-00
Froe | 3.625102 & 2136401 2.05E402 + 1.85K+401 Fras 102 £ 1.275401 0815402 § 1 40E 401
Foor, | G.BRE+03 F 2.55E402 6.7215408 & 3.241402 A ooh | GRTEL00 & 2.7215502 U.H015-03 £ 3975102
Foal 1345101 & B.41E-01 §.26E4-00 & 4.55K-01 ol 1.526401 F 5431501 H.60E4-00 & 4.5418-01
Font | 2.29E116 + 1.10E+10 B.47TE410 & 6.175410 Fount | 206E+10 £ 1098416 1 B8E411 F 1726411
Funy | 2.445107 + 7.58E+00 §.10E+400 4 2.42E400 Fon1 | 8715407 & 12015407 T.00E4-01 £ 8. 76EF00
Finz | BI0E+07 1.99E+07 6.1BE4-01 & 6.80K+01 Funy | 1.03EJ08 & 1.87E407 3.42E402 § 4.1154-02
Fy | 3.51E+04 £ 6.74E503 2.04E403 I 5.00k4-02 Fy BIBE 103 & 7.2 4.37E402 & 8.16EF01
Fy, | 1.1GE105 ¥ 1.60E+04 1.09E+04 4 8.00E-+03 7y BB 04 F 3.54154-04 F.0BE4-08 f 1.22E4-08
Fy 1.1915+09 + 1.63E+08 4.02E4-07 4 1.48E4-07 Fy 1661408 & 3.07E407 2,60E407 £ 0.84E408
2 14315106 % 2.636404 1.684-04 + 3.8015403 Ty 3.40E 304 & 4.06E+03 i.10E4-04 F T.03E£08
Ty, 3296404 £ 2.71E+03 9.12E403 + 1.63E+403 i T.106+04 & 5.32k 7045408 1 4.725402
Ty 7616410 £ 0.11E+00 4.64E+07 % 1.65E+07 Fy 1.86E 108 £ 4.0 148K 406 & 6.4BL40b
Fy 346E403 ¥ 4315102 1.60E+02 + 2.82E+01 T 4015703 + 6.1 2.67E4-02 4 B.07E+F01
Fy 3096+ 01 & 6.07E-02 Z.00E+01 ¥ 5.008.02 Ty 2105 +01 * 4.4415-02 FO9ET01 F 5.2215-02
Fy 413102 & 2.46E+01 2.31E402 T 2.10B+401 Ty 2.225402 & 1.03E+01 F.05E+02 & 1.3515401
Flo G.005402 & 5.28E 401 Z.66E402 & 1.61E+401 Fig 2.755402 & 1.306E+01 21315402 & 12115401

5.3.1 Sensitivities to Population Size

Performance of DE is always sensitive to the selected population size [32, 86]. This
is easily conceivable because DE employs a one-to-one reproduction strategy. There-
fore, if a very large population size is selected then DE exhausts the fitness eval-

uations very quickly without being able to locate the optimum. Storn and Price

5.3. Effect of AHCXLS on DE 71

—o—DE

-o— 0E

1E+01 —— DEahcSPX
20

1E0
15

1E0

16805 10

1607 5

1608
0 —
¢ 50000 100000 150000 200000 250000 300000 0 50000 100000 150000 200000 250000 300000
(a) (b)
1E+18 1E+08 B
1817 e N 1E+08 \H.‘—_'__-* - .
1E+18 1E+0T —e—DE
1615 —&-DE ~—— DEshcSPX
e 1E+08
—_ DEshcSPX
16413 . Ty
B —_— 1E+04 h\\
‘LH—'_R‘_* \&\
1E+11 1E+03 1
1E+10 1E+02 = . -
0 50000 100000 150000 200000 250000 300000 0 50000 100000 150000 200000 250000 300000
(c) (d)
1E407 1E+0
reos - e
0 —— DEahcSPX B . . =
1E401
1E01 1E+08
S
1E-03 S —
1605 1E+07
1807
1608 — 1E+08 —
0 50000 100000 150000 200000 250000 300000 0 50000 100000 150000 200000 250000 300000
(e) (f
45000 1E+11 —
il 1E+10 = l
—— DEshcSPX
30000 1E+08 T
25000
1E+08 o
20000
‘\\
15000 1Es07
10000 1E+08 \
5000 -
0 1E+05
D 50000 100000 150000 200000 250000 300000 0 50000 100000 150000 200000 250000 300000

(g (h)

Figure 5.3: Convergence curves to show the sensitivities of DE and DEahcSPX to
population-size for selected functions (N=30). X-axis represents fitness evaluations
(FEs) and Y-axis represents Error values. (a) Fyu(P=>50), (b) Fou(P=200), (c)
Foune(P=300), (d) Fpna(P=300), (e) Fi(P=>50), (f) F3(P=100), (g) F5(P=200) and
(h) Fs(P=100)

5.3. Effect of AHCXLS on DE | 72

Table 5.4: Scalability study in terins of Error values

N=10 T N=50]
DE DEahcSPX DE DEahc3PX
Fopn | 3.26E-28 £ 5.83E-28 (50) 1.81E-38 ¥ 4.04E-88 (50) Foon | 5.01E-02 + 0.755-02 | 8.80E-00 & 3.80E-08 (50)
Fros | 4.78B-01 & 1.32E+00 (43) | 8.19E-01 & 1.10E+00 (46) S res | LIOE 10 £ 3.34E410] 1.096+402 £ S.02E402
Fock | B.3BE-15 % B.52E-15 (50) 2.66E-15 + 0.00E+00 (50) ok | 2.30E-02 * B O0UE-03 1.69E-06 & 8.805-00
Fyrw 5.765E-02 + 3.35E-02 4.77E-02 £ 2.55E-02 Farw | 155502 & 1.J4E-01 | 2.06E-08 F 6.645-08 (36)
P T T85EL00 & 1686100 (13)] 1.60E100 £ 1.61E400 (i8) || Frae | G.0BE 01 ¥ 2.365101] 8.47E-F01 & 0,23E4-00
Foor | 14.21072743 £ 3008155167 | 4.73766066 & 23.68766602 || F,.;, | I.07E108 & 5155402 9.666402 & 4.88E02
Flqi 0.107873375 & 0.027688791 0.000873361 + 3.47E-08 Foot | LISE+00 & 1 49E-01 3.00B-01 F 1.00B-01
Fohe | 18.11220734 £ 15.857833131 18.00697444 * 13.11270338 Fone | 1,43E405 & 4.108406] 1.41E108 & 2.00K403
Fpni | 3.85E-20 & 7.28E-29 (507 4.71E-82 % 1.12E-47 (80) Foni | 3.075-08 & 703102 | 2.40E-08 F 1.24E-02 (48
Fonz | 1.40E-28 & 3.00E-28 (50) 1.85E-32 + 5.50E-48 (50) o | 3.94E-01 £ 3.055E-01 | 2.645-03 4 4.79E-03 (38
£, | 0.00E+00 + 0.00E400 (50) | 0.00E+00 * 0.00E+F00 (50) 7, | 150008 & 1.006-02 | 1.06B-08 T 1.221-08 (50
Fy | 3.975-15 + 1.145-14 (50) | 0.00E+00 + 0.00E+00 (50) 133 1.44E4-08 & B.05E-4-02
Fy | 8.765-06 ¥ 2.78L-05 (38) 3.42E-06 ¥ 7.11E-06 (40) Ty |5A0E1U8 & 2.02C 108 | 2.97E407 & 8.01E400
F, | B87E-14 £ 1.245-13 (50) | 0.00EJ00 & 0.00E400 (50) || Fy [004E+04 & 1.746+04 1.0415404 & 3.00R-4-08
Fs, 1.07E-04 + 2.40B-03 1.12E-05 & 1.76E-05 (12) Py | 581403 4 1125403 S.716108 + 6.57E402
Fo | 3.10B-01 * 1.10E{00 (46) 3.106-01 ¥ 1.10E100 (40) s | 1.00B 03 & 1.081+¢04 | 2.2dE+402 + 8.0054-02
2 156E-01 + 1.635-01 1.47E-01 + 1,16E-01 (8) Fr | 1055400 £ 6.2415-00 | 2.115-02 I 2,205-02 (18)
Fg 2.04E+01 + 1.08E-01 2AME+0I £ 1.45E-01 Fg 211401 + 293502 TAIEL01 & 3.6015-02
Fy | 2015100 £ 1.41E+00 (5) | 1.28E400 & 0.65E-01 (10) Ty | 7.651E01 & 2.808101] B5.2854-01 & 1586401

Fio J3EE102 & 2,808 +01

Fig 1.26E+01 £ 7.26E+00 1.06E+01 & 4.06E400 4.24E402 & 2.981401
N=100 1 N==200

DE DEahcSPX DI - DiaheSPX
Foph 4.28E+03 + 1.27TE+03 5.01E4-01 3 8.84E+401 Fopn | 1.20E405 + 1.00k+04 7.0164-08 & 1.07E4-03
Fige 3.33E408 £ 1.67TE+08 1.45E405 + 1.11E405 Fros | 2.97E%10 £ 3.81L+09 TAIEF08 £ Q.GSE:FOi
Foi | E81E+00 £ BOTEOL 1.01BF00 I 3.44E-01 T | 18TE401 F 2.266-01 B.4BE-400 T 4.1056-00
Flyiris 3.04E401 & 8.01E+00 1.23E400 § 2.14E-01 Fyvae | 1.16E+03 £ 0.22E401 §.0BE01 & 0.830EF00
Fras | B.30B102 + 6.51E+01 4.75E+02 ¥ 6.56E401 Frow | 2876103 F 7.945401 TE3E08 4 ROIR101
ol 2545104 L 2056403 3486404 £ 2175403 Fucr | G.00ET04 £ 10261031 0.015104 & 1445403
Fgl T.02601 £ 7.01E-01 3116400 & 5.706-01 1 | 3696701 LBOBT00| L1OE01 E 4.38E-01
Fune | 544E115 £ B.OTELIS 4.06E+10 & 6.57EF10 S he | 3105118 £ 0486417 4.21E418 & 1,74B+18
Foni | G.20E+05 £ 7.08E105 4.34E 00 & 1.75E400 Toni | 3.40E 108 £ 7606107 2.27E401 & b.78E+00
[4.34E+406 £ 2.30E+06 7.25E401 & 2.44E4-01 Fung | 8.08E408 £ 1.8654-08 6.24E4-04 1 4.7TTE4-04

suggested a larger population size (between 5N to 10N) for DE [123], although later
studies found that DE performs better with a smaller population [106, 86]. To in-
vestigate the sensitivity of the proposed algorithm to variations of population size,
experiments were performed with different population sizes at dimension N = 30.
Results are reported in Table 5.3. A quick look at Table 5.3 reveals how drastically
the performance of DE changes with the population size for a given maximum num-
ber of evaluations. For some functions, DE converged for all trials using a smaller
population size (e.g. P=N) but failed to reach even a single convergence with a
larger population (e.g. P = 10N). Since DEahcSPX is just an improvement of basic
DE using AHCXLS, it is expected that its sensitivity to variation in population-size
is more or less similar to that of the basic algorithm. However, Table 5.3 show
that in all experiments the error values achieved by DEahcSPX were always better
than those achieved by DE. The graphs of Fig. 5.3 show that AHCXLS scheme
has improved the convergence characteristics of the original algorithm, regardless
to population-size. Though for some functions (Fra,, Focn, Fs, Fy, F'10) the perfor-
mance of both algorithms were more or less indifferent to population-size, possibly
it was because of the incompetence of the learning strategy used. Nevertheless, the
results presented in this section confirm that the proposed DEahcSPX algorithm

exhibits a higher convergence velocity and greater robustness to the population size

5.4. Comparison with other XLS

73

compared to DE.

