Chapter 7
Reconstructing the SOS System

This chapter presents the results of the experiments in which the developed system
was evaluated by applying it to analyze some real microarray data. A well defined
and widely studied network, the SOS DNA repair system of Escherichia coli, was
attempted to reverse engineer from the expression profiles for demonstrating the
capability of the developed methodology. First, a brief introduction to the SOS
network is presented then the data that was used for reconstruction is evaluated
and finally the reconstructed network is presented with discussion.

Simulation has become an effective and appropriate support for system design
and verification. In contrast to analytical approach, the simulation approach gives
more flexibility and convenience. Generally, simulation is used for different purposes
such as convenience, cost effectiveness, safety, security and many more. However,
in some cases, when there is no way to the absolute correct answers, simulation
becomes the most powerful means of verification. For the particular case in hand,
i.e. the gene regulatory network reconstruction problem, we don’t know the correct
regulatory structure existing among the genes in an organism, neither we know the
type or strength of regulatory interactions. Therefore, simulation helps us most
in this respect for verifying whether the developed system can identify the correct
regulatory architecture and estimate the regulatory parameters of the system under
consideration.

Still we need verification of the method or model applying in real scenario after
we have gained enough support from simulated results. Because, simulation is just
an imitation of the real situation and can not replace the real one. Therefore, finally
the developed system was employed in the reconstruction task of a real biological

network for verification purpose.
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7.1 The SOS System

The SOS network in Escherichia coli was the first damage-inducible network to be
identified. This is one of the most complex, best understood and widely studied
gene regulatory system that is induced by DNA damage. The existence of the SOS
system was discovered from studies on the effect of UV irradiation on E. coli and
consideration of seemingly unconnected data.

Exposure of E. coli to agents or conditions that damage DNA or interfere with
DNA replication, results in the induction of a diverse set of physiological responses
termed as SOS responses [136]. These responses are due to the induction of more
than 30 genes or proteins or operons which have often been referred to as din

(damage-inducible) genes[33].

7.2 Model for SOS Regulation

The expression of the genes in the SOS regulatory network is controlled by a com-
plex circuitry involving the RecA and LexA proteins [135]. A schematic diagram of
the basic regulatory mechanism in the SOS system is presented in Fig. 7.1. In an
uninduced cell, the product of the lexA gene acts as the repressor of more than 20
genes, including the recA and lezA genes, by binding to similar operator sequences
upstream of each gene or operon. Many of these SOS genes are expressed at sig-
nificant levels even in the repressed state. The amount of RecA protein present
in an uninduced cell, 7,200 molecules per cell, is evidently enough to satisfy the
requirement for this protein in homologous recombination.

In response to an SOS-inducing treatment or condition, a signal that leads to
the expression of the SOS regulon is generated. A considerable body of evidence
suggests that this signal consists of regions of single-stranded DNA. These may be
generated when a cell attempts to replicate damaged DNA or under a variety of
other circumstances. The binding of RecA to these regions of single-stranded DNA
in the presence of a nucleoside triphosphate forms a nucleoprotein filament and
converts RecA to an activated form (often referred to as RecA*). The interaction
of activated RecA protein with the LexA protein results in the proteolytic cleavage
of LexA: apparently, the activated RecA facilitates an otherwise latent capacity of
LexA to autodigest. Activated RecA is also capable of mediating the cleavage of
the repressors of the bacteriophages such as A, P22, 434, and #80, as well as the
UmuD protein and its homologs. The cleavage of LexA occurs at a particular Ala-
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Figure 7.1: Model of SOS regulatory system (adapted from Ref. 41).

Gly-peptide bond near the middle of the protein and generates two polypeptide
fragments. As the pools of intact LexA begin to decrease, various SOS genes,
including the recA gene, are expressed at an increased level. Subsequently, the SOS
responses mediated by the products of these genes begin to be observed. Genes with
operators that bind LexA relatively weakly are the first to be expressed fully. If the
inducing treatment is sufficiently strong, more molecules of RecA are activated,
resulting in cleavage of more molecules of LexA. As the pools of LexA decline to
very low levels, even genes whose operators bind LexA very tightly are expressed at
maximal levels.

As the cell begins to recover from the inducing treatment, e.g., by DNA repair,
the inducing signal is eliminated, and the RecA molecules return to their proteolyt-
ically inactive state. In the absence of the RecA protease, the continued synthesis
of LexA molecules now leads to an increase in the LexA pools. This in turn leads
to repression of the SOS genes and a return to the un-induced state [135, 98, 105].
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Table 7.1: Some of the SOS genes in E. coli (adapted from [49])
Gene  Function
Expressed as the first

lexA Repressor of SOS genes

uurA UvrABC-excinuclease (NER repair)
uvrB UvrABC-excinuclease (NER repair)
uvrD Helicase 11

polB DNA polymerase I1

ruvA RuvAB-helicase

ruvB Recombinational repair

dinl Inhibitor of UmuD processing
Expressed as the second

recA SOS derepressor, recombinational repair
recN RecN, recombinational repair
Expressed as the last

sfiA sulA cell division inhibitor

umuD UmuD’ (unit Pol V)

umuC UmuC (Pol V)

7.3 Genes of SOS System

The functioning of the SOS system seems to be simple and, in general, operates as
proposed by Little & Mount [67]. LexA repressor binds to SOS boxes with sequences
20-nucleotides long situated near or inside the promoter site of the SOS-induced
genes, and its binding prevents accessibility to RNA polymerase.

Some of the SOS genes and the timing of their expression are shown in Table 7.1.
In the first phase, among the expressed genes are lezA, encoding SOS repressor pro-
tein, genes uvrA, uurB, uvrD whose products (together with wvrC-encoded protein)
are involved in single strand nucleotide excision repair (NER), and ruvA and ruvB
genes whose products are involved in recombinational DNA repair. One of the first
expressed genes is also the dinl gene coding for an inhibitor of UmuD — Umul)’
processing, and polB (dinA) encoding DNA polymerase II, enabling resumption of
DNA synthesis when replication is stalled. In the next phase are expressed recA and
recN genes, whose protein products are involved in DNA recombinational error-free
repair. RecA, therefore, is involved in induction of the SOS response (via RecA*),
in DNA recombination, single and double strand DNA repair, and recombination
dependent replication [49]. RecN is involved in RecF-dependent recombination and
double strand repair.

Knowledge of the role of RecA protein in recombination much preceded our
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knowledge of its role in de-repression of the SOS system and in SOS mutagenesis.
Among the latest expressed genes are suld (sfid) encoding a cell division inhibitor
and causing filamentous cell growth, umuD and umuC genes encoding error-prone
DNA polymerase V, and genes cea and caa of colicinogenic plasmids coding for
colicin E1 and colicin A, respectively. cea and caa can be regarded as apoptosis
genes because their induction causes lysis and death of the cells. Only a few genes
has more then one SOS box; namely lezA, (two sites) and recN, (three sites) included
in Table 7.1 and (not indicated in Table 7.1) ydjM (two sites). These genes are
regarded as being more tightly regulated [49].

7.4 Experimental Data set

The experimental data was downloaded from the homepage of Uri Alon Lab [43].
Ronen et al. [105] developed a system for real-time monitoring of the transcriptional
activity of operons by means of low-copy reporter plasmids in which a promoter con-
trols green fluorescent protein (GFP). In each plasmid a different promoter controls
the transcription rate of the same reporter gene, gfp, and thus rate of transcript
production from the promoter is proportional to the rate of GFP accumulation. By
continuous measurements from living cells grown in a multiwell plate fluorimeter,
high-resolution time courses of the promoter strength and cell density are obtained.
With this method, temporal resolution of minutes can be achieved. This process
complements, at higher accuracy, the genomic-scale perspective given by DNA mi-
croarrays. It was shown that this approach can be used to determine the order of
genes in an assembly pathway [105].