Table 5.5: FEs required to achieve accuracy levels less than ¢ (N=10)

DE DEahcSPX DE DEaheSPX

Fopn | 31639.7 £ 1347.0 (50) | 22026.4 = 1300.3 (50) |I F>| 49683.4 £ 2184.3 (50) | 34677.8 £ 2203.9 (50)
Fros | 73803.8 = 12550.9 (43)] 59275.7 = 14998.0 (46) || F3 | 94850.3 £ 4906.4 (38) | 89217.0 + 9466.3 (40)
Focr | 488082 + 1977.7 (50) | 36389.3 £ 1764.4 (50) || Fy| 58143.8 & 3372.4 (50) | 39192.2 + 2673.2 (50)
Fras | 94089.0 = 12818.3 (13)] 84309.0 £ 220455 (18) [F5| B 90328.9 + 1606.6 (12)
F,n1| 28885.8 + 2304.4 (50) | 20543.5 & 1162.8 (50) "5 | 61808.5 + 18899.9 (46) | 50167.7 + 19785.8 (46)
Fun2 | 30812.6 = 1684.9 (50) | 21633.5 + 1283.9 (50) || F¥ - 97258.7 + 13784.1 (3)

7y | 32165.7 + 1415.3 (50) | 22594.7 £ 1255.7 (50) || Fu | 97860.2 & 7475.7 (5) | B9685.7 £ 21510.0 (10)

5.3.2 Scalability Study

So far, the experiments of these chapter were done in N = 30 dimensional problem
space. In order to study the effect of problem-dimension on the performance of the
DEahcSPX algorithm, a scalability study was carried out comparing with the origi-
nal DE algorithm. Since the functions F; to Fig are defined up to N=50 dimensions,
they were studied at N=10 and 50 dimensions. The other functions were studied
at N=10, 50, 100 and 200 dimensions. For N=10 dimensions, population-size was
chosen as P=30 and for all other dimensions it was selected as P=N. The accu-
racy achieved using N x 10,000 fitness evaluations are presented in Table 5.4, and
some representative convergence graphs are shown in Fig. 5.4. In order to focus
on the comparison between the proposed algorithm DEahcSPX and its parent algo-
rithm DE, Table 5.5 compares the fitness evaluations required by the algorithms to
achieve the accuracy level € at N=10 dimensions. In general, the same conclusion
as in section 5.3 can be drawn about the relative performance of the algorithms, i.c.
DEahcSPX outperformed DE at every dimension. Moreover, the results also show
that the performance improvement becomes more substantial with the increase in
problem dimensionality. So, from the experimental results of this section it can
be concluded that the AHCXLS scheme speeds up DE in general, but particularly

significant improvements are obtained at higher dimensionality.

5.4 Comparison with other XLS

In order to show the superiority of the newly proposed AHCXLS scheme it was
also compared with two other XLS strategies applying in DE algorithm. The first
one is the FIR strategy proposed in previous chapter, and this memetic version
of DE is denoted as DEfirSPX. The other algorithm, denoted as DExhcSPX, was

5.4. Comparison with other XLS

74

16406

1E+05

1E+04 |
|

1E+03
|

16402 —e—[E

~—— DEahcSPX
16401
16400
[} 200000 400000 600000 800000 1000000
(a)

1800 B

1600 —eo DE

1400 ~——— DEahcSPX

1200

1000 §,

800 \-\

—

600 R\
|

400 |

200

0 -

1E+10

1E+09

1E+08

1E+07

0

100000 200000 300000 400000 500000

(g)

1E+04

1E+03

1E+02

o 500000 1000000 1500000 2000000
(b)
60
50
—o—DE

40 ——— DEahcSPX
30
20
10

0

1E+11

1E+10

1E+12
1E+11
1E+10
1E+08
1E+08
1E+07
1E+08
1E+06
1E+04
1E+03
1E+02

Figure 5.4: Convergence curves to compare the scalability of DE and DEahc-
SPX algorithm for selected functions. X-axis represents fitness evaluations (FEs)

and Y-axis represents Error values.

(8) Fun(N=100), (b) Fprw(N=200), (c)

Fras(N=100), (d) Fyut(N=100), (€) Fypn1(N=200), (f) Fpma(N=200), (g) F3(N=50)
and (h) Fs(N=50)

5.4. Comparison with other XLS 75

implemented by using the XHC strategy proposed by Lozano et al. [69]. Both FIR
and XHC belong to the fixed length XLS category and were implemented using SPX
crossover operation, in order to have an unbiased comparison. Experiments were
performed on the test suite at dimension N=30. Results are presented in Table 5.6
and Table 5.7. The settings for FIR and XHC schemes were chosen as suggested
in [86] and [69] respectively. All the other settings are the same as mentioned in

section 5.2.2.

Table 5.6: Comparison with other XLS in terms of Error values
DEahcSPX DERSPX DExheSPX

Fopn | 1.75E-31 £ 4.09E-31 1.006-27 £ 2.956-27 7.605-29 & 1.0715-28
Fros | 4.52E400 % 1.55E401 4 BAE100 + 3.37E+00 5815400 + 4.736+00
Foor | 2.66B-15 % 0.00E+400 8.3515-16 & 1.030-14_ 5.20E-15 2.695-15
Fyrw | 2.07B-03 & 5.80E-03 3.54B-03 + 7.558-03 3.45B-03 & 7.525-03
Fras 314E+01 % 1.238+01 2.27E+01 £ 7.39E400 1.86E401 + 7.05B100
Foer | 4.7T0E+02 % 2.96E102 5.23E402 = 3.73E402 1.015+02 & 4.60F+02
Faai 1.80B-01 * 4.08E-02 1.84E-01 & 7.465-02 1.02E-01 + 4.935-02
Funt | 3.06E+02 £ 1.108+02 3.11E+02 + 0.38E+01 2.84E+02 + 1.10B402
Fpo1 | 2.07E-02 + 8.46B-02 3.24B-02 % 3.44B-02 2.49B-02 + 8.61E-02
Fonz | 1.715-81 % 5.356-31 1.765-03 + 4.115-03 4.39E-04 2.20E-03

0.00E+4-00 < 0.00E+4-00
9.40E-04 + 1.80E-03
1.54E406 &+ 1.15E4+06
6.69E+00 4 1.06E+01
1.OIE+03 + 4.31E+02
1411401 4 1.861E4-01
7.98E-03 £ 9.48E-03
2.09E-+01 + 7.41E-02
2.80E4-01 = 7,75154-00

Fy 0.00E-+00 + 0.00E4-00
Fy 6.52E-05 + 4.84E-05
Fy 1.29E406 & 9.22E4+05
Fy 4.62E+4-00 = 8.78E-+00
Fy 9.00E4-02 £+ 4.79E-02
Fy 3.84E4-00 = 3.75E+400
Fy 7.39E-03 £ 6.32E-03
Fy 2.09E+01 £ 1.12E-01
Fy 2.04E+4-01 £+ 8.19E400

0.00E+4-00 + 0.00E+4-00
1.05E-03 £+ 1.29E-03
1.73E+406 + 1.22E--06
1.04E+01 + 1.75E4-01
1.15E-+03 + 6.68E4-02
1.65E+01 £ 4.72E4+01
4.53E-03 + 6.92E-03
2.10E401 % 4.61E-02
2A47E4+01 + 7.72E400

Fio | 5.27BE+01 & 4.84B401 | 6.00E+01 & 5396401 6795+ 01 & 4.805401
Table 5.7: Comparison with other XLS in terms of FEs
DEahcSPX V DEfrSPX DExhcSPX
Fopn | 87027.4 & 3067.3 (50) 06588.2 & 62604 (50) | 921114 £ 49515 (50)
Fros 209913.0 = 519.5 (2) - -
Focx | 129211.6 £ 5168.6 (50) | 142160.88 & 8137.0 (50) | 139982.1 £ 7096.2 (50)
Fyrw | 121579.2 & 70563.4 (48) | 146999.76 & 87855.0 (38) | 163119.1 & 93613.4 (37)
F,ni | 96140.0 £ 61787.7 (46) | 1264806.56 & 66369.7 (44) | 122120.1 & GB013.8 (44)
Fymz | 85360.2 T 6390.6 (50) | 135395.48 & 73557.7 (43) | 106820.1 & 41154.6 (48)
F 80417.8 & 4117.6 (50) | 101022.68 % 7656.8 (50) | 97470.6 & 7700.0 (50)
2 200279.4 T 3685.9 (3) - -
F; | 148067.7 £ 68996.3 (42) | 169019.16 & 84155.5 (36) | 175486.0 & B0G58.6 (37)

The performance difference among these three XLS methods is not obvious from
Table 5.6 because at the end of the search all of them reached similar error values,
though DEahcSPX found slightly better error values in almost every case. How-
ever, the results presented in Table 5.7 reveals that the newly proposed DEahcSPX
algorithm was faster than the other two variants of DE. Statistical analysis of the
numbers of FEs needed to reach the given accuracy level (i.e the results of Table
5.7) was performed using two-tailed Student’s t-test, and it was found that the

5.5. Comparison with other EC 76

differences between the results of DEaheSPX and the other two algorithms are sta-
tistically significant at a level of 0.05 for all the functions in which the algorithms
found convergences in at least 40 trials (i.e. Fyn, Facks Fpn1, Fpn2 and Fy). Besides,
the most prominent advantage of the AHCXLS scheme over the other two is that
it is free from the lookup for the best length for the local search and thereby does
not need any additional parameter. In contrast, for best results, XHC and FIR
schemes need to tune two and one parameters respectively, which in turn should be
determined experimentally. Moreover, AHCXLS is also useful for lower dimensional
problems whereas the FIR scheme is only suitable for high dimensional optimiza-
tion. At lower dimension (e.g. at N=10) the performance of DEfirSPX was not
significantly different from that of DE, and even poor in some cases. Furthermore,
in a brief experimentation it was found that the performance difference among the
proposed algorithm and the other two variants become more significant at higher

dimensions.

5.5 Comparison with other EC

Many XLS-oriented evolutionary algorithms for real parameter optimization are now
available in the literature. This subsection presents a performance comparison be-
tween the proposed algorithm and some other hybrid GAs with LS. Two GA models,
Minimal Generation Gap (MGG) [109] and Generalized Generation Gap (G3) [22],
have drawn much attention. Both of these models in fact induce an XLS on the
neighborhood of the parents by generating multiple offspring using some crossover
operation [69]. Over the past few years, substantial rescarch effort has been spent
to develope more sophisticated crossover operations for GA and many outstand-
ing schemes have been proposed, such as BLX-« crossover [27], unimodal normal
distribution crossover (UNDX) [96], simplex crossover (SPX) [131], and parent cen-
tric crossover (PCX) [22]. The respective researches have shown that UNDX and
SPX perform best with the MGG and PCX performs best with the G3 generational
models. Therefore, in these experiments comparisons were performed using the al-
gorithms MGG+UNDX, MGG+SPX, G3+PCX and G3+5PX and the results are
shown in Table 5.8 and 5.9. The performance of G3+SPX was similar to or poorer
than that of MGG+SPX. Hence, only the results of MGG+SPX were presented.
The MGG model was setup with P = 300, X\ = 4 offspring, generated from p par-
ents, where u = 6 was used for UNDX and p = 3 was used for SPX. For G3 model
P =100, p = 3, and A = 2 were used.

5.5. Comparison with other EC

77

Table 5.8: Comparison with other RCMAs in terms of Error values (N=30)