Data are expression kinetics of 8 genes (uvrD, lexA, umuD, recA, uvrA, uworY,
ruvA and polB) of the SOS DNA repair network. Measurements are done after
irradiation of the DNA at the initial time with UV light. Four experiments are
done for various light intensities (Exp. 1&2: 5 Jm ™2, Exp. 3&4: 20 Jm™2). Each
experiment composed of 50 instants evenly spaced by 6 minutes intervals and 8
genes are monitored. The expression levels for Exp. 1 & 2 are shown in Fig. 7.2
and 7.3.

The first hypothesis made by Alon et al. is that the GFP protein is very stable
during the experiments: it is justified when comparing the typical GFP stability to
the experiments length (300 minutes). By taking the derivative of the fluorescence
amount with respect to time, Alon et al. have therefore access to the instantaneous

protein production rate, since no protein degradation occurs during the experiments.
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Figure 7.2: Expression profile of 8 SOS genes in experiment 1 (obtained from [43])

To use these data in the proposed model, the hypothesis made by Perrin et al.
[98] about the stability of the mRNAs were adopted in this work. The hypothesis
considers that mRNA molecules are degraded immediately after their production.
Actually mRNA persistence depends on the nucleotide sequence; all mRNAs having
the same sequence here because of the experimental technique, they all have the
same persistence. It is hence sufficient to make the hypothesis that the turnover
of the GFP mRNAs is very fast to ensure that there is a high unstability of the
mRNAs. Therefore it is considered that the instantaneous promoter activity of each
gene is also proportional to the present quantity of corresponding mRNA [98].

Using this hypothesis it is possible to assume that the data provided by Alon et
al. directly indicate the observed mRNA quantities (also called expression levels)
corresponding to each S.0.S. gene. In the experiment all the data from Alon’s
experiments were used, i.e. 50 x 4 = 200 sampling points were used for each gene.
The data were normalized with in the range (0, 1] and all the zero expression levels
were replaced with a very small value. 5 runs were carried out to assure the statistical
significance of the probabilistic search.

In this reconstruction experiments, the reverse engineering algorithm was used
with TDE optimizer proposed by Fan and Lampinen [29] and the fitness function
of Eq. (3.17) was used for evaluating the candidate networks.
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Figure 7.3: Expression profile of 8 SOS genes in experiment 2 (obtained from [43])

7.5 Reconstructed SOS system

As the gene expression data contained significant level of noise, the obtained results
were very dispersed. Therefore, Z-score was applied to analyze which regulations
are more significant and less diverse than others. For each parameter p in the model
the mean magnitude s, and the standard deviation o, were calculated from the
estimated values for that parameter at different experimental runs. Then the Z-score
value was calculated as Z,, = u, /0, that can be used as a signal to noise measurement
to imply robust parameters [6]. The analysis of Z-score is more qualitative but
sufficient for comparing with the existing knowledge or suggesting new regulation
[25]. The regulations which had Z-score value above the threshold Z,, = 1.5 were
considered only, and the threshold level was set empirically.

Fig. 7.4 shows the structure of the SOS DNA repair network reconstructed
by the proposed method. The true/known regulations are drawn using solid arcs
labeled with T', the unknown regulations or possible false predictions are drawn
using dashed arcs and the regulation drawn in solid arc with label P represents
unknown regulation and predicted by others. Looking at the inferred structure
it can be found that the lezA regulation of lexzA, umuD, recA, uwvrA and uvrD
has been correctly identified. The activation of lezA by recA was also correctly
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Figure 7.4: Estimated SOS network structure.

predicted. Regulation of lexA by umuDC is also known. An unknown regulation
of uvrA by recA was identified. Perrin et al. [98] also identified this regulation
in their experiment and hypothesized that this could correspond to the indirect
regulation recA — RecA - LerA HuvrA. Some other regulations were inferred,
those are either novel regulatory pathways or false-positive findings. Moreover, in
the microarray experiment the UV light shock was not sufficient to lead to the
functioning of all SOS genes. From the expression profiles of Fig. 7.2 and 7.3 it can
be seen that several genes were not induced sufficiently during the experiment. These
genes are activated only when the damage is sufficiently high and their activation

would have been useful to identify interrelation among the genes. Examining the
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Table 7.2: Inferred SOS network by Perrin et al.. The j-th column shows all iden-
tified regulations exerced by j-th gene on other genes. 198]
wrD  lexA  wmuD  recA  uwvrA  uwvrY ruvA  polB

uvrD 0 0 0 0 0 0 0 0
lexA 0 - + + 0 0 0
umul 0 0 0 0 0 0 0 0
recA 0 0 0 - 0 0 0
uvrA 0 - 0 X X 0 0 0
uvrY 0 0 0 0 0 0 0 0
ruvA 0 0 0 0 0 0 0 0
polB 0 0 0 0 0 0 0 0

expression profiles no significant change in the expression level of gene ruvA was
observed. It was hypothesized that lack of significant change in the expression level
is the reason why the proposed algorithm could not find any relation of gene ruvA
with other genes in the network.

Perrin et al. [98] used the same data set to extract the regulations among the
genes involved in the network. In their work, they used dynamic Bayesian network
for modeling the gene regulation mechanism and used a statistical machine learning
approach for the identification of the underlying network. The inferred network by
their method is shown in Table 7.2.

When compared with the predicted network of Perrin et al., the proposed method
predicted almost all the regulations predicted by them. However, the regulations
worA — lexA and uvrA — recA were not identified by the proposed method but
the method of Perrrin et al. inferred them. On the other hand, the proposed
method could identify some correct regulations which were not predicted by Perrin
et al: e.g., lexA — umuD, lexA — wvrD. Nevertheless, the overall result suggests
that the algorithmic framework was useful to extract some correct regulation by

analyzing the real gene expression data.



Chapter 8

Identifying the Regulators of
Yeast Cell Cycle

In this chapter an attempt was made for connecting the cell cycle genes of budding
yeast (Saccharomyces cerevisiae) in terms of their regulatory relationships. The
molecular machinery of cell cycle control is known in more detail for budding yeast
than for any other eukaryotic organism. Because of the supreme importance of cell
cycle mechanism, a large number of genes and proteins are involved in maintaining
the process under a constant state of supervision. After presenting the introduction
to the budding yeast cell cycle system, the chapter presents the expression data that
was used for inferring the regulators in the gene circuit. Finally, the results of the

reconstruction experiments are presented, analyzed and compared with other works.

8.1 The Budding Yeast Cell Cycle

The cell cycle represents a fundamental driving force for differentiation and evolution
in eukaryotes. The cell cycle consists of the series of events by which a cell grows and
divides into two daughter cells each of which duplicates all the necessary mechanism
for repeating the process from the mother cell. By the process of cell division all
the essential component for the process is transferred to the daughter cells.

The yeast mitotic cell cycle is very similar to the cell cycle of other eukaryotic
cells and is commonly broken down into the four standard phases Gy (gap 1), S
(DNA synthesis), G2 (gap 2), and M (mitosis).