DEaheSPX

MGG+UNDX

G3+PCX

MGG+8PX

875500 & 2.87R+00

Feph 1.75E-31 + 4.99E-31 1.37E-11 &£ 1.94E-11 3.58E-81 + 1.36E-81
Fros 4.52E+00 = 1.55E+01 2.81E+01 £ 1.23E+01 4.18E+00 + 9.68E4-01 |1.38E-03 £ 6.45E+02
Faoer |- 2.66E-15 £ 0.00E4-00 8.23E-07 £ 4.64E-07 1.48E+01 4+ 4.17E400 § 1.68E-400 £ 2.99E-01
Forw 2.07E-03 + 5.89E-03 2.96E-04 = 1.48E-03 1.07E-02 + 1.30E-02 ¢ 1.09E4-00 + 2.241-02
Fras 2.14E+01 + 1.23E+01 1.35E400 = 1.03E4-00 | 1.75E+02 4 3.37E+401 5.78E-+00 £ 1.83E+00
Fon | 4.7T0E402 = 2.96E4+02 4.12E+03 £ 1.72E+03 4.04E+03 £ 1.09E4-03 8.70E403 £ 2.41154+02
al 1.80E-01 £+ 4.08E-02 1.50E-01 £ 4.95E-02 4.64E+00 + 4.74E+00 3.825-01 + 4.201-02
Foni| 3.06E402 £ 1.10E402 4.28E+02 £ 3.82E+01 7.90E+02 £ 1.27TE402 3.28E+03 & 2.77E+03
Funt 2.07E-02 + B.46E-02 4.93E-02 + 3.50E-02 4.35E+00 £ 6.94E+00 2.578-01 £ 6.90E-02
Fon2| 1.7T1E-31 £ 5.35E-31 4.39E-04 £ 2.20E-03 1.50E401 & 1.58E+01 1 | 2.29E400 & 3.721-01
Fy 0.00E+4-00 + 0.00E+00 2.83E-11 + 3.33E-11 3.52E-13 £ 1.22B-13 4.71E+04 £ 4.21E+403
Fy 6.52E-05 + 4.84E-05 1.41E+00 + 7.15E-01 4.14E-12 + 1.21E-12 | [3.96E+04 £ 3.8915403
Fy 1.29E+06 + 9.22E+05 8.76E+05 4 2.98E405 1.07E4-03 + 1.20E4-03 [7.16E+08 & 1.3414-08
Fy 4.62E+00 + 8.78E4-00 5.01E+01 £ 3.62E+01 9.85E+04 4 2.66E+04 4.455404 4 3.73154-03
Fy 9.00E4-02 £ 4.T9E402 1.67E+403 £ 6.01E402 B.13E+03 £ 2,65E+03 § |3.34E+04 + 2.11E+03
Fs 3.84E4-00 = 3.75E4-00 1.79E+02 + 2.38E+02 1.34E+402 + 2.48k+02 1L5GEA410 % 1.47E+09
o 7.39E-03 + 6.32E-03 7.26E-03 + 8.19E-03 2.01E-02 - 1.85E-02 ¢ 1.02E+04 4 4.71E402
Fy 2.09E+01 # 1.12E-01 2.09E+01 % 5.62E-02 2.11E401 % 6.67E-12 2.10E+401 4 4.0615-02
Fy 2.04E-+01 + B.19E400 4.65E4+01 £ 5.41E+01 2.44E4-02 £ 3.98k+-01 3.15E+02 £+ 1.04E+401
Fig 5.27E+01 %= 4.84E+01 4.76E+01 + 5.03E+01 3.890E+402 £ 9.96E+4+01 § |5.31E+02 + 2.85E4-01
t Algorithm converged before using the maximum allowed fitness evaluations
Table 5.9: Comparison with other RCMAs in terms of FEs (N=30)
DEahcSPX MGG+UNDX G3+PCX MGG4-SPX
Fsph 87027.4 £ 3967.3 (50) 200515.5 % 6743.2 (50) 2640.1 + 104.9 (50) -
Fros 299913.0 = 519.5 (2) - 177783.9 + 71145.1 (34 -
Fack 129211.6 £ 5168.6 (50) 294226.7 £ 4359.5 (40) - B
Fyrw 121579.2 + 79563.4 (43) 238310.7 £ 13968.8 (42) 14560.6 £ 12576.4 (20) § -
Fras - 299583.6 + 2102.0 (2) - -
pnl 96149.0 £ 61787.7 (46) 185258.4 & 7436.3 (44) - -
Fpn2 85360.2 = 6390.6 (50) 209272.8 £ 19680.5 (48) - -
Fy 89417.8 4 4117.6 (50) 206630.6 £ 5771.4 (50) 2649.2 4 121.3 (50) { -
I27 299279.4 + 3685.9 (3) - 13290.7 + 569.1 (50) i -
Fy B - 177617.4 + 110147.4 (24) -
Fy 148067.7 = 68006.3 (42) | 257533.8 £ 34064.9 (35) 9314.4 = 4281.8 (20) { -

1 Algorithm converged before using the maximum allowed fitness evaluations

-

5.5. Comparison with other EC 78

In these experiments, the MGG+SPX algorithm could not achieve the target
accuracy levels for any function of the test suite. The MGG+UNDX algorithm
achieved a slightly better error average for some functions (Fyrw, Fras, Fsat, F3, F7
and Fyo) but was outperformed by DEahcSPX for the other functions. Moreover,
according to Table 5.9 the average fitness evaluations used by DEahcSPX were
fewer than that used by MGG+UNDX to achieve the target accuracy levels e.
The performance of G3+PCX was really outstanding for unimodal functions like
Fon, Foos, Fiy and F,. But its performance was really poor for the multimodal
functions. In most of the cases, the algorithm converged quickly without reaching
the error accuracy level and without exhausting the maximum fitness evaluations
as indicated in Table 5.8 and 5.9. So, in general it can be concluded from Table
5.8 and 5.9 that the proposed DEahcSPX exhibits overall better performance than
the other algorithms of the tables. These results also establish it as a competitive

alternative for real parameter optimization problems.

Table 5.10: Comparison with MA-52 [94]

Range MA-S2 DE DEahcSPX
Fsphere [=5.12,5.12]°" | [Global min in 100%] 7198 Evals | 4.27E-05 £ 1.18E-05 | 2.56E-06 £ 1.06E-06
Fericwank [=600, 600]"° 2.80E-04 + 8.28E-04 3.44E-02 & 2.05E-02 | 2.77E-02 4 1.24E-02
FRump [0, 1020 7.34E-01 # 2.22E-02 0.7999 + 0.0024 8.02E-01 + 3.87E-03
Fshekels Fos Hole | |[—65.536,65.536]2 | [Global min in 100%] 9634 Evals| 0.998 £ 5.09E-16 0.998 + 7.208-17
FSehwefol [~500, 500}° [Global min in 80% | 1.27E-04 + 3.73E-13 | 1.27E-04 = 0.00E+00
Frosenbrocte | [—2.048, 2.048]%¢ 2.57E4+04 & 6.00E<01 2.44E-+01 4 7.3215-01 | 2.15E4-01 & 7.35E-01
Fstep [~5.12,5.12]%Y 1.63E-01 + 3.10E-02 [13967.7 & 738.07) | [13846.6 + 621.95)!
Frastrigin [~5.12,5.12]*° 1.55E-01 + 7.10E-02 2.14E-01 & 1.53E-01 | 6.02E-02 & 1.00E-01 |

t Global optimum 0.0 found using these FEs counts

The proposed DEahcSPX algorithm was also compared with other MAs with
binary coding and real coding using the published results. To show that the pro-
posed AHCXLS is equally suitable for the exponential crossover scheme, in these
comparisons exponential crossover was used in DE and DEahcSPX instead of bi-
nary crossover. First, comparison was performed with self-adaptive MA scheme
MA-S2, which is the best of the two adaptive MAs proposed in [94], and also ex-
hibited overall superior performance compared to nine other traditional MAs. The
comparative results are presented in Table 5.10 in terms of 8 benchmark functions
used in [94], among which the Bump function (Fpumyp) is a constrained maximiza~
tion problem whether all the others are unconstrained minimization problems. The
maximum FEs allowed to solve each function was 40,000 except for Fgym, where it
was 100,000. The results presented are average of 20 repeated runs as in [94]. From

Table 5.10 it can be found that for Fgump, Frosenbrocks FStep and Fraserigin functions

5.5. Comparison with other EC 79

the DEaheSPX algorithm clearly outperformed the MA-S2 algorithm. And for the
other 4 functions apparently it seems that MA-S2 exhibited superior performance.
But, if we consider the accuracy level that can be achieved using 10 bit binary cod-
ing for the respective search ranges in MA-S2 then the performance of DEahcSPX

using real coding was very competitive or even better.

Table 5.11: Comparison with RCMA [69]

Range RCMA-XHC DE DEahcSPX
A B A B , A B

Fspn [-5.12,5.12)*° 6.50E-101 | 1.10E-105 | 6.91E-18 8.63E-19 2.58E-20 6.16824E-21
Fros | [=5.12,5.12)%° 2.20E+00 | 6.00E-04 1.32E-01 2.48E-02 1.20E-02 1.13E-03
Feen |[~65.536,65.536)°° | 3.80E-07 | 4.50E-09 1.478+01 | 5.53E400 2.48E-01 4.98-02
Fres | [-5.12,5.12)%° 1.40E+00 32.00% 6.50E-11 6.09E-12 | 3.48404E-12 | 6.75016E-14
FGes [~600, 600)2° 1.30E-02 30.00% 1.48E-04 1.54E-14 | 8.75566E-14 18%
Py [-127,127)10 5.50E+01 7.9015-01 8.25E-04 1.98E-05 6.17TE-04 8.76E-08
Pehes [~6.4,6.35]° 1.40E+02 | 9.20E+00 | 0.00E400 100% 0.00E-+00 100%
Pfons (—512,512)% 7.70E-+00 40% 2.685E+00 | 1.10E-23 2.22E--00 1.43E-04

A: Average of the minimum fitness found; B: best of all minimum fitness or percentage of run that found
global optimum

Then, the proposed algorithm was compared with the results of the RCMA pre-
sented in [69]. Comparing with other 21 variants of real coded memetic algorithms
Lozano et. al showed that, in general, their proposed RCMA outperforms all other
algorithms [69]. Table 5.11 shows comparative results for 5 benchmark functions
and 3 real-world problems as used in [69]. The same performance measure criteria
as used in [69] was used; A: average of minimum fitness found in 50 repeated runs;
B: best of all minimum fitness in 50 runs or the percentage of run in which the
global optimum was found (if some runs located the global minimum). The maxi-
mum FEs allowed in each run was 100,000. From Table 5.11 it can be found that
the performance of RCMA was better than DEahcSPX only for Fgy, and Fgep, and
in all other case the average performance of the proposed algorithm was better than
that of RCMA. Hence, in an average the DEahcSPX algorithm outperformed the
RCMA on the studied benchmark and on the real world problems.

Finally, the proposed algorithm was compared with the Dynamic Multi-Swarm
Particle Swarm Optimizer with local search (DMS-PSO) algorithm using the results
reported in [65]. Table 5.12 compares DMS-PSO, DE and DEahcSPX for the 10
benchmark functions used in the test suite (F} to Fig). The results are the average of
25 runs under the same experimental conditions. As shown in Table 5.12, for Fj, F3,
F; and Fyo DMS-PSO outperformed DEahc¢SPX. In particular, the performance of
DMS-PSO was extra-ordinary for the first three unimodal functions. In contrast, for
F,, Fs, F; and Fy, DEahcSPX outperformed DMS-PSO considerably. For the other

5.5. Comparison with other EC

80

Table 5.12: Comparison with DMS-PSO [65] at N=30

DMS-PSO

DE

DEahcSPX

Fyg

[5026.3 = 72.463] '
[125520 £ 17371) 7
1.63E-06 + 3.92E-06 (84%)
2.55E+03 £ 3.06E+02
2.19E+03 + B.26E+02
4.78E-01 + 1.32E+00 (98%)
7.00E-03 £ 4.54E-03 (96%)
2.00E+01 % 2.30E-04
1.76E+01 £ 3.02E+00
3.74E+401 £ 5.20E400

[64546.85 = 1097.25] T
1.33E-02 £ 6.72E-03
1L85E-+06 £ 1.O5E+06
9.16E+01 + 4.53E+01
3.27TE+03 + 8.75E+02
[161762.1 + 3765.823] 1
7.96E-02 + 5.99E-02 (16%)
2.09E+01 5.35E-02
[60441.55 £ 2015.97] 1
L20E+02 & 1.42E+01

[54959.52 + 1184.39] T
4.87E-05 £ 2.74E-05
9.80E+05 =& 5.56E+05
1.14E-00 + 6.16E-01
2.15E+03 £ 7.04E+02
[146963.32 + 5613.87)
5.64E-04 + 2.03E-03 (98%)
2.10E+01 & 5.52E-02
[67163.12 + 1879.38] 1
9.51E4+01 & 1.45E-+01

T Target accuracy level achieved using these FEs counts

two functions F5 and Fg no performance difference was observed. The results of

Table 5.12 suggest that DMS-PSO is exceptional in solving unimodal problems, and

can also handle multimodal problems competitively. On the other hand DEahcSPX

exhibited superior performance in solving multimodal functions compared to DMS-

PSO.

In all of the above comparisons in Table 5.10, 5.11 and 5.12 DEahcSPX consis-

tently exhibited superior performance compared to original DE which establishes

that AHCXLS scheme is equally suitable for the exponential crossover scheme.

Table 5.13: Study on the suitability of AHCXLS for DESP

DESP

DESPaheSPX

'psph
Fros
Irm'k
Fgrm
-I;'Tﬂ!i
Faen
Fsat
Funt
Fp'nl

[50808.08 = 1178.07] |
1L42E4+01 4 1.61E+01
[71779.96 £ 1507.12]
[53679.6 % 3113.15] 1
[108502.52 4 4027.63] 1
3.82BE-04 + 0.00E+00
1.92E-01 £ 2.77E-02
3.47E+01 £ 5.88E+01
[44659.36 + 1361.99] |
[49224.72 £ 1224.12] 1
[50269.24 £ 1183.61] *
6.86E-07 + 5.81E-07 (80%)
1.89E405 + 1.04E4+05
3.74E-02 + 8.86E-02
4.25E+02 + 4.07TE+02
2.60E+01 £ 2.79E401
1.60E-02 £ 1.17E-02 (52%)
2.09E+01 + 3.66E-02
[83861.84 + 2510.90] 1
5.71E+01 + 9.83E+00

[40056.12 & 967.89] T
1.30E+01 + 1.72E401
[68920.68 + 1316.83] '
[43412.68 + 2190.17) !
[102456.6 + 4775.19] !
3.82E-04 £ 0.00E+00
1.36E-01 4 4.90E-02
2.83E4-01 + 5.60E4-01 (4%)
[36064.04 + 1181.63] !
[39508.88 = 1035.98] !
[41245.92 + 1167.10] !
2.83E-07 + 3.94E-07 (92%)
1.74E405 + 1.04E-405
2.11E-02 + 3.17E-02
3.78E402 £ 4.37TE+02
2.20E401 + 2.55E4+01
1.28E-02 + 8.51E-03 (76%)
2.09E+01 £ 5.90E-02
[81091.8 + 3372.61] !
5.35E401 + 8.13E400

T Target accuracy level achieved using these FEs counts

5.6. Other Studies of AHCXLS scheme , 81

5.6 Other Studies of AHCXLS scheme

In all experiments F = 0.9 and C, = 0.9 were used as the parameter setting for
all algorithms. As mentioned earlier, because of the sensitivity of DE to its con-
trol parameter, some variants with adaptive control parameter have been proposed
(15, 68, 150]. In order to show that the proposed AHCXLS scheme can also accel-
erate such adaptive DE variants, it was incorporated in a recent DE variant with
self-adaptive control parameters (DESP) proposed in [15]. The new variant was
named as DESPahcSPX. The comparative results (average of 25 runs) with the
same settings as in [15] (N=30 and P=100) are reported in Table 5.13. The results
of Table 5.13 suggest that integration of AHCXLS in DESP has certainly accel-
erated the algorithm. These results also indicate that the acceleration of DE by
AHCXLS scheme is not influenced by the parameter settings. Hence, the AHCXLS
scheme can be similarly useful for performance enhancement of other self-adaptive
DE-variants.

The only parameter AHCXLS scheme includes is n,, the number of parents
participating in the crossover operation. The authors of SPX operation suggested
that the number of parents should be 3 or 4 [131], and hence n, = 3 was used in
this study. However, the effect of n, on the performance was studied using n, = 4,
5,6, 8, 10, 12 and 15. Table 5.14 compares the performance for some of the choices.
From Table 5.14 it seems that in general a higher number of parents, n, can slightly
improve the performance of the algorithm. However, the effect should be studied in
more detail by varying population size and problem dimension which is out of the
scope of this research.

Another issue in the AHCXLS scheme is the selection of parents other than the
best individual of the generation. In this chapter, they were chosen randomly. How-
ever, incorporating the knowledge obtained during the search in selecting parents
(other than the best) for SPX operation can further improve the performance. The
effect of positive assortative mating (PAM) and negative assortative mating (NAM)
on the algorithm performance were briefly studied. After selecting the first parent,
PAM (NAM) selects other individuals with most (least) phenotype similarity. Here
Euclidean distance between chromosomes was used as a measure of similarity be-
tween them. The results shown in Table 5.15 suggest that NAM can be useful to
improve the performance of the algorithm, mostly for unimodal functions. How-
ever, considering the performance improvement achieved and the additional compu-
tational cost incurred in NAM, the random mating used in this work can be used as

a computationally less expensive approach. Many other sophisticated mechanisms

5.6. Other Studies of AHCXLS scheme

Table 5.14: Study of n, for AHCXSL operation (N=30)

np =5

np = 8§

P;ph
Fi'()ﬁ
F‘n(‘k
FQY"},’
ras
‘svh
Ffmi
tht
anl
P})n?
13
Fy
£y
Fy
Fy
Fg
Fy
Fy
Fy
Fig

[83198.68 & 4951.30] T
2.23E+00 £ 2.27E400
[124043.36 + 5526.48] '
2.76E-03 + 4.73E-03 (72%)
2.09E401 + 6.72E+00
5.50E+402 £ 3.11E+02
1.72E-01 + 8.91E-02
3.03E402 * 1.00E402
1.66E-02 + 3.88E-02 (84%)
6.54E-02 + 3.18E-01 (80%)
[84284 £ 3930.25] 1
2.36E-05 + 3.78E-05
3.91E+05 + 1.93E+05
5.36E-01 + 5.40E-01
8.20E+01 £ 1.31E402
1.55E+00 + 2.49E+00 (20%)
6.89E-03 + 9.63E-03 (76%)
2.10E+01 + 4.69E-02
1.98E+01 + 6.45E+00
5.22E+01 £ 6.11E+01

[82087.64 + 3546.02] T
1L.56E+00 + 2.44E400
4.62E-02 + 2.31E-01 (96%)

1.58E-03 + 4.91E-03 (88%)

1.82E+01 + 5.42E400
5.26E4-02 £ 3.98E-402

1.61E-01 & 4.90E-02
313E+02 4+ LO2E+02

8.29E-03 + 4.15E-02 (96%)

1.45E-01 + 7.19E-01 (88%)
[81488.92 + 3881.04] 1

1.84E-05 + 2.73E-05 (4%)

3.65E405 + 2.03E+05
5.01E-01 + 7.05E-01
119E402 + 1.76E+02
9.37E-01 + 1.56E+00 (12%)
4.63E-03 + 6.45E-03 (84%)
2.09E+01 + 4.26E-02
1.86E+01 + 4.91E-+00
5.96E+01 4+ 6.69E401

np = 10

ny, = 15

Fl;ph
Fros
P:)rk

~‘:qr‘m
Fras
Iiﬂsrh

sal

Funi

I‘ynl
%n2
P

-

Y
Fy
Fy
Fy

Fy
Fy
Fy
Fig

[80547.52 £ 3112.62] T
L87TE+00 £ 2.11E-+00
[121583.2 £ 5885.61]
3.44E-03 + 7.99E-03 (76%)
1.BOE+01 + 5.47TE4+00
4.91E402 + 2.20E402
1.50E-01 + 5.00E-02
31TE+02 + 9.11E401
2.49E-02 + 1.05E-01 (92%)
1.44E-01 + 7.19E-01 (92%)
[79089.92 + 3227.048] !
3.62E-05 + 3.17E-05
4.17TE+05 + 2.44E+05
5.98E-01 £ 7.76E-01
741E+01 £ 8.41E+01
1.65E+00 + 3.22E4-00 (24%)
3.16E-03 + 4.90E-03 (92%)
2.09E+01 + 4.18E-02
1L.98E+01 + 6.95E400
5.79E-+01 £ 6.67E+01

[77132.88 + 4603.41] T
1.49E400 £ 2.15E400
[116291.16 4 4177.22] |
2.86E-03 £ 4.48E-03 (68%)
1.73E+401 £ 6.32E400
5735402 -+ 2.97TE402
1.54E-01 & 5.72E-02
2.81E+02 £ 1L.OTE+02
249E-02 + 8.61E-02 (88%)

8.79E-04 + 3.04E-03 (92%)

[78427.72 + 4491.97) !
2.35E-05 + 2.88E-05
4.05E+05 + 1.80E+05
1.38E+00 % 3.60E+00
6.98E+01 + 7.52BE+01
7.18E-01 % 1.16E+00 (16%)
4.83E-03 + 7.22E-03 (92%)
2.09E+01 + 4.29E-02
1.99E-+01 + B.55E+00
4.55E+01 + 5.69E+01

¥ Target accuracy level achieved using these FEs counts

5.6. Other Studies of AHCXLS scheme

83

Table 5.15: Comparison with different mating selection mechanisms for the SPX
operation in DEaheSPX

PAM

NAM

P‘sph
F‘f‘{)s
F‘m‘k
Fgﬂﬂ
Fras
Fs‘rh
}:sul
tht
Avpnl
P}JYZE
Fy
F
Ey
Fy
Fy
Fs
Fr
Fy
Fy
Fio

[71637.24 £ 3602.63] T
LIGE+00 + 1.53E+00
[139184.34 + 6239.022] f
4.87E-03 £ 9.30E-03 (66%)
2.38E-+01 £ 7.81E+00
6.28E+02 + 3.82E+02
2.45E-01 + 5.71E-02
2.80E+402 + 1.11E4-02
5.62E-02 + 2.00E-01 (86%)
B.79E-04 + 3.01E-03 (92%)
[93801.62 + 4809.75] *
2.27E-04 £ 2.59E-04
4.38E+05 + 2.52E+05
6.51E+00 £+ 3.38E+01
1.52E+02 £ 1.73E+02
4.78E+00 £ 1.OGE+01 (10%)
9.50E-03 + 9.31E-03 (33%)
2.09E+01 £ 5.37E-02
2.11E401 £ 6.01E400
8.65E+01 + 7.53E+01

[57435.96 + 3656.022]
2.55E-01 + 7.90E-01
[118600.28 + 5720.94] T
1.72E-03 £ 5.19E-03 (88%)
1.88E+401 £ 6.08E-+00
5.10E402 + 2.94E402
1.90E-01 + 3.64E-02
3.39E402 £ 6.35E401
6.22E-08 £ 2.49E-02 (94%)
4.39E-04 + 2.17E-03 (96%)
[78479.86 £ 4113.097] |
9.34E-05 + 1.53E-04
5.16E405 £ 2.2TE+05
7.74E-01 # 1.05E400
5.14E4-01 * 5.60E4-01
2.07E+400 £ 2.39E4-00 (10%)
5.42E-03 + 7.71E-03 (78%)
2.09E+01 % 5.80E-02
1.97E+401 + 5.62E400
7.62E401 + 7.42E4-01

T Target accuracy level achieved using these FEs counts

available can be used for getting online feed-back from the search that can help to

improve the quality of the local tuning at the expense of some computational effort

95, 11, 60].

Chapter 6

An Algorithm for Reconstructing

Genetic Networks

This chapter is devoted to the study of gene regulatory network reconstruction in
simulation. First the evolutionary framework that was developed for reconstructing
genetic networks from time series data using the decoupled S-system as the model
of regulatory interaction among the genes is presented. Then the capability of the
reconstruction methodology to predict the network topology and the regulatory
parameters is investigated varying network dimension, amount of gene expression
data for inference and the noise level present in the expression profile.

From the study of Chapter 4 and from many other studies it was evident that
any evolutionary algorithm in its basic form is inadequate for estimating the exact
network structure and the regulatory parameter values of the network. Therefore,
we need to develop more sophisticated and advanced methodology for inferring the
network topology as well as kinetic parameters. And incorporating some intelligent
heuristics in the reconstruction mechanism often significantly improves the capabil-
ity of the algorithm for such complex problems.

The developed system for inferring the transcriptional regulations in a biochemi-
cal network is an enhanced mernetic algorithm that takes advantage of the embedded
local search mechanism. The proposed memetic algorithm was designed targeting
several issues such as identifying robust transcriptional regulations, estimating pre-
cise kinetic parameters, attaining skeletal network architecture and above all com-
putational efficiency. The optimization engine, the core of the algorithm, was im-
plemented using a reliable and robust optimization algorithm DEfirSPX developed
and analyzed in chapter 4. Besides, the exploitation capability of a hill climbing

local search heuristic for efficient identification of sparse network structure was used.

6.1. Reconstruction Algorithm 85

Moreover, double optimization was employed for defecting robust regulatory inter-
actions and special means was taken for maintaining the population diversity for

global convergence.

6.1 Reconstruction Algorithm

In the developed methodology for estimating the S-system parameters, the objective
function (3.17) or (3.18) is optimized for each sub-problem ¢ (i = 1-.-N) using a
modified DEfirSPX algorithm with a local search procedure (described later). For
explaining the inference algorithm the case of gene i is taken as an example. Same
is used for other sub-problems to obtain a complete set of parameters for the full
network.

The genetic network reconstruction problem is strongly non-linear and highly
multimodal that causes the search procedure to stick in a local optimum. Therefore,
to avoid premature convergence to some local minima optimization was performed
using a two step method commonly known as double optimization. In double op-
timization a second phase of optimization is performed on different local solutions
obtained in first phase. Double optimization is useful for identifying essential pa-
rameters automatically and hence was found useful for detecting robust regulatory
interactions in genetic networks [54, 6, 87]. In each phase, the parameter values of
the gene are represented as an individual of DEfirSPX (as mentioned earlier). Two
phases of the proposed algorithm are explained taking the sub-problem correspond-
ing to gene ¢ as an example.