When the daughter cell is segregated from the mother cell, it is typically smaller
than the mother cell. During G; the daughter cell will grow to reach a minimal size

before a new cell cycle can being. The G phase of the cell cycle is important for
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determining the fate of the cell. Depending on environmental conditions, the cell
may go into stationary phase (sometimes designated Gy), a stage of no growth, and
then re-enter the cell cycle when the environmental conditions become more favor-
able. The duplication of centrosome begins late in G and is completed during S
phase. The duplication poles then slowly begin to migrate to positions on opposite
sides of the nucleus. Meantime, within the nucleus during the S phase, DNA repli-
cation takes place. The initiation of DNA replication is closely correlated with bud
emergence, however, these two events are not dependent on each other. Completion
of the DNA replication marks the beginning of Gy phase. This phase defines the
time after DNA replication but before mitosis. In Saccharomyces cerevisiae, the
G phase is relatively short. In M phase the cell undergoes mitosis, partitioning
DNA between the mother cell and the daughter bud. One interesting difference be-
tween budding yeast and most other eukaryotic cells is that the mitosis takes place
within the nucleus without breakdown of the nuclear envelope. After the DNA has
been partitioned, the cell undergoes cytokinesis separating the mother cell from the
daughter cell.

The different phases of the budding yeast cell cycle is depicted diagrammatically
in Fig. 8.1. As the figure depicts, the bud first emerges shortly after entry into S
phase and grows throughout the cell cycle and separated eventually. The status of
a cell within the cell cycle can be approximately monitored visually by the size of
the bud. The transitions from Gy into S and from Gy into M are called checkpoints

because the transitions are delayed unless key processes have been completed.

8.2 The Transcriptional Program of Yeast Cell
Cycle

The complete genomic sequence of Saccharomyces cerevisiae was published in 1996
which made the genome wide analysis of transcription patterns of all of the 6,183
open reading frames (ORFs) in a single microarray experiment. Such experiments
by Spellman et al. [118] have shown that the transctiption levels of about 800 genes
vary in a periodic or cyclic pattern through the cell cycle. The study considered
the expression pattern of a gene over two cell cycles in synchronized cells. Spellman
et al. [118] used DNA microarrays and samples from yeast cultures synchronized
by three independent methods: a factor arrest, elutriation, and arrest of a cdcl5
temperature-sensitive mutant in their study. In a culture of synchronized cells, all

cells are at the same stage in the cell cycle.
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Figure 8.1: The cell cycle of budding yeast Saccharomyces cerevisiae.

Analysis of their experimental results showed that the transcription of each of
the identified 800 genes is initiated once per cell cycle. The expression patterns
found in their experiments indicated that some genes are transcribed in Gy, some
in Gy, some in M and a few in S phase. Typically, genes of which products are
needed at a specific part of the cell cycle are transcribed in the preceding period.
For example, enzymes needed for synthesis of the trinucleotide precursors of DNA
and for DNA replication are made in G immediately prior to their use in S phase.
Similarly, the histone proteins are synthesized during S phase immediately prior to
their incorporation into chromatin and their use in chromosome condensation [34).
Further details about the study can be found in [118].

Cell-cycle studies over the past years, have mainly been concerned with identi-
fying molecular machinery that are responsible for driving key chromosome cycle
transitions. In early stages of the cell cycle, progression from one phase to the next
is controlled by a family of protein kinase known as CDK (cyclin-dependent kinase).

Cyeclins are proteins involved in the regulation of the cell cycle whose concentration
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varies in a cyclical fashion during the cell cycle. In budding yeast there is only
one CDK- Cdc28 that interacts with different cyclins at different times of the cell
cycle [82]. In Phase Gy Cde28 associates with cyclins Clnl,Cln2,Clng for regulating
growth and morphogenesis. In S phase the cyclin-CDK complex formed by Clb5,
Clb6 and Cdc28 regulates the DNA replication and the complex formed between
Clb2 and Cdc28 regulates mitosis in phase G»/M [34]. And the activity of Cde28
is usually terminated by cyclin degradation or inibotory phosphorylation. The ac-
tivity of the Cdc28 rises and falls as the cell progresses through the cycle and the
oscillations lead directly to cyclical change activation of certain proteins that initiate
the major events of the cell cycle, for example an increase in Clb2/Cdc28 activity
at the beginning of mitosis leads to increased activation of proteins that control
chromosome condensation, nuclear envelope breakdown and spindle assembly.

The cell cycle control obviously depends on protein-protein interactions, which
is also referred to as post-transcriptional mechanism. However, transcriptional reg-
ulation provides another level of control which is more fundamental. The genes
peak in different phase during cell cycle are responsible for synthesis of cell cycle
specific proteins. Some cyclin levels, for example, are controlled through cyclin gene

transcription, since the genes mainly code for proteins.

8.3 Target Network

Though during the progression of the budding yeast cell cycle 800 genes were found
to change their expression levels [118] the number of key regulators that are re-
sponsible for the control and regulation of this complex process is much smaller.
Considering the capability of the proposed algorithm and the computational limita-
tions, a part of the cell cycle pathway represented in the KEGG database [40] was
considered for reconstruction in this experiment. The target network (shown in Fig.
8.2) consists of 14 well-described genes that play very important role in cell cycle
regulation.

In the selected fragment of network, genes from different classes which are acti-
vated with their products at different stages of cell-cycle, were included. For example
the network contains transcription factors (SIW4, SWI6, M BP1), cyclins (CLN1,
CLN2, CLN3, CLB5, CLB6 which bind to the kinase C'DC28) which are known
to activate cell-cycle dependent genes. Among the others SIC1 and CDC?20 act as
inhibitors, degraders and competitors of the cyclin/C'DC28. A brief description of

the target network genes with their functions is presented in Table 8.1. The inter-
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Figure 8.2: Target cell cycle network of Saccharomyces cerevisiae extracted from
KEGG database [40]

Table 8.1: List of genes in Saccharomyces cerevisiae cell cycle network fragment
considered for reconstruction

ORF Gene Name Description

YMRI199W CLN1 Cyclin, G;/S specific

YPL256C  CLN2 Cyclin, G1/8 specific

YAL0O40C  CLNS Cyclin, G/ specific

YPR120C  CLBS5 Cyclin, B-type

YGR109C CLB6 Cyclin, B-type

YBR160W  CDC28 Cyclin-dependent protein kinase

YER111C  SWIy Transcription factor, subunit of SBF factor
YLRI182W  SWI6 Transcription factor, subunit of SBF and MBF factor
YDL0O56W  MBP1 Transcription factor, subunit of MBF factor
YGL116W  CDC20 Cell division control protein

YLRO79W  SIC1 Inhibitor of Cdc28p-Clb protein kinase complex
YJL194W  CDC6 ATP-binding protein required for DNA replication
YJL157C FAR1 Cyclin-dependent kinase inhibitor

YBLO16W  FUS3 Mitogen-activated protein kinase
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actions among these genes are well defined and transcription activators are known.
The same set of genes was used by Sugimoto and Iba for reconstructing the network
by dynamic Bayesian network (DBN) and dynamic differential Bayesian network
(DDBN) in [126].

8.4 The Gene Expression Data Set

The microarray data from Cho et al. [18] obtained for S. cerevisiae cell cultures,
synchronized by CDC?28, were used in this study. In their study, commercially avail-
able high-density oligonucleotide arrays were used to quantitate mRNA transcript
levels in synchronized yeast cells at regular intervals during the cell cycle. DNA
oligonucleotide probes are directly synthesized on these arrays without individual
manipulation or PCR amplification, minimizing the potential for cross-hybridization
or clone error [18].

To obtain synchronous yeast culture, CDC28-13 cells were arrested in late G,
at START by raising the temperature to 37°C, and the cell cycle was reinitiated
by shifting cells to 25°C. Cells were collected at 17 time points taken at 10 min
intervals, covering nearly two full cell cycles. Cells exhibited over 95% synchrony
throughout the time course, as determined by bud size and nuclear position. The
expression levels of the selected genes during these two cell eycles are shown in Fig.

8.3 separating into different phases of cell-cycle.