Phase 1: At first, I" repeated trails of optimization of the fitness function of
(3.18) were performed starting from different random initial solutions. In each of
these trials, the optimization was performed using DEfirSPX algorithm with a hill
climbing local search procedure (explained later). Each of these trial runs gives a
solution of the sub-problem i.e. a set of parameters for the target gene-i. However,
some optimization trials may converge to some local optimum and may fail to infer
the actual parameter set.

Phase 2: Since we assume some solutions in Phase 1 are possibly local solu-
tions, they may not identify all the target regulations and the parameter values
may be significantly different in different solutions. Therefore, in order to obtain
more robust network structure and accurate parameter values another optimization
was performed on the elite individuals from different trails of Phase 1. The best

individuals from each of the I trials were selected and some random individual were

6.1. Reconstruction Algorithin 86

added to form the initial population and then the optimization was performed using
the same fitness function and algorithm.

If the solutions obtained from different trials of Phase 1 are local solutions
they retain some essential regulations. So applying another optimization on these
solutions we can expect to identify all the correct regulations with accurate strengths
and avoid the loss of any necessary interaction. The schematic diagram of the

complete algorithm is illustrated in Fig. 6.1.

Stage 1 - -
/ Optimization 1 Elite Sol. : S

g_Ea Stage 1 - .S -
G Optimization 2 Elite Sol. : §2 \ Stage 2 E
a . . Optimization)
1 . : i — m
£ . :
= : :
wn \ . .
; Stage 1 \ .
Biite Sol.: ST
1\ J 1\ J \. J
Y Y Y
Optimize using Possible local Double optimization of
modified DEfirSPX minima local minima and random
with local search solutions using modified
- DEfirSPX with local search

Figure 6.1: Optimization procedure for subproblem i

Mutation Phase

In EAs the mutation operator serves to create random diversity in the population.
Traditionally, mutation has always been used as a secondary mechanism in compar-
ison to crossover. Since DE/DEfirSPX does not have a direct mutation operation in
this reconstruction algorithm a mutation operation is periodically applied to intro-
duce new traits in the population and to escape local minima thereby. The mutation
process works as follows: If the fitness of the elite individual does not improve for G,
generations then all the other individuals in current generation are passed through
the mutation phase. Here, the Gaussian mutation was applied with mutation prob-
ability p.,,. Gaussian mutation realizes the mutation operation by adding a random
value from the Gaussian distribution. For mutating the rate constants of an individ-

ual the random numbers are drawn from a Gaussian distribution with mean p, = 0

6.1. Reconstruction Algorithm) 87

and standard deviation o, and for mutating the kinetic orders the random numbers
are drawn from a distribution with mean p = 0 and standard deviation oy.
In each stage of the algorithm the overall optimization procedure for estimating

the model parameters for each subproblem can be summarized as follows:
1. Prepare initial population Pg with candidate solutions

2. Create the new generation Py, of candidate solution applying recombina-

tion/selection operation of DEfirSPX

3. Apply local search to the best individual and a randomly selected individual

of the new generation Pg.)

4. If fitness of the elite individual does not improve for G, generations then apply

mutation to non-elite individuals

5. Stop if the termination criteria satisfied. Otherwise Set G=G+1 and go to
Step 2

In phase 1 the initial population Pg is created randomly. And T’ trails of this
phase 1 is repeated. In Phase 2 the elite individuals from different trials of Phase 1

together with some random individuals are used for initialization.

6.1.1 Local Search Procedure

In order to provide an effective global optimization method some metaheuristics
or local searches are often embedded inside the evolutionary algorithm. Therefore,
a local search method was introduced inside the DEfirSPX algorithm. This local
refinement procedure performs a greedy search operation around the best individual
and a random individual of each generation. The local search around the best
individual and a random individual will accelerate the optimization process as well
as maintain the diversity of the population. The local searching is performed as
follows: All the kinetic orders are sorted in ascending order of their absolute values.
Then the kinetic order of the lowest absolute value is set to zero. And the fitness
of this new individual is evaluated. If this modification improves the fitness of the
individual then new solution is accepted otherwise it’s parent solution is restored.
And this process repeated for all the kinetic order in increasing order of their absolute
values. This local search process allows to identify the zero valued parameters by
mutating them in the increasing order of their strength and thus helps to identify

the skeletal network structure. And the restore capability of the greedy search also

6.2. Reconstruction Experiments and Results 88

allows to recover from wrong elimination of any essential regulation. Hybridizing
this greedy local search procedure with the DEfirSPX algorithm we can identify the

sparse network structure efficiently and the strength of regulations more accurately.

6.2 Reconstruction Experiments and Results

In order to investigate how successfully the proposed method can reconstruct the
network topology and estimate the kinetic parameters first it was evaluated by
simulation. Three artificial networks of different dimensions and characteristics
were used for this purpose. First, these artificial networks were simulated to obtain
synthetic microarray data sets and then the reconstruction method was applied for
reverse engineering the networks from these data sets. The details of the experiments
and the outcomes follow in the subsequent sections.

If an insufficient amount of time series data is used for estimating the parameters
for S-system model many candidate solutions will evolve due to the high-degree of
freedom of the model [77]. This is because, it is only one path in a phase diagram
and from such a single path no general conclusions about the overall behavior of
the dynamic system can be drawn [124]. Use of multiple set of observed response
under different environmental condition can be helpful in identifying the behavior
of a dynamics system. Generally, a gene expression profile consisting of T x D
expression measurements, 7' in each experiment under D different environmental
conditions, will contain more information than an expression profile of (7" x D) data
points collected from a single phenomenon [25]. In addition, earlier experiments have
shown a single set of gene expression data is not sufficient to reconstruct the network
accurately [54, 56, 124] and use of multiple different expression profiles can enhance
accuracy of the reconstruction methodology. Therefore, in these simulations multiple
set of gene expression data were used for identifying the regulatory interactions in

the target genomic networks.

6.2.1 Small Scale Network Inference

As a first study, the proposed approach was tested using a well studied small scale
network model NET1. The system, consisting of five genes, adequately demon-
strates different types of positive and negative mode of regulatory controls among
the reactants. The network is shown in Fig. 6.2 and the target S-system parameters
for the network are listed in Table 6.1.

In this typical regulatory system the gene interaction takes place centering two

6.2. Reconstruction Experiments and Results - 89

I ~ L.
P0034t—>X [(mRNA) —> paal,-‘—-» X, (mRNA)—s

+
pool; t—-.X s(Regulation— pool,—+X (. El”l{}’me)‘“‘
Protein) l-

Inducer Protein

Figure 6.2: Small scale genetic network NET1

Table 6.1: S-system parameters for network model NET'1

& g Y2 93 Gia gs Bi ha ho g ha his
50 00 00 10 00 -10 100 20 0.0 00 00 0.0
100 20 00 0.0 00 0.0 100 00 2.0 00 00 0.0
100 0.0 -1.0 0.0 00 00 100 00 -1.0 20 0.0 0.0
80 00 00 20 00 -1.0 100 00 0.0 00 20 00
100 0.0 00 0.0 20 00 100 00 00 0.0 00 20

U o W DD | e

genes (genes 1 and 4). X1 is the mRNA produced from gene 1, X2 is an enzyme
protein gene 2 produces, and X3 is an inducer protein catalyzed by X2. X4 is
an mRNA produced from gene 4 and X5 is a regulator protein produced by gene
5. Positive feedback from the inducer protein X3 and negative feedback from the
regulator protein X5 are assumed in the mRNA production processes of genes 1
and 4. This model has been developed to analyze the interaction of regulator and
effector genes. In this study, this model was used as an example that is well-studied
and has feedback loops. Using the same set of parameters as found in many other
studies [129, 54, 56, 88] the results can be easily compared with early approaches.
As mentioned earlier, many candidate solutions evolve if the model parameters
are estimated using insufficient amount of time series data. Therefore, M = 10
sets of time series data were used for ensuring sufficient amount of observed gene
expression levels. The sets of time-series were obtained by solving (3.5) on the
model of Table 6.1. Initial concentration level for each time series was generated
randomly in [0.0, 1.0]. Sampling 11 points from each time-course 10 x 11 = 110 gene
expression samples were used for each gene. Then 5% Gaussian noise was added to
the time series data in order to simulate the measurement error between the true

expression and observed expression.

6.2. Reconstruction Experiments and Results 90

Table 6.2: Inferred parameters for network model NET1 from 5% noisy data
a, gi 92 9i3 Gi4 9s5 S ha hia g fia hig
1804 0000 0.000 1.209 0.000 -1.613 7.505 1996 -0.150 0.000 0.000 -0.060
10.827 2358 0.000 0000 -0.109 0000 11189 0000 2.609 0000 0000 -0.390
9.883 0000 -0.913 0000 0000 -0.103 10730 0000 -0.889 2248 0.000 0.000
7.687 0.000 0.000 2231 0000 -0.992 10.550 0505 0.000 0000 2113 0.000
12280 0.000 0.000 0413 1471 0.000 10.800 0000 -0.138 0.000 0.000 1.495

U VS

Experimental Setup

The experiment was carried out under the following setup. The search regions of
the parameters were [0.0,20.0] for a; and 3;, and [-3.0,3.0] for ¢;; and h;;. The
maximum cardinality [was chosen 5, and the penalty coefficient ¢ was 1000.0.
The parameter values for memDE algorithm were F' = 0.5, CF = 0.8 and L = 10,
population size was 60 and the maximum number of generation in each trial of
Phase 1 and in Phase 2 was 850. In Phase 1, 5 (I'=1,--- ,5) independent trial
solutions were evolved from which elite individuals were selected for optimization
in Phase 2. The parameter values for the mutation phase were p,, = 0.01, o, = 3.0
and o = 1.2. In Phase 1 of the optimization, G, = 100 and in Phase 2, G, = 200
were used. The algorithm was implemented in Java language and the time required
for solving each subproblem was approximately 12 minutes using a PC with 1700
MHz Intel Pentium processor and 512 MB of RAM.

In order to reduce the computational burden a structure skeletalizing was applied
in a similar fashion used by Tominaga et al. in [129]. If the absolute value of a
parameter is less than a threshold value § then structure skeletalizing resets it to
zero. This process reduces the computational cost as well as helps to identify the
nonexistent regulations. In different experiments § = 0.001 was used. For assuring
the soundness of the stochastic search algorithm 10 repetitions for each experiment

were performed.

Result

Table 6.2 shows the parameters estimated by the developed algorithm in a typical
run. From the 5% noise corrupted data the method method extracted all the correct
regulations and a few false interactions. The number of false-negative interactions
was zero. Many of the zero valued parameters were identified correctly but in some
cases estimated kinetic constants were not very precise and some false predicted
parameter values were too large to ignore. Nevertheless, all the core interactions were

identified correctly and parameter values were estimated with reasonable accuracy.

6.2. Reconstruction Experiments and Results 91

Figure 6.3: Structure of the artificial gene regulatory network NET2. Solid and
dashed lines show synthetic and degradative influences, respectively

6.2.2 Medium Scale Network Inference

In this experiment, the performance of the proposed algorithm was investigated us-
ing a 20 gene network NET2. The topology of the network was created randomly
with a maximum indegree limit and then formulated the network in S-system for-
malism. Fig. 6.3 shows the network structure and Table 6.3 contains the parameters
which were chosen arbitrarily. This artificial network models several types of reg-
ulations (e.g. auto-regulation, cyclic- regulation, feed-back regulation) commonly
found in bio-chemical networks, which makes it a standard simulation model. The
network model NET2 was simulated with random initial concentrations chosen from
[0.0,1.0] and 20 sets of synthetic microarray data were generated. From each time
course data 11 samples were used for inferring the model parameters. Experiment
were performed both in noise free ideal and noisy conditions. This time 10% Gaus-

sian noise was added to the time series to simulate a more noisy environment.

Experimental Setup

Since the developed methodology is a stochastic search process its reconstruction

capability was verified in ten repeated runs under following conditions. The popu-

6.2. Reconstruction Experiments and Results 92

Table 6.3: Target S-system parameters for NET2

g, | G315 = —0.7, 951 =10, go.1 = 2.0, gro = 1.2, gr3 = —0.8, gr10 = 1.6,

gs3 = —0.6, gog = 0.5, go5 = 0.7, g106 = —0.3, g1014a = 0.9, gn17 = 0.5,

G121 = 1.0, g1310 = =04, g1317 = 1.3, g1ann = =04, g155 = 0.5, gis.11 = —1.0,
G518 = —0.9,91612 = 2.0, g1713 = —0.5,018.14 = 1.2, g1o.12 = 1.4, gr917 = 0.6
92014 = 1.0, g2017 = 1.5, other ¢, ; = 0.0

hij 1.0 if (i = j), 0.0, otherwise

lation size was 210 and the maximum number of generation in each trial of Phase 1
and in Phase 2 was 2400. Other conditions were same as in Sec. 6.2.1. The average
time for solving each sub-problem was approximately 15.5 hours using a PC with
1700 MHz Intel Pentium processor and 512 MB of RAM.