8.5 Experiment and Results

All the data(for each gene under consideration) from Cho’s experiment were used
for the reconstruction experiment, i.e. all the 17 sampling points for each gene
were used. Again 10 repetition of inference were perforined to assure the statistical
significance. The reconstruction algorithm used the DEfirSPX optimizer developed
in Chapter 4 and for evaluating the candidate networks the fitness function of Eq.
(3.18) was used.

Probably because of insufficient amount of gene expression data, the high noise
level present in expression data and above all the model flexibility the parameter
values of the inferred networks were significantly different from trail to trial. In
order to identify the core regulations, which contribute importantly to realize ex-
perimentally obtained time-course data, the results were analyzed using Z-score like

that was done in previous chapter. To repeat, the analysis of Z-score is more qual-
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Figure 8.3: Transcription levels of different genes during cell cycle of Saccharomyces

cerevisiae from Cho et al. [18]
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Figure 8.4: Reconstructed network of the yeast cell-cycle regulatory genes. Notation:
solid arc = known regulation, dashed arc = indirect regulation, dash-dotted arc =
inverse regulation and dotted arc = false-positive or novel regulation

itative but sufficient for comparing with the existing knowledge or suggesting new
regulation [25]. For each parameter p in the model, the mean magnitude s, and the
standard deviation o, were calculated from the estimated values for that parameter
at different experimental runs. Then the Z-score value was calculated as Z, = 1, /0,
that can be used as a signal to noise measurement to imply robust parameters [6].

Fig. 8.4 shows the reconstructed network structure where the interactions were
inferred by the proposed algorithmm more than 8 times within 10 runs and/or have
a Z-score value above the threshold Zy;, = 1.5, which was set empirically. Besides,
the reconstructed method inferred self-degradation regulations for each gene except
for SWI4, MBP1, and CLB6. These self-degradation regulations were not shown
in the figure to keep it simple.

Inspecting the reconstructed network, it can be found that many of the regu-
lations predicted by the proposed methodology conforin with the target network
of Fig. 8.2 and with the cell-cycle network given by Li et al. in [63]. The pre-
dicted self-degradation regulations were also mostly correct. However, the proposed
method also identified some interactions which do not agree with currently available
knowledge. The presence of some of these (possible) false positive interactions can
be due to indirect regulations. For example, the regulation CLN2 — CLB6 may
be identified as a side-effect of indirect regulation CLN2 — SIC1 — CLB6. Such
other regulations are CLN1 — CDC6, CLN1 — CLB5, FAR1 — SIC. And a
few interactions have been inferred inversely by the method e.g. CLN2 — FARI,
CLN3 — FAR1 and CDC6 — CLB6. Most of the these indirectly and inversely
predicted regulations, as well as many of the correct ones, had been predicted by
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Sugimoto and Iba using DBN and DDBN in [126].

The proposed algorithm inferred 33 regulations (disregarding the self-degradatory
regulations) among which 18 were predicted correctly (solid lines), 4 were indirect
regulations (dashed lines), 3 were inversely predicted (dash-dotted lines) and 8 reg-
ulations were false positives or novel regulatory pathways (dotted lines). For the
same target network Sugimoto and Iba could predict 19 and 18 regulations using
DBN and DDBN respectively [126]. Using DBN their method predicted 7 correct,
1 indirect, 3 inverse and 8 false regulations and using DDBN 7 correct, 3 indirect,
5 inverse and 3 false regulations were inferred respectively. Soinov et al. [116] used
a similar network of 20 genes which includes 11 genes (excludes FUS3, FAR1 and
CDC6) from the network of Fig. 8.2 and additional 9 genes. Based on the highly
accurate results from their classifiers, they identified 26 interactions among which
23 were correct. Among these 23 interactions 9 were questionable in their words
because those failed in one or two of the accuracy tests. However, all the correct
regulations (involving the genes of Fig. 8.2) inferred in their method were correctly
identified in the proposed method. So the proposed method was successful not only
to infer regulations those have been predicted by others, but also to identify some
other correct interactions among the genes.

Examining all the extracted relations with respect to the known roles of selected
genes, it was found that in most cases the predictions confirmed the prior knowledge
which indicates the validity of the proposed approach. But the method was unsuc-
cessful to identify a few correct regulations or predicted some wrong interactions in
the cell-cycle network. Based on the experiments presented in previous chapters,
some reasons behind such failure can be speculated. The primary reason was due
to insufficient amount of gene expression data used for reconstruction, because the
prediction power of the proposed method decreases with the decrease in supplied
time-series data (Section 6.4). Secondarily, the level of noise present in the supplied
data might had an adverse effect on the effectiveness of the method (Section 6.3).
And finally, since only a fraction of the complete network was used, the absence of
some genes may cause not only to lose some true interactions but also to emerge

some false interactions.



Chapter 9
Discussion

With the increasingly available microarray data sets, identifying the regulatory ma-
chinery in a gene circuit is becoming more desirable compared to grouping of similar
genes by clustering methods. Therefore, model-based reconstruction of gene regu-
latory network has become a popular research topic in the fields of computational
biology and bioinformatics. Among different available models, the S-system has been
found to provide valid representation in a large number of theoretical and practi-
cal studies. Moreover, the recent decoupling of the model has made its application
computationally tractable in networks consisting of many metabolites. Neverthe-
less, the reverse engineering task has to cope with many technological, biological
and algorithmic challenges. In this dissertation these challenges are addressed and
some proposals are presented to solve them or at least to ameliorate the existing

ways to deal with them.

9.1 Discussions on Memetic Optimizer

The problem space of gene network reconstruction using S-systemn model is highly
multimodal, dynamic and deceptive. Because of the high complexity, any exhaustive
or analytical method will prove unrealistic for finding the optimal solution for such a
problem. Because of robust and reliable performance of EC in such problem domain,
researchers used EC as a dependable alternative in recent years. However, none of
the existing EAs proven it to be sufficient to find the global optimal solution for this
problem. So, a substantial effort of this work has been expended to enhance the
performance of an existing EA, namely DE, for multimodal problem optimization.

Neighborhood exploration has been found to be an effective way to improve the

performance of an EA. Therefore, in an attempt to speed up DE, a memetic version
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of DE using crossover based local search (XLS) has been proposed. In the proposed
XLS, named as FIR, the search space around the best individual is greedily explored
in each generation.

As DE applies deterministic selection and lacks mutation operator, it tries to
estimate the features of the search space iteratively based on the distribution of its
individuals. There are EAs available in literature which exhibit very good perfor-
mance without explicit mutation operation, e. g. MGG, G3. The reason behind
their success is the use of XLS whose performance depends largely on the capability
of the crossover operator used. Motivated by their methodology the FIR strategy
was proposed for DE algorithm. Two implementations, DEfirDE and DEfirSPX,
have been presented for the FIR where the first uses DE like recombination and
the later uses simplex crossover (SPX) for searching the neighborhood of the best
solution.

The ultimate target of designing this memetic version of DE is to increase the
convergence speed of the algorithm in high dimensional optimization. Different
experimental results, presented in Chapter 4, eminently shows that the FIR scheme
increased the convergence velocity of the basic DE algorithm, especially in high
dimensional search spaces.

Often the attempts towards a higher convergence rate simultaneously increase
the risk that the algorithm will prematurely converge into a local optimum. There-
fore, the robustness of the proposed DEFIR algorithms was analyzed by experiment-
ing with various population sizes and different DE parameters. The results showed
that the proposed memetic versions of DE can be used for higher convergence rate
with increased search precision or search robustness.

Experimenting with random problems, yielded by a continuous landscape gen-
erator capable to differentiate between algorithms, the superiority of the proposed
schemes were verified over their parent algorithm. It was found that in highly mul-
timodal environment, the performance of DEfirDE and DEfirSPX were better than
DE not only in terms of fitness achieved but also in terms of convergence speed.
The suitability of the proposed schemes for optimizing the S-system model param-
eters was also studied. The results proved their superiority compared to basic DE
in optimizing S-system model.