Results

Under noise free condition, the proposed method successfully predicted the exact
network architecture and also determined the type of regulation (activation/inhibition)
correctly in each of the 10 experimental runs. The process also estimated the kinetic
parameters with high accuracy under noise free condition which are presented in Ta-
ble 6.4. And the typical regulations estimated for NET2 from 10% noise corrupted
time series are shown in Table 6.5. In 10% noisy environment the proposed method
failed to predict a few regulations in the target network and predicted some false
interactions. Some of these false regulations can be ignored because of the strength
of the affectivity whereas some are too strong to ignore. From 46 true regulations of
the target network, the algorithm inferred 44.8 4+ 0.421 true-positive, 53.8 £ 0.421
false-positive and 1.2 £ 0.421 false negative interactions, on an average in 10 exper-
imental runs. The possible reason for such failure is the noise in the experimental
data and the accuracy can be increased using additional time-series data.

In order to further investigate the capability of the method in identifying different
types of transcriptional regulations in a genetic network, the NET2 was modified
adding some degradative regulations and self-regulatory synthetic regulations. This
modified network is denoted as NET3 and the parameters are shown in Table 6.6.
Then reconstruction experiments were performed under the same conditions as used
for NET2 (Section 6.2.2), and the method was successful to identify almost all
regulations in the network with pretty accurate parameter values. In 10 repeated
trials of experiment, the algorithm predicted 53.6 £ 0.516 true-positive, 45.2 & 0.788

false-positive and 1.4 + 0.516 false-negative regulations out of 55 true regulations,

93

Reconstruction Experiments and Results

6.2.

0= "y pue g = £16 130

890’1 = 0z 02y 6610~ =100y FIgL =0y 9er'0— = 0005 (] =L1006 pgo =106 geey = 0o (g ouen)
P06°0 = 6161y GO0 =61y RIO0 =6y 9gL 01 =6y grg0=T616 ceep =266 g0l = 610 6] ouep
8L0°1 = BI8ly G000 = T8y pRO0— =PISly 1oL8 =%y gcp— =SIRIF gggy =VISIH gp) g =Slo Q] ousx)
Pr60 = LULly 9000 = 14y 6000 = ITily IPE01 = 41g 88%°0— = E1L6 ¢opo— = 216 gpg0l = 410 L] sudn)
Le1L = Eohy ST00— =2 TR =9 9900 =996 gz =EO gIp0- = V96 IS = v 9T vuen
£16'0 = <T<ly 9810~ = ¥y y6E Il =51g p68°0— =516 ggeo— =116 0gg0 =896 011 = S'0 g uan
1601 = Vivly $00'0— = €71y ¢gL6 = Yig 6000 = P16 QOy0— = TI'VI6 pppo— = 6¥6 g6L6 = YO H] ouon)
6v0°0— = LT'€ly cg1l = ey Gge'8 = Elgf Tev 1 = L1816 1e0°0— = £T€16 gop0— = 0TS gge'g = £lo ¢ ouay)
00— = €12ty 00T =21y 6966 =21 9000 =9¢F po00— =TT gee0 =6 9866 = ¢lv gl dwn
[10°0— = 'y 1980 =""TY g0 ="Lly g9 =Ty 2pp0=1*16 9rp0 =116 g9 1T = o [T ewapn
6201 = 0T0y gI00— = 10ty 876 = 0 €060 = Y1016 gpp0— = 01016 Qggp— = 9016 gggg = Olo (] oudx)
6301 = 66y 120°0— = 6y 08¢'6 = 6¢ Z60°0— = 660 £6L0 = 966 £cg') = V66 11€6 =60 g oudn
0660 = 88y €100 = ¥8y 880701 = 8¢ 7860~ =86 620701 = ¥ g oudn

986°0 = L1y 1100 = 'y 96101 = 4¢ 8eCT =0T geL0— = L6 PeT T =% 6001 = Lo) duan)
€000 = 01'% 0201 = 99y CHR'6 = % 800°0— = £1'9 z00'Q = 9% SHOg = 196 608°6 = %0 g auen
8201 = 9% 1€0°0— = 1'%y 60¢°6 = ¢ 0100~ = 816 270°0— = €U'%h 60017 = 1'% 9866 = O ¢ oudn)

V 1000="9""y €L60=""y ¢8TOL =" P000=FV Logor="0 pouop

9£0°0 = T8y 6101 = EFy 8LY'6 = ¥ 00L0— =¢T¢6 0100— ="Y1'% gp00— =€ gpee =0 g oudn
G10°0— = 8y ¥66°0 = 2y 6,2°01 = % 2000 =812 00— =€ H00'0 =T gz Ol = v g ouen
L10'T = Ty 968°6 = I/ 70000 =16 zo00— =% Gi86='0 [oudn

®YRp 2931) esiou pue (g) jo uorpouny ssewjy pasodord Fusn g N 10§ s1ojeurered paldju] g 9[qRL

94

Reconstruction Experiments and Results

6.2.

= Py pue g = U6 10q30

926°0 = 0T 02y £8C°01 = 0% ¢QO0— =810e6 ¢oz 1 =1L1086 Q80 ="F1086 370 =206 yp1Ql = %o (g auer)
01¢' T = 6U'6ly 19z0— = 916ly g6 8 = 6l €690 = L1616 grp1 =166 (p0— = 8616 ggeR = 610 §] ouox)
L0 T = SU8ly 081°0— = e8ly 10g0— =P8y ¢Ig) = 8ig CLYT="PIR6 010— =¥8I6 1gg) = STo QI Juen)
. 8Y9°0 = +T+ly 661°0— =Ly 9Oy =Ty Q0601 = 9gy0— = ETL6 216701 = Lo L] ewen

LeT 1 =919y 92¢0— = ¥19y 10g0— =119 gygo— =19y ¢grL =19 €961 =196 ¢gg9'g = 90 g susn
12071 = SUely 98z 0 = 1ely €066 =S £ep0— =816 p160— = 11S16 Reg0 =816 6596 = Sl ¢ duen)
GI10 = 81Ply €og'T = YIPly 0610 = PPy L8P R =F1g pRPO— =11VIE g9op=6FI6 gIgg = Yo P oudr)
9z 0— = L1ty ze80 = £y 60601 = £lg 989°0 = 41816 prz°0— =OVEI6 pgpo— = €€16 72801 = £lu ¢ ouar)
pe00— = ety BGO'T =Tty Le00 =%y gpT0- =Ty pREL =Yg 8960 =16 ggrg=7lo gl ouwepn
L11°g = STy 0£9¢ ="My 1270— =Ty yL9°¢ = Ty 78GQ = 0T'llh €SI T =416 gopL = o |1 9udn
08g'1 = 010Ly €e10 =20y 110— = T0ly L10°6 = 01y 80T = VI0I6 zgeg— = 9016 pggg = 0lo (] oudy)
691 = 66y 186°0— = V'oy 069'8 = ¢ €L1°0 = 666 6780 = <66 gIg0 = €66 Z8¢'8 =60 G oudn
6171 = 8%y 0€1°0 = 98y 682°0— = T8y eLL8 =%y PCO0— =086 gag0— = €86 088’8 = S0 g oudn)
[E1°0— = +14y £86°0 = £ 4y 90v°6 = ¢/ 0L8T=0045 gpgo— =546 prr1=74% g6 =10 Lown
0880 = 8%y 070~ = +9%y 8L0T = 99y 680 1— = T9% 5009 = % LLTT = 1% L2 L= 9 gouy
€070 = %y 0971 = 9%y ¥8E0— = TSy eIgL =9 8660 = 1'%6 896 = 0 ¢ audn

201 0— = Ty T ="' 0IT0- =fty gp10- = Iy 6€C°8 = g 0600=*1"6 1816 ="0 powyn
980°0— = ¥y I =ty 9600 = TFy Zr801 ="t 80L0— =SUEH pgO0— =6 gez Ol = fo ¢ oudn
L00°T = Ty P06 = % ¢60°0— = 81T GF0°0— =91 1800 =01 gpI6=7o g ouen

€910~ =Ty ppro— ="'y gerr=Tly 9298=1¢ 0I10— =01 ggug=' [awp

'lep Astou %01 pue () Jo uorouny ssaujy pasodord Suisn g N 10 siejourered pallojuy :G'g o[qel,

6.3. Effect of Noise Level in Gene Expression Data 95

Table 6.6: Target S-system parameters for network model NET3
Oy, 31 10.0

9i.j gs5 = —0.8, g19.19 = 0.5 other g, ; same as in NET2

hi,j hg‘g = 10, hE‘;,J = 10, hg‘g = 10, h”‘m = 10, hrig!g = 10,
hy714 = 1.0,ha019 = 1.0, other h; ; same as in NET2

which shows the competence of the algorithm once again. Typical estimations for

the kinetic parameters from 10% noisy time series are shown in Table 6.7.

6.3 Effect of Noise Level in Gene Expression Data

The task of reconstructing a genetic network from the time-series data is made
more complicated by the noise that is incurred during measuring the mRNA levels
in a microarray experiment. If the mRNA levels could be measured precisely then
the system could be estimated with reasonable accuracy by learning the model
parameters using some regression method. The existence of the significant level of
noise in the expression profile together with the flexibility of the S-system model
makes the learning task most difficult for an inference algorithm.

In order to study the effect of noise-level, present in gene expression data, on
the proposed fitness evaluation criteria and on the reverse engineering algorithm,
the reconstruction experiments of this section were performed. Since microarray
experiment can incur a wide rage of noise levels depending on the technology, envi-
ronment and the study, experiments were performed under various noise-intensities
present in the data. To mimic the real noisy environment 1% Gaussian noise were
added to the time-series data for simulating the measurement error. Reconstruc-
tions were performed from expression profiles with noise level 77 = 0% (noise free
ideal condition), = 5%, n = 10% and n = 25% for investigating the effect of noise
on the reconstruction method. For validating the superiority of the proposed fitness
functions over the conventional evaluation criteria, the same set of reconstruction
experiments were performed using the same algorithm, same setup but different fit-
ness evaluation functions. The performance comparison was done using the fitness
function of (3.17), (3.13) and the following

2N =T

fi=-2MA+c¢ Z (| K1) (6.1)

j=1

This fitness function of (6.1) was designed by removing the original AIC penalty

96

©SS10n

6.3. Effect of Noise Level in Gene Expr

Data

0 = "y pue g = 7% 1oy30

y8Y'1 = 0202y v66°0 = 6102y 60L°6 = 0% €LL°T=4T086 1RG T =106 ggro— = 9086 gegpe = 0o (g ouen
6V9°0 = 661y 9.y°0— = 0U6ly 96z’ 0— = €61y ggg'g = 6l pgLo = L0616 gz)p =365 pg1g = 610 G oudn)
6861 = BI8ly ST 0— = T8y Qg1 0— = VI'8ly ggr'0— =%y Ry = 8ig gol'1 = FT816 ggp'g = 8o QY suax)
PrR0 = Ly e60'T = Tily gpI0— = Ly gIpe = Llg 6L0°0 = ST2W6 206°0— = £UL16 101°01 = 1o 2] duan
81— = 0T9ly {F6°0 = 9191y 129°L =191 gog0— =996 grgg = 9B P80 = 1916 1gg'g = 9 9T auex)
GLO0— = 021y OTT =51y perg="2y 6260~ =51¢16 100'T— =116 QIg0 =796 ggo6=Slo g ouon
Ty'1 = Yivly 960 =8y 00z0 ="y G8E'6 ="l 6010— =SIVIE 16g0— = IVI6 108 = Vo F euon
L0gT = ey geT0— =Vely cgy) =ty 9pe T = LTEI6 gop0— =0T 9¢p=ST6 gppg =10 g oudn)
Igg'1 = elely 1e60="0%y 1090="9%y P01 =2 pgr0 =916 pp1=T%6 6886 =0 g] owen
767 0— = 021y 86L°1 = 11Ty gIg'] = 0l'lly qopL =1 1¢T0- =016 gooo=+<116 (g8 L =10 1] ousp
9910~ = €01y 0L6°1 = 0101y g0 0— = L0y gpg'g = Olg 9260 = FIOI6 g9g 0~ = 9016 grp'g = 0lo (] ouwen)
480°0~ = 06y €611 = 66y €ET'0 = oy 9256 = 6¢/ 7880 = <66 8690 =" QpI'6 =00 §ouey
TRE0 = 01’8y pLeT = 8%y 706°0 = &8y 6509 = ¥ 898°0— = €85 6670— =80 pgz9 =0 g oudn
V660 = L'y €66 = Lo ger’p = €146 CLLT =014 epp— = €4 GEI'T = ¢ib ¢r96 = {0 1 oudn)
LETO = 419y 091°0— =11% L1901 = 9% GLIO = €% 6C6°01 = % 6861 = 19 60L°6 =9 9 oudn
PRI 0~ = S1'%y 6260 = S%y 80L0 = TSy 10T =% 809°0— = €6 6820 =19 QFT'I1 = S0 ¢ ouwn
18070 = STy or60 ="vry 0S10— =17y e 01T =g 6600 = Y6 QPG =V0 J ouen

I£10— = 41y L1870 = £y LYO'11 = g 890'0— = S0 889'0— = ST¢6 z900— ="V 91801 = v ¢ ouon
eRI 0~ = Yoy 6LT = £y €681 = Ty 9e1°8 = % €91°0— =V g1 0— =% gELg =0 g oudn
pep0— = 0l'ly 9110 ="y £9T°0— = Fly 6c0C = 'y gelL=1¢ 8910~ =116 gpLrL=1o 1ouwn

SIIes awily ASou Y07 woly ¢ TN 10j siojetrered polsjul 1) Q d|qe],

6.3. Effect of Noise Level in Gene Expression Data

97

Table 6.8: Inferred parameters for NET1 using proposed fitness function of (3.18)

i &y 9i1 ge2 g3 G gi5 Bi hii hia g hig his
S 1 5.006 0.000 -0.008 0.978 -0.004 -0.896 10.010 1.975 0.000 0.000 0.000 0.000
% 2 100684 1.994 0.005 0.008 0.002 -0.001 10.070 0.000 1.996 0.010 0.000 0.004
é 3 9.942 0.000 -1.001 -0.002 0.000 -0.002 9.944 0.001 -1.001 2.008 0.000 -0.001
Z | 4 7.970 0.000 -0.017 1.946 0.000 -0.996 10.007 -0.029 0.000 0.000 1.990 0.000
5 10.012 0.000 0.003 0.023 2.002 -0.009 49.993 0.005 0.000 0.003 0.000 1.991
1 4.804 0.000 0.000 1.209 0.000 -1.613 7.505 1.996 -0.150 0.000 0.000 -0.960
712 10827 2358 0.000 0.000 -0.109 0.000 11.189 0.000 2.609 0.000 0.000 -0.390
,23 3 9.883 0.000 -0.913 0.000 0.000 -0.103 10.730 0.000 -0.889 2.248 0.000 0.000
- 4 7.687 0.000 0.000 2.234 0.000 <(.992 10.550 0.505 0.000 0.000 2.113 0.000
&= 5 12289 0.000 0.000 0.413 1.471 0.000 10.800 0.000 -0.138 O.UQU 0.000 1.495
N 1 3.081 0.000 0.000 0.000 0.000 -1.112 7.997 3.000 0.000 -1.615 0.426 .000
2:“ 2 10.590 1.182 0.327 0.000 0.207 0.000 18.390 0.000 3.000 0.000 0.000 0.661
ZO 3 11.605 0.000 -0.755 0.000 0.000 0.000 12,929 -0.328 -0.509 2,248 0.000 0.000
o | 4 753 0.000 0.000 1.384 0.000 -0.993 12507 0.000 0.000 0.000 3.000 0.000
= 5 7.782 0.000 0.000 0.000 1.387 0.000 7.427 0.000 0.000 0.000 -0.458 2.319
1 10092 0000 0000 0000 0000 -0566 20000 1631 0.000 0000 0.000 0.000
E’ 2 20000 3.000 0672 0.000 0.000 0.000 19.720 0.000 2.507 <0.966 0.965 0.000
2 3 15283 0.000 -0.783 0.000 0.000 0.000 17969 0.773 -0.632 3.000 0.000 0.000
| 4 5.618 0.000 0.000 1.409 0.000 -0.990 5.146 1.779 -(0.737 0.000 2.099 0.000
3 5 16.109 0.000 0.393 0.000 1.223 0.000 18.456 (1.000 0.000 0.000 0.000 3.177

term from the proposed fitness function of (3.18) to investigate whether the pro-
posed penalty term alone is sufficient to identify the skeletal network structure.
Other setup of the environment was same as in section 6.2.1 and 10 repetitions of
each experiments were performed. The network parameter values estimated in typ-
ical experimental runs with different noise patterns and using the fitness functions
of (3.18) , (3.17), (3.13) and (6.1) are reported in Table 6.8, 6.9, 6.10 and 6.11
respectively.

The fact, that the performance of a reverse-engineering algorithm is influenced
by the noise-level in the system dynamics, was relearnt from the experiments with
the proposed fitness function of (3.18) (Table 6.8). At first, in the absence of the
noise, the exact network topology was identified and the estimated parameters were
almost accurate. But as the level of noise increases the performance of the method
starts to degrade both in terms of topology inference and parameter estimation. For
example, when the noise level was 5% all the regulatory interactions in the network
were identified correctly and the estimated parameter values were very close the
target values. But when the noise level was 10% or 26% the proposed algorithin was
not good enough for identifying the exact network architecture. And the accuracy
of the inferred parameter values also degraded with the increase of noise.

The similar scenario had been observed when inference was done using the fitness
function of (3.17), (3.13) and (6.1) (as shown in Table 6.9, 6.10 and 6.11 respec-
tively). Still, comparing the results of the experiments with the same noise level, it

was found that the network topology and the parameter values were more accurately

6.3. Effect of Noise Level in Gene Expression Data

98

Table 6.9: Inferred parameters for NET1 using MSE based fitness function of (3.17)

i a; gi1 g:2 gi3 i1 9is 8i hiy s Mg Tig his
T1 4631 0093 0.000 1.085 0000 -1.042 9.522 1.978 0.000 0.000 0000 0.003
£ |2 10207 1989 0013 0000 0000 0000 10154 0030 1.963 0000 -0.007 0.000
Z |3 9685 0000 -1.003 -0.017 0000 0000 9.686 0000 -1.003 2058 0000 0.000
Z |4 813 0000 -0.017 1927 0013 -0988 10269 0000 0000 0000 1961 0.000

5 9728 0000 0000 0000 2041 -0.027 9.710 -0.005 0.000 0000 -0.021 _ 2.020

T 4816 0000 0106 1420 0000 -1392 0.900 2.640 0.000 0.000 0.000 -0.4d5
P2 12002 2335 0000 0396 -0.145 0161 12777 0000 2188 0.000 0000 0.000
S |3 6418 0000 -0890 -0372 0000 -0.172 7493 0000 -0.840 3000 0.000 0.000
S04 7071 0000 0000 2370 -0.086 -1.027 10209 0743 0.000 0.000 1.987 0.000
5|5 14401 0000 0000 0422 1254 0000 12651 0410 -0.170 _ 0.000 _ 0.000 _ 1.030
T 11 26690 0605 0000 0000 0000 -2310 5045 8.000 0000 -1.406 0000 -1.678
Z |2 7853 1511 0000 0000 0138 0192 20,000 0000 3.005 0000 0000 1.990
S |3 9284 0457 -0793 -0250 0000 0000 11.854 0.000 -0.43d 3.000 0.000 0.000
|4 6894 0000 0000 2028 -0123 -1116 9.025 0000 -0.347 0000 3.000 0.000
S |5 7712 0000 0000 0456 1.636 0000 7.683 0.000 -0.246 _ 0.000 _ -0.403 _ 3.000
~ 1 0108 2435 0000 0000 -1.548 0000 15992 3.000 0.000 -1.668 0000 2.701
Z |2 19108 2470 0548 0000 0000 0000 15340 0.000 1443 -0.914 0397 0.000
2 |3 13971 0000 -0.807 0000 0000 0000 20.000 1252 -0.711 3.000 -0.416 0.000
|4 2335 0016 0202 2939 -1127 -0889 5062 0076 2913 0024 -0.837 -0.005
2|5 18096 1101 0.642 0000 2337 -0.297 20000 0.000 0.000 _ 0.000 _0.000 3.096

Table 6.10: Inferred parameters for NET1 using AIC of (3.13)

i a; gi1 gi2 gis gid gis i Ty iy hiy hig Ty
T[T 2428 0563 -0.013 1.295 0015 -1.303 7742 2.745 0.000 0.299 0.016 0.366
|2 9420 2018 -0020 0013 0005 -0010 9430 -0.132 2120 0016 0004 -0.011
£ 13 7067 0038 -0988 -0.227 -0.008 -0.009 7.187 -0.047 -0.983 2668 -0.000 -0.012
Z |4 6474 -0023 -0.016 2106 -0.119 -1.059 8599 -0.102 0000 -0.339 2438 0.205

5 9452 -0.017 0.000 0.030 2067 -0.057 9432 -0.016 0002 0002 -0.042 _2.043

T 2495 0000 -0.240 1479 0.196 -2.100 4.377 2.707 -0.461 0.000 _ 0.000 -1.249
F 2 8331 2809 -0307 0304 -0200 0186 9514 0000 3000 -0.882 0000 0.000
2|3 7099 0000 -0.979 0000 -0232 -0084 7460 0312 -1.037 2737 0347 0.000
|4 5876 0847 0420 2370 -0.178 -0842 6986 1.219 -0.674 0000 3.000 0.344
D5 5752 0608 0.89 1071 2111 -0.866 3.921 0.000 0000 -0.453 -0.698 1.30d
_ [T 5829 0000 0417 0000 0000 -0.078 15788 2168 0.753 -1548 0.614 0000
Fl2 7312 1287 0000 -0.817 0449 0000 19044 0.000 3000 -1.916 0788 1.646
S 13 16161 1235 -0.797 0000 0000 0000 20000 1193 -0.506 2439 0.000 0.000
< |4 6775 1232 0750 1.020 0000 -0629 6044 0716 -1.141 0000 3105 0.000
S |5 3722 -1083 0000 2155 2517 -0.995 2734 -1.645 0000 1165 -1.158 3.000
_ [l 10992 0000 0000 0000 0000 -0.566 20000 1.6s1 0000 0000 0000 0.000
F |2 16451 3.000 0547 0000 0000 0000 20000 0000 2407 -1714 1130 0.905
213 17860 0000 -0.724 0000 0000 0000 1878 0.806 -0.58% 3.000 -0.352 0.000
3 |4 4593 0000 -0.764 0791 0000 -0.579 2170 0.000 -1.562 0.000 1.255 0.000
Z |5 16138 0000 0394 0.000 1.222 0000 18455 0.000 0.000 0000 0.000 3.186

6.3. Effect of Noise Level in Gene Expression Data

99

Table 6.11: Inferred parameters for NET1 using fitness function of (6.1)

i ; gil gi2 gis gi4 gis 3, hiy i hig hig his
€11 5013 -0002 -0008 0975 -0.004 -0995 10006 1.968 0000 0000 0.000 0.000
P20 9987 1997 0.001 0.009 0003 -0.002 10018 -0.015 2013 0011 0003 0.004
213 9672 0000 -1.000 -0.020 0000 -0002 9676 0002 -L00I 2063 0.000 -0.002
Z 14 T7.966 0.000 -0.017 1947 0.000 -0.996 10.003 -0.029 0.000 0.000 1992 0.000
5 9.903 -0.004 0.002 0.025 2.015 -0.018 9.884 0.000 0.000 0.003 -0.008 2.003
1 4.323 0.000 0.000 1.065 0.000 -1.141 9.538 3.000 -0.174 -0.284 0.000 0.000
12 10965 2315 0000 0.000 0000 0.13d4 12309 0000 2658 -1.036 0227 0.000
g 3 6.826 0.000 -0.902 -0.307 0.000 -0.141 7.708 0.000 -0.858 3.000 0.000 0.000
o |4 8131 0000 0000 2480 0000 -0987 11.215 0395 0000 0.605 1995 0.000
B |5 15100 0.000 0.000 0468 1.097 0000 13.269 0317 -0.148 0.000 0.000 0.966
[T 2945 0.000 0000 0.006 0.000 -1.240 7.072 2906 0.000 -1.62¢ 0377 -0.258
Z 12 13039 1085 0501 0.000 0218 0.000 19985 0000 2.883 0.000 0000 0.418
S 13 18733 0000 -0.730 0290 0000 0.000 20.000 -0.208 -0.578 1.684 0.000 0.000
e | 4 7.643 0000 0000 2,008 0000 -1.204 11.151 0000 0000 1511 3.000 -0.573
S |5 9618 0000 0000 1178 1414 - 0.000 9438 0000 0.000 0900 -0.392 2121
. |1 2338 -1.809 0000 0379 0000 I 201 6.893 1.543 -0.318 0.000 0000 0.000
12 6005 287 0000 0.000 0.000 -0482 8280 0.000 3.000 -2.702 2925 0.000
£ 13 18021 0000 -0.717 0000 0000 0000 19.424 0804 -0.574 3.000 -0.300 0.000
s |4 6771 0.000 0.000 0.000 0.000 -0.576 13.076 3.000 0.000 -2394 2046 0.942
R 15 17515 05920 0372 0.000° 1.231 0.000 16.530 0.000 0.000 -0.490 0.000 3.139

estimated when inference was done using the proposed fitness function.