Between DEfirDE and DEfirSPX, the overall performance of the later was much
better than that of the former. This is expected because SPX, a much sophisticated
crossover operator that works well on functions having multimodality and/or ep-

sitasis, will search the neighborhood of the best solution more effectively than the
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recombination process of DE. Therefore, the DEfirSPX scheme was more successful
to accelerate the search-capability and to improve the performance of the algorithm.

Traditionally, hybrid EAs or MAs have been implemented by incorporating
problem-dependent heuristics for refining the individuals (i.e. improving their fit-
ness through fine tuning). However, the field of EA has always enjoyed the superior
characteristic of being problem independent. Therefore, a recent interest is to in-
clude the local-search in EA in a problem independent manner. In an attempt to
design a completely problem-independent crossover-based local search process, an-
other scheme AHCXLS has been presented in this work. The AHCXLS scheme was
designed by borrowing concepts from both LIPs and XLS, to take the advantages
of both paradigms.

In different experimental results presented here, the proposed DEahcSPX out-
performed the classic DE algorithm. The speedup of the algorithm has been also
established by different results. The scalability study and the population size study
highlighted the robustness of the proposed algorithm over original DE algorithm.
Different experimental results and comparison with other MAs show that the per-
formance of DEahcSPX is superior to many of the state-of-the-art EAs, particularly
for multimodal problems, but it can also deal with the unimodal problems very
competitively.

Generally, incorporation of a local search can not modify the overall behavior of
an algorithm; however, can improve some of its characteristics. And more or less
same phenomenon was observed in case of DEahcSPX. From different experimental
results, and from the shape of the convergence graphs, it was found that for a
particular class of problem the proposed memetic version of DE behaves similarly to
its parent algorithm. However, in almost every case it exhibited a higher convergence
velocity compared to DE.

The proposed AHCXLS was compared with other XLS applying in DE and
it showed that the newly proposed local search scheme performs best. It can be
hypothesized that the adaptive nature of the AHCXLS guides the algorithm to
explore the neighborhood of each individual most effectively and locate the global
optimum at a minimum cost. Furthermore, the scheme sets us free from the search
for the best length for local search.

The principle of AHCXLS is so simple and generalized that it can be hybridized
with any of the newly proposed DE variants without increasing the algorithm com-
plexity. And in a brief study it was found that AHCXLS scheme can accelerate
some other variants of basic DE algorithm proposed by Storn and Price. Experi-
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mental results also showed the prospect of the AHCXLS scheme in accelerating the

self-adaptive variants of DE.

9.2 Discussions on Reverse Engineering Algorithm

After improving performance of DE, this enhanced optimizer was used for designing
an evolutionary algorithm for inferring the transcriptional regulations in a biochem-
ical network represented in the decoupled S-system form. Two major challenges in
reconstructing GRNs modeled by S-system are (i) to detect the sparse topological
architecture which is most commonly seen in biological networks and (ii) to estimate
the kinetic parameters from limited amount of gene expression data corrupted with
significant level of noise.

In order to cope with the first challenge, new fitness criteria were proposed for
evaluating the candidate network models that are encountered during the evolu-
tionary search. First, the MSE based fitness function was enhanced using a more
effective penalty term. Grounded on the fact that not too many genes regulate both
the synthesis and degradation process of other genes, an existing fitness function was
modified /enhanced. And experimenting with this new MSE based fitness function
it was found that it can reconstruct the network with fewer false positive predic-
tions [88]. The proposed fitness function was also found more effective in estimating
correct parameter values from fewer time series data.

Then another information criteria based fitness evaluation function was proposed
for evaluating the network models. This fitness function was designed extending the
AIC using the prior designed penalty term. However, a different penalty constant
was used so that the complexity term can properly interact with the algorithm.
An extensive study was performed on the performance of these two fitness func-
tions varying the network size, noise-level and amount of gene expression data. In
such studies both of the proposed fitness function showed brilliant performance in
identifying the sparse network structure. Both of them also exhibited superior per-
formance in estimating network architecture and kinetic parameter values compared
to existing fitness functions. However, between these two fitness functions the over-
all performance of the newly proposed AIC based fitness criteria was better than
the other.

The proposed memetic algorithm was designed targeting several issues such as
identifying robust transcriptional regulations, estimating precise kinetic parameters,

attaining skeletal network architecture and above all computational efficiency. The
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Figure 9.1: Performance comparison of the proposed algorithmm with and without
HCLS

optimization engine, the core of the algorithm, was implemented using the prior
developed reliable and robust optimizer called DEfirSPX. However, the framework of
the complete algorithm is so structured that any other optimizer can be used instead
and TDE was used in some experiments. Besides, the exploitation capability of a
hill climbing local-search heuristic was taken for efficient identification of the sparse
network structure. Moreover, double optimization was used for detecting robust
interactions and special measures were taken to maintain the population diversity
for global convergence.

The suitability of the method is tested in gene circuit reconstruction experi-
ments, varying the network dimension and/or characteristics, the amount of gene
expression data used for inference and the noise level present in expression profiles.
The reconstruction method inferred the network topology and the regulatory param-
eters with high accuracy. Nevertheless, the performance is limited to the amount
of expression data used and the noise level present in the data. Furthermore, the
proposed reconstruction algorithm was found more robust to noise and small sample
size compared to other existing inference algorithms for gene networks. Finally, the
methodology was verified by constructing the underlying networks of key regulators
by analyzing different real gene expression data-sets.

Some empirical analysis of the proposed algorithm was performed to show that
the different components of the algorithm were necessary for robust, efficient and
accurate estimation of the regulatory parameters. All the results are based on the
reconstruction experiments on NET1. As mentioned earlier, the purpose of the hill

climbing local search (HCLS) was to identify the skeletal structure efficiently and
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Table 9.1: Inferred parameters at different trials of Phase 1 and in Phase 2 for gene
3 of NET1 from 10% noisy data ‘

a3 g1 932 933 g4 gss P hgy  hgs  hys hya  has
P1, T1 11.606 0.000 -0.755 0.000 0.000 0.000 12.930 -0.328 -0.509 2.248 0.000 0.600
P1, T2 11.605 0.000 -0.755 0.000 0.000 0.000 12.929 -0.328 -0.509 2.248 0.000 0.000
P1, T3 15.413 0.000 0.000 -0.464 0.000 0.000 20.405 -0.611 0.616 2.646 0.000 0.000
P1, T4 11.601 0.000 -0.755 0.000 0.000 0.000 12.925 -0.328 -0.509 2.249 0.000 0.000
P1, T5 11.320 0.000 -0.763 0.000 0.000 0.000 13.110 0.000 -0.567 2.213 0.000 0.000
P2 11.605 0.000 -0.755 0.000 0.000 0.000 12.929 -0.328 -0.509 2.248 0.000 0.000

effectively. In order to verify the usefulness of the HCLS component, the regulators
of gene 1 were inferred using the proposed algorithm without the HCLS component.
Performance of this modified algorithm is compared with that of the proposed algo-
rithm in Fig. 9.1 in terms of convergence curves. From the graph it is very evident
that HCLS was very effective in efficient optimization of the fitness function and
thereby helpful in estimating the parameter values more accurately. In order to
show the usefulness of double optimization in estimating the robust parameter val-
ues, the parameter values for gene 3, estimated at the end of different trials of phase
1 and after the optimization of phase 2, from 10% noisy expression data are pre-
sented in Table 9.1. The results presented in Table 9.1 clearly shows that different
trials of optimization may converge to some local optimum and thereby some essen-
tial regulation may be lost (e.g. g3, in Trial 3 of Phase 1) or type of the regulation
may be changed (e.g. hgs in Trial 3 of Phase 1) or the parameter values may be
very different. A second optimization phase, starting from these local solutions can
automatically detect all the robust interactions and give more robust values for the
kinetic parameters. These empirical analyses of the algorithm were useful to show
that the different components of the proposed algorithm were worthy to accomplish
the purpose.

An AIC based fitness criterion was proposed in this work for evaluating the
candidate solutions, during the search for the optimal set of parameters. In the
proposed fitness evaluation function, the penalty term of AIC was extended. The
purpose of this additional penalty term was to facilitate the selection of models
with sparse network architecture. Following the guideline of previous work, this
penalty term was designed so that it would penalize the fitness score of a candidate
network model if it has regulators more than the maximum in-degree of that network.
Therefore, this penalty term remains silent as long as the number of regulators
of a gene does not exceed the maximum given limit. Otherwise, it penalizes the

competing model and thus helps to identify the skeletal architecture. In this new
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Figure 9.2: Study on the effect of penalty constant ‘¢’

penalty term there is an additional parameter ‘¢’ which was given a value 1000.
Choice of this parameter value was very straightforward and was determined as
follows. As mentioned early, the algorithm performs a structure skeletalizing for
reducing the computational burden by setting a parameter to zero if its absolute
value is less than ¢ = 0.001. It is needed to penalize the fitness score effectively
for all additional regulators (that lie beyond the threshold of maximum in-degree)
until their values go down below ¢. Therefore, such a value for the parameter
‘¢’ is quite natural and was found useful. In order to study the sensitivity of ‘¢,
experiments were performed with different values for the parameter for NET1 under
ideal condition. The result is shown in Fig. 9.2 in terms of average error value. As
the figure shows, any value greater than 1000 for the parameter was suitable for
penalizing the fitness score for additional regulators. And the specificity S, of the
reconstructed networks did not change significantly when a ¢ > 1000 was chosen.
This result also supports the anticipation about the choice of this penalty constant.

In a wide range of experiments, the reverse engineering algorithm showed its
competence in inferring the correct transcriptional regulations and estimating the
correct kinetic parameter values. If sufficient amount of gene expression data is given
and the noise level is not very critical then the algorithm can identify almost all the
correct regulatory interactions in a medium sized network. Also the kinetic parame-
ters were estimated with pretty high accuracy. Because of the high flexibility of the
S-system model, the performance of the reconstruction algorithm degraded with the
decrease in microarray data sets used for inference. When inference was done from
insufficient amount of experimental data, the number of correctly inferred regula-

tions and the accuracy of the inferred parameter values decreased. One point should



9.2. Discussions on Reverse Engineering Algorithm 130

be noted here that the gene expression profiles, used in these experiments, were gen-
erated from random initial concentration levels. If data were collected for various
stimuli or through gene disruption then the networks could be reconstructed from
fewer data-sets because such data provide more information about the biochemical
pathways existing in a group of closely coupled genes.

The performance of a reverse engineering algorithm has always been affected by
the noise level in the experimental data and the proposed one is not an exception.
Though the exact network topology and quasi accurate parameters were estimated
in ideal noise free condition, the quality of the prediction deteriorated, both in
terms of pathway identification and reaction kinetics estimation, with the increase
in noise level. However, when compared with the predictions using other fitness
evaluation criteria, the overall parameter accuracy and sensitivity /specificity were
found better in the proposed fitness evaluation functions for different noise patterns.
This empirically shows the superiority of the proposed fitness functions in evaluating
the candidate networks.

In analysis of the real gene expression data, primarily because of insufficient ex-
perimental data with high noise, the proposed method could not get any consistent
result for the estimated network in different experimental runs. Therefore, Z-score
analysis was performed for a qualitative prediction of the bio-molecular pathways
among the genes. Most of the pathways in the reconstructed networks were consis-
tent with the results reported in the literature. The primary reason of erroneous
predictions was deficiency in the time course data.

A summary of performance comparison between the proposed method and other
reverse engineering algorithms based on the reported results for NET1 is presented
in Table 9.2. As mentioned earlier, the proposed algorithm took approximately 12
minutes to solve a subproblem of NET1 in a 1.7 GHz Pentium processor. So the
total time required for reconstructing the complete network was approximately 60
(5x12) minutes. According to Table 9.2, it is obvious that the proposed algorithm
is more efficient than the other existing algorithms for the same task. The proposed
algorithm not only took minimum time to reconstruct the network but also exhibited
excellent performance in estimating nearly identical parameter values. The suitabil-
ity for parallelization and the computational efficiency of the proposal make it most
competitive for large scale genetic network reconstruction problems. Moreover, the
algorithm exhibited such performance using fewer or equal amount of gene expres-
sion data used by other methods. And the ability of the method to identify all the
regulations of NET1 correctly from expression data cluttered by 5% Gaussian noise,
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Table 9.2: Performance comparison of different reconstruction algorithms for the
problem of NET1

Met ODE solving Time pomts  CPU Time Estimated  Noisy exp
dethod Q :
method used results considered?
This work Num. intg. 10 sets 5x 12 mins Nearly Yes
with spline (10x11) {Pen 1.7 GHz) identical

HDE (Tsai and Converted to 10 sets 170 mins Nearly Not

Vang [130]) algebraic eqn (10x?) (Pen 2.4 GHz) identical reported
GLSDC (Kimura Num. intg. with 15 sets 8x 89 mins Accurate Not
et al. [57]) local linear regression  (15x11) (Pen 933 MHz) reporied
PEACEL (Kikuchi  Numerical 10 sets 7x10hrs (1040x  Not exact  Not
et al. [54]) integration (10x10) Pen 933 MHz) structure  reported

makes it very apposite to work with the quality and quantity of gene expression
data that the current technology offers.

In an overall, the results demonstrate that the proposed method can infer the
regulatory relationships in a co-regulated module using gene expression data as in-
put. However, the reconstruction algorithm may not be able to capture the complete
network architecture in a single reconstruction attempt or may only be able to pre-
dict some qualitative interaction because of insufficient data availability or excessive
noise in the data. Still this type of indication can be very useful for biologists to
develop conjectures or to design additional experiments which may in turn help to

identify new interactions.



Chapter 10
Conclusion

In this dissertation, a methodology has been presented to identify the molecular
pathways of gene regulation from the gene expression data. The proposed algorithm
was found competent to infer various types of transcriptional regulations, such as
auto, cyclic and different types of feedback control, correctly with their kinetic
parameters.

One of the objectives of the research was to develop a robust evolutionary opti-
mizer capable of locating the global optimum in multimodal and deceptive problem
domain, so that it can be used to estimate the parameter set for the disintegrated
S-system model that was used for representing the mechanism of gene regulation.
Therefore, some proposals are presented to enhance an existing evolutionary algo-
rithm for real parameter optimization. In these efforts crossover-based local-search
schemes have been hybridized with the classic differential evolution algorithm to
accelerate it. Empirical studies showed that such memetization of the algorithm
not only increases its convergence velocity but also increases its robustness and re-
liability. Hence, the proposed crossover based local searches were useful to improve
the performance of the differential evolution algorithm.

Another theme of this research was to penalize the complex model structures
to handle the high degree-of-freedom that the S-systein model offers. Modifications
and/or extensions have been proposed to the existing criteria with the help of some
biological fact. One of the fitness criteria was based on MSE and the other was
based on AIC. Experimental results suggest that these fitness functions were more
effective to identify the skeletal structure and to estimate the precise parameter
values.