To perform a direct comparison among the effectiveness of the four fitness func-

tions the average error in estimated parameter values in different runs were calcu-
lated. The error e, in an estimated parameter was defined as e, = [p — p'| where
p and p’ are target and estimated parameter values respectively. The average error
of estimated parameters in M different runs is given by £ = 3—}; , T;W S~V e,, where
© is the number of parameters estimated in a single run; in this study the values
were p = 60 and M = 10. The average errors using different fitness functions and
different error levels are compared in graph of Fig. 6.4. Error bars indicate the
standard deviations for multiple runs. For every fitness function the average error
increased with the increase in noise level but among these four fitness functions, in
each case, the minimum average error was found for the proposed fitness function
of (3.18).

For further validation the sensitivity S, and specificity S, of network models

were calculated as follows

TP TN

_ e ifV 6.2
TP+ FN % = TNT FP (6.2)

Sn
where TP, FN, TN, FP represent the number of True positive, False Negative, True
Negative and False Positive prediction of parameters. The average .S, and S, of ten
runs for different noise levels obtained using the fitness functions of (3.18), (3.17),
(3.13) and (6.1) are compared in Table 6.12. Consulting Table 6.12 it can be found

that only for the noise free condition S, obtained using (3.18) was worse than that

6.3. Effect of Noise Level in Gene Expression Data 100

1.8

1.6 - | OProposed function of (9)

. IMSE based function of (4)
| B AIC based function of (8)
14 - | @Fitness function of (11)

—
N

Average Error
o o o
A O

S
N

ek

NoiseFree 5%Noisy 10%Noisy 25%Noisy

o

Figure 6.4: Average error in estimated parameters of NET'1 for different noise levels
in expression data

obtained using (3.17) and in 25% noisy condition S, of (3.18) was slightly inferior
to that of (3.13) and (6.1). In all other cases S, and S, of the proposed fitness
function of (3.18) was better or same compared to that of other fitness functions.
Though the S, was worse in noise free condition, the estimated network parameters
were more accurate using this fitness function, which can be verified comparing the
results of Table 6.8 and Table 6.9 and looking at the graph of Fig. 6.4. The reason
of poor S, (under noise free condition) was many parameter values were very close
to skeletalizing threshold § = 0.001 but was not absolutely zero so the number of
FP increased and TN decreased and S, went down. For further verification, S,
and S, were recalculated for all fitness functions (under noise free condition) setting
the skeletalizing threshold § = 0.01 and S,,/5, changed to 1.000/0.822, 1.000/0.805,
1.000/0.321 and 1.000/0.757 for (3.18), (3.17), (3.13) and (6.1) respectively. Never-
theless, the cases in which the proposed fitness criteria of (3.18) performed poor was
two extreme cases (no-noise and very high noise). Still, comparing the overall per-
formance it can be stated that the proposed fitness function (3.18) is most suitable
for evaluating the candidate network models. And the fitness function of (6.1) has
also performed very good with the proposed penalty term alone but when compared

to the proposed fitness function of (3.18) the later one was found superior.

6.4. Effect of Available Gene Expression Data 101

Table 6.12: Comparison of sensitivity /specificity for NET1 with different noise levels
NoiseFree 5% Noisy 10% Noisy 25% Noisy
Fitness of (3.18) | 1.000 / 0.514 1.000 / 0.730 0.923 / 0.757 0.877 / 0.795
Fitness of (3.17) | 1.000 / 0.703 1.000 / 0.676 0.908 / 0.643 0.864 / 0.524
(
(

Fitness of (3.13) | 1.000 / 0135 1.000 / 0.335_ 0.908 / 0.438 0.923 / 0.746
Fitness of (6.1) | 1.000 /0.381 1.000 / 0.676 0.923 / 0.619 0.908 / 0.643

1.2

1| |m20Set]
@10 Set|
| §m53a§
08 |o3set |

1 2 3

Figure 6.5: Effect of supplied data sets on algorithm’s performance

6.4 Effect of Available Gene Expression Data

In Machine Learning, it is well known that the more parameters are involved in a
model, the harder the prediction task becomes. Moreover, because of the nonlinear
and dynamic nature of the problem, the gene network inference using S-system and
other differential equation based models tend to be data-hungry [25]. The data
requirement for inferring an N gene network is known for some simpler models e.g.
Boolean network. Unfortunately no concrete research has addressed this issue for
more complex models. Generally, the amount of data needed to uniquely identify
the correct regulatory structure depends on the number of network components,
nature of their interactions, the characteristics of the data (e.g. the level of noise
present) and the capability of the inference algorithin [87].

In this section how the supplied gene expression data affect the inference al-

6.5. Effect of Random Number Generator 102

gorithm’s prediction power was investigated. The medium scale network NET2 of
section 6.2.2 was inferred using different number of gene expression data sets in
the same inference environment. All the experimental conditions were same as in
section 6.2.2, except the number of gene expression data sets were varied to 20, 10,
5 and 3 where each data set was corrupted with 10% Gaussian Noise. Then the
average error E, sensitivity S, and specificity S, as defined in previous section were
measured for each case. The average of 10 runs of these measurements are compared
in the graph of Fig. 6.5. Error bars indicate the standard deviations for multiple
runs.

From the graph of Fig. 6.5 it is apparent that the amount of the supplied data
has a drastic effect on the performance of the algorithm and the prediction power
decreases with the decrease in amount of gene expression data. Particularly, the
sensitivity decreases exponentially with the decrease in number of data set. The
average error is inversely proportional with the amount of gene expression data.
Since, the number of inferred interactions is limited by the maximum in-degree
I, the effect on sensitivity due to change in data sets is not visible in Fig. 6.5.
However, based on the results presented above, it can be stated that the proposed
method can identify the underlying biomolecular interactions in a gene circuit if
sufficient amount of experimental dynamics is given. Moreover, the capacity of the
algorithm to infer some essential regulations from an inadequate noisy expression

profile indicates its robustness against small sample size and noise.

6.5 Effect of Random Number (Generator

The proposed inference algorithm for gene network reconstruction is a stochastic
algorithm that makes frequent use of pseudorandom number generators (PRNG).
Generally, it is known that the performance of evolutionary algorithms are not
terribly sensitive to the quality of PRNG used to drive it [73, 74]. But this is not
a general case for all class of stochastic algorithms. Therefore, in this section, it is
examined to what degree the quality of the PRNG employed affects the performance
of the proposed memetic algorithm in gene network reconstruction.

All of the experiments presented in this dissertation use the Random class of
Java that uses a linear congruential algorithm [100] with a 48-bit seed. Lets name it
as RANLCG. Linear congruential generators (LCGs) represent one of the oldest and
best-known pseudorandom number generator algorithms. The theory behind them

is easy to understand, and they are easily implemented and fast. It is, however, well

6.5. Effect of Random Number Generator 103
Table 6.13: Inferred parameters for NET1 using different PRNGs

i o git gi2 g3 gia @5 O hiy Itia hig hig s
g1 5007 0000 -0.008 0077 -0.004 -0.996 10010 1075 0.000 0.000 0.000 0.000
S 20 10049 1995 0004 0.005 0004 -0.001 10.089 0000 2002 0000 0005 0.008
Z13 9667 0006 -1.000 -0.020 0000 -0.002 9.665 -0.006 -1.001 2048 0000 -0.002
=14 7970 0000 -0.017 1946 0.000 -0.996 10.007 -0.029 0.000 0000 1.990 0.000
5 10008 0000 0002 0021 2001 -0.010 9.98 0008 0.000 0000 0000 1986

1 5007 0000 -0.005 0078 -0.004 -0.996 10.009 1075 0000 0.000 0.000 0.000
212 10066 1994 0005 0010 0002 -0.002 10076 0000 1.996 0013 0000 0.003
&3 9803 -0001 -1.002 -0010 0000 0000 9808 0000 -1.002 2031 0000 0.002
Z|4 7970 0000 -0.017 1946 0000 -0.996 10.007 -0.029 0.000 0.000 1.990 0.000
= |5 989 0004 0002 0025 2015 -0.018 9882 0.000 0000 0003 -0.008 2.004
I 493 0000 -0.000 0083 -0.001 -1.000 9994 1084 0000 0.000 0.000 0.000
%12 10059 1995 0005 0012 0000 -0.002 10051 0.000 1995 0019 -0.004 0.000
S8 9771 0001 -1.002 -0.012 0000 -0.001 9773 0000 -1.002 2034 0000 0.000
Z|l4 7970 0000 -0.017 1946 0000 -0.996 10.007 -0.020 0000 0.000 1.990 0.000
= |5 9829 0000 0000 0015 2021 -0.022 9818 0000 0.000 0.000 -0.013 2.009
[1 4978 0000 0.012 0978 -0.003 -0.099 9.965 1981 -0.004 0.000 0.000 0.000
12 10056 1994 0005 0000 0006 0000 10110 0000 2001 -0.010 0009 0012
|3 983 -0003 -1.001 -0.005 0000 -0.001 9.84 -0.002 -1.002 2014 0000 0.000
Z |4 7969 0000 -0.017 1946 0000 -0.996 10.006 -0.020 0.000 0.000 1.991 0.000
= |5 9887 0004 0002 002 2017 -0.019 9.869 0000 0.000 0003 -0.009 2.005
1 5003 0000 -0.008 0078 -0.004 -0.997 10.006 1976 0000 0.000 0.000 _ 0.000

£ |2 10066 1994 0005 0005 0003 0000 10098 0000 1.998 0002 0004 0.009
2|3 10339 0000 -1001 0023 0000 0000 10338 0000 -1.001 1952 0.000 0.000
214 7970 0000 -0017 1946 0000 -0.996 10.007 -0.029 0.000 0.000 1990 0.000
|5 10009 0000 0003 0.021 2001 -0.010 9.987 0008 0.000 0000 0000 1986

known that the properties of this class of generator are far from ideal.

The sensitivity of the the proposed reconstruction algorithm to PRNG was ver-

ified using four other random number generators those are available form RngPack
1.1 a pseudorandom number generator package in Java [41]. This package offers four
PRNGs namely RANECU, RANLUX, RANMAR and Mersenne Twister. RANECU
is an advanced multiplicative linear congruential random number generator with a
period of aproximately 10'®. RANLUX is an advanced pseudo-random number gen-
erator based on the RCARRY algorithm proposed in 1991 by Marsaglia and Zaman.
RANMAR is a lagged Fibonacci generator proposed by Marsaglia and Zaman and
is a good research grade generator. Mersenne Twister is a PRNG developed in 1997
by Makoto Matsumoto and Takuji Nishimura that provides for fast generation of
very high quality pseudorandom numbers.

The proposed reconstruction algorithm was driven by all five PRNGs for estimat-
ing the parameters of the network model NET1 under the noise-free condition. The
setup for all experiments was same as that of section 6.2.1 and for each PRNG the
reconstruction experiment was repeated five times. Typical estimated parameters
for all PRNGs are presented in Table 6.13.

Comparing the results obtained by driving the algorithm with different PRNGs,
it was found that there is almost no significant difference in the estimated model

parameter sets. In other words, the chosen PRNG has almost no effect on the

6.5. Effect of Random Number Generator 7 104

performance of the proposed algorithm which is the general case for evolutionary
algorithms. Although the study is completely empirical, but the results definitely
suggest that the accuracy of the reconstructed network is not correlated with the

quality of the PRNG used to drive the algorithm.