Another the central idea proposed in this work was to use a hill climbing local

search to accelerate and facilitate the evolution of the sparse candidate structures
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of the candidate models. The evolved network structures were sparse in nature
which shows the competence of the algorithm to identify such skeletal architecture.
And the empirical analysis of the algorithm confirms the local search’s usefulness in
accelerating the identification of sparse networks. The role of double optimization
in identifying the robust biomolecular interactions from the considerably noisy gene-
expression data has been also discerned.

In order to extract useful regulatory information from the gene expression data
that the current technology offers, the reverse engineering algorithm should be ro-
bust against small gene expression data size and significant level of noise. Like other
reconstruction methods, for the proposed algorithm the sensitivity and specificity of
the reconstructed network reduced with decreasing sample size and increasing noise
level. However, it was found that the reconstruction method can identify some reg-
ulations from very limited amount of expression data in presence of noise which

indicates its robustness against small sample size and noise.

10.1 Future prospects

The meticulous identification of the genome-wide regulatory networks is one of the
biggest challenges that the filed of systems biology is facing. This work has added
some new guidelines towards the ultimate goal of automated reconstruction of cel-
lular pathways. Yet, a long way to go before the use of such a system becomes
widespread in drug design and disease treatment. Many scopes and guidelines for
future studies have become perceptible from the discussions of the work. This sec-
tion gives more specific directions to such prospects.

Reconstruction of a system-level gene regulatory network which includes thou-
sands of genes and very complex interactions among them should make use of all
possible genomic knowledge available rather than building the network from the
scratch. Besides, for the system level integration of the biological organisms we
should be able to use all sort of biological and genomic resources obtainable from dif-
ferent databases, such as molecular pathway database, nucleotide sequence database,
protein sequence database, information about biomarkers, transcription locus, tax-
onomy, phylogeny, macromolecular structures, evolutionary relatedness or any form
of information from any other source. However, such information can be used at
different stages of the reconstruction process: to validate the prediction, reduce the
scope and dimension of the search, increase the accuracy of the correct predictions,

disprove the false regulations. Moreover, use of such prior knowledge may reduce
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the effect of noise and also the data requirement for the reconstruction process and
lower the cost of expensive microarray analysis. Additional benefit of such knowl-
edge incorporation is more efficient inference process. However, while use of such
prior information is indispensable for very large gene network reconstruction, ap-
propriate utilization of this knowledge should be guaranteed by refining ambiguous
and conflicting knowledge from different databases and verifying the authenticity of
the used knowledge.

Top-down or bottom-up reconstruction approaches can further facilitate the in-
ference process for a real large gene network. Though, the model has already been
disintegrated at gene level, when a system level network is considered, every gene
will have hundreds of prospective regulators. Therefore, top-down or bottom up
schemes by grouping of genes through clustering can reduce the problem dimension-
ality drastically and further assist the inference method.

Use of the framework of modular network can significantly reduce the complex-
ity of reconstructing a gene network with hundreds or thousands of genes. Genes
and proteins are organized into functional modular networks in which the network
context of a gene or protein has implications for cellular function [53]. At the system
level, a gene regulatory network consists of assemblages of these functional units each
of which may consists of a group of 10 to 100 genes. Therefore, subdivision of the
complete network into its modular components can be useful to identify higher level
interactions among these modules. The top-down/modular analysis does not require
complete information on the molecular interactions and has proven advantageous
both for discovering unknown interactions and for estimating unknown kinetic pa-
rameters [53, 143]. Such techniques include clustering of genes and other statistical
algorithms based on similarity in expression profiles.

The proposed method can also be integrated within the framework of other re-
construction method based on some more abstract models such as Boolean models.
Such simpler models are capable of giving a first hand approximation of the struc-
ture or gene interaction from very limited data which can further be refined by using
the proposed method. Such Boolean network models also prove a useful conceptual
tool for investigating the principles of network organization and dynamics and can
give information about the constraints in the number of inputs and outputs per
gene, input and output sharing among genes evolved within a gene family or path-
way, and restrictions on rule types etc. Such information can in turn facilitate the
reconstruction process.

The memetic optimizer developed in this work has shown the promise of us-
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ing crossover based local search strategies for Differential Evolution algorithm. So
the prospect of the proposed local search strategies can be explored for other evo-
lutionary algorithms particularly for the self-adaptive ones. Besides, most of the
real-world problems are highly multimodal and the proposed memetic optimizer has
proven its competence for multimodal problems. Therefore, this optimizer can be

used as a handy tool for all sort of real world optimization problems.



Appendix A
DNA Microarray Experiment

Gene expression is a highly complex and tightly regulated process that allows a
cell to respond dynamically both to environmental stimuli and to its own changing
needs. Studying which genes are active and which are inactive in different cell types
helps scientists to understand both how these cells function normally and how they
are affected when various genes do not perform properly. In the past, scientists
have only been able to conduct these genetic analyses on a few genes at once.
With the development of DNA microarray technology, however, scientists can now
examine how active thousands of genes are at any given time [115]. Gene expression
profiling or microarray analysis have revolutionized the biomolecular research and
have stimulated the further understanding of biological processes.

A microarray works by exploiting the ability of a given mRNA molecule to bind
specifically to, or hybridize to, the DNA template from which it originated. By
using an array containing many DNA samples, scientists can determine, in a single
experiment, the expression levels of hundreds or thousands of genes within a cell by
measuring the amount of mRNA bound to each site on the array. With the aid of a
computer, the amount of mRNA bound to the spots on the microarray is precisely

measured, generating a profile of gene expression in the cell [42].

A.1 Principle of Microarray Technology

Though the complete process of microarray experiments is quite complicated the
basic principle underlying the microarray technology is very simple and is that
complementary nucleic acid will hybridize [45]. Here are described the major steps
involved in a microarray experiment (Fig. A.1).

(1) Fabrication of a cDINA microarray: The first step in cDNA microarray
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Figure A.1: DNA Microarray experiment overview (adapted from [45])

construction is the preparation of cDNA as arrayed targets. Any double-stranded
cDNA, and probably single-stranded ¢cDNA, can be used for the fabrication of a
microarray. Conventional cloning techniques and PCR amplification are usually
required for the target cDNA preparation. Target cDNAs are printed onto a poly-L-
lysine-coated microscope glass slide by means of a robotic arrayer [45]. The coated
surface provides attachment sites for the target ¢cDNA so that it remains bound
to the glass surface during hybridization and washing. Before hybridization, four
steps of post-processing, namely rehydration, snap-drying, ultraviolet cross-linking
and blocking of coated glass surface, of the microarray is required to minimize
hybridization background noise.

(2) Target preparation: Messengers RNA are extracted from two probe sam-
ples which to be compared for expression level. mRNA from test and reference
samples are then transformed in ¢cDNA by reverse transcription and labeled with
two different dyes [115]. Although various types of fluorescent labeling materials are
now commercially available, Cy3- and Cy5-dUTP or dCTP are generally used for



A.2. Types of Microarray Technologies 138

this purpose.

(3) Hybridization: The separately labeled probes are pooled and concentrated.
After concentration, successfully labeled probe can be identified by its color. Probes
are suspended into the hybridization solution containing 3X SSC and 0.5% sodium
dodecyl sulfate (SDS), and hybridized to the microarray under a coverslip in a spe-
cially designed hybridization chamber that is submerged in a 65°C water bath for
14-20 hrs [45]. At this temperature, a DNA strand that encounter the comple-
mentary strand, match together to create a double strand DNA. The fluorescent
DNA will then hybridize on the spotted ones. After hybridization, the microarray
is washed and air-dried.

(4) Slide scanning: A laser excites each spot and the fluorescent emission
gather through a photo-multiplicator (PMT) coupled to a confocal microscope [115].
Two images are obtained where grey scales represent fluorescent intensities read. If
grey scales are replaced by green scales for the first image and red scales for the
second one, by superimposing the two images one image is obtained which composed
of spots going from green ones (where only DNA from the first condition is fixed)
to red (where only DNA from the second condition is fixed) passing through the
yellow color (where DNA from the two conditions are fixed on equal amount).

(5) Data analysis: Now two microarray images are available from which the
number of DNA molecules to be calculated in each experimental condition. To do
so, the signal amount in the green dye emission wavelength and the signal amount
in the red dye emission wavelength are measured. Then these signal amounts are
normalized according to various parameters. It is supposed that the amount of
fluorescent DNA fixed is proportional to the mRNA amount present in each cell
at the beginning and we calculate the red/green fluorescence ratio. If this ratio
is greater than 1 (red on the image), the gene expression is greater in the second
experimental condition, if this ratio is smaller than 1 (green on the image), the gene

expression is greater in the first condition.

A.2 Types of Microarray Technologies

Microarrays come in several varieties, each of which has specific advantages for
research and screening. Two major types of microarrays are dominantly used: cDNA
arrays and oligonucleotide arrays. The major difference between these two is in
oligonucletide array, gene expression level in the sample is directly reflected instead

of through the ratio of test and reference sample in the cDNA spotted arrays.
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c¢DNA microarrays have evolved from Southern blots. It uses lengths of comple-
mentary DNA (or cDNA) produced from cellular messenger RNA using the reverse
transcriptase polymerase chain reaction (RT-PCR).The probes from amplified PCR
product are spotted onto a microscope slide, or alternative intermediate by a robot.
Two ¢cDNA samples from different source (such as normal and treatment) are la-
beled with Cy3 or Cy5 fluorescent dye and combined together to hybridize with the
probes [115]. After laser excitation, the fluorescence is collected and the ratio is
measured.

The other form of microarray consists of oligonucleotides or peptide nucleic acids
synthesized either in situ on the chip or by conventional synthesis followed by im-
mobilization on the chip. Scientists at Affymetrix developed this type of microarray,
which is often called a DNA chip. Such High-density oligonucleotide probe array is
the core technology of Affymetrix [39]. The probes are synthesized directly on a glass
substrate. Millions of copies of a specific probe are located within a discrete area on
the array called a probe cell. The probe pair consists of two probe cells - the perfect
match (PM) and mismatch (MM). PM probes are designed to be complementary
to a reference sequence, and MM probes are designed to be complementary to a
reference sequence except for a homomeric base mismatch at the central position.
And a transcript is represented as a probe set which is made up of probe pairs. The
statistical algorithm uses probe pair intensity to generate a Detection call such as
Present (P) and Absent (A).

Arrays can also use proteins. Now commercial protein chip are available that
can be used in proteomics research. Some pharmaceutical companies are also using
microarray formats to screen the activity of various chemical compounds against
targets in their drug discovery programs. In addition, some researchers have begun
to work with cell and tissue arrays. Several companies now offer these as part of
their product lines.

These fundamental platforms for microscale experimentation have resulted from
the marriage of several technologies. Robotic engineering, pin technology, molecular
biology, DNA sequencing, optical and laser technology, and informatics have all
contributed to the development of microarrays. Since few companies can develop
expertise in all these areas, individual firms must partner with others to create
compatible systems. Alternatively, researchers intent on preparing their own arrays

must assemble components from several vendors.
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A.3 Promise of Microarray Technology

Microarrays hold tremendous promise in health care and drug discovery. And some
of its promises are already being fulfilled. The future of the array technology can be
pictured as: a hand-held instrument that a physician could use to quickly diagnose
cancer or other diseases during a routine office visit. The same instrument would
also be able to facilitate a personalized treatment regimen, exactly right for you.
Studies for system-level understanding of different organisms are currently going on
in many laboratories around the world. Everything from mice to humans is being
studied analyzing the gene expression obtained from different types of microarrays.
In drug discovery, many pharmaceutical companies are using microarrays to study
possible drug targets. Personalized drugs, molecular diagnostics, integration of diag-
nosis and therapeutics - these are the long-term promises of microarray technology.
Many more are focusing on toxicogenomics and pharmacogenomics, two research ar-
eas based on DNA microarrays. In clinical research, many experiments in oncology,
infectious disease and general disease classification and prognosis have been con-
ducted. From their results, we now know many new subclasses of cancer and how a
particular tumor may respond to treatment. And finally in clinical applications, the
AmpliChip CYP450 by Roche and Affymetrix is intended to be an aid for physicians
in individualizing treatment doses for patients on therapeutics metabolized through
these genes. The AmpliChip CYP450 is already in use.

From the pure biological gene expression studies to clinical research, from drug
discovery and development to personalized medicine, microarrays are already being

used frequently by today’s researchers.

A.4 Limitations of Microarray Technology

Despite the great promises of microarrays in health care, and their successes in both
medical and biological research, the technology is still far away from daily use in
the clinic. Why, despite the great potential of microarrays, is their use so far from
the clinic?

While many laboratories have successfully implemented microarrays, there are
many difficulties in the process. RNA extraction, amplification, and hybridization
are all procedures involved in microarray research, and all have inherent problems
leading to statistical errors. DNA microarrays are not accessible in abundant due to
their high cost and difficulty of use. Besides, It is very difficult to obtain high quality
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tissues from hospitals after surgery for laboratories to use in microarray research. It
is also difficult to extract enough RNA for microarray analysis from just a few cells.
Lack of sufficient data is a result of the high cost of microarray experiments and the
need for a database that researchers may quickly access for past experimental results.
While the gene expression profile allows a whole genome approach to studying the
cell, there are other factors effecting cell phenotype. Moreover, some expressed
genes do not lead to proteins, as downstream regulation can occur within the cell.
Furthermore, some researchers still do not trust the data obtained from microarrays
because of the high variability. Repeated studies seem to yield significant differences
in the scale factor and present call percentages. Still more problems exist. Once the
microarray data, which is in the form of a gene list, is validated, a detailed analysis
is necessary before useful information can be obtained.

However, as the microarray is becoming more mature, it is overcoming many of
its shortcomings with the help of cutting-edge technologies and equipments. And it

is expected that it will continue to play a key role in future genome research.

A.5 Microarray data to Regulatory Networks

Reverse engineering of regulatory networks relies upon the assumption that given
enough data on actual genetic expression levels, we can deduce how genes are reg-
ulated. For this purpose it is practical to divide microarray data into two groups,

steady state and time series.

Steady State

In a steady state experiment several closely related cell cultures are grown under
very similar conditions, with expression data being collected only at one specific
time point, usually during steady growth. Changes in expression levels are then
identified by comparing across the cell cultures. A typical setup involves comparing
a single gene knock-out mutant to the wild-type grown on the same media. The
closer the two cultures are to each other, the better, since this eliminates noise from
biological processes which are not related to the knocked-out gene. Ideally only those
genes regulated either directly or indirectly (perhaps through another regulator) by
the product of the gene which was knocked-out will show any significant change in

expression level.
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Time Series

In a time series experiment samples are taken at different time intervals from a
single cell culture during growth. For each of these samples microarray data can be
produced revealing the changes in expression levels over time. Using a mathmatical
model it is now theoretically possible to reveal the underlying regulation. In reality,
however, it is very difficult to obtain the exact networks from time series, because
the whole thing relies on the time intervals being selected in accordance with the
delay between the expression of the regulator and the effect it has on the regulated
genes. Also, limitations in the experimental conditions means that it is difficult to
obtain good quality data for more than approximately 20 time points, which are too

few for most reverse engineering models.



Appendix B

Spline Interpolation

In engineering applications, data collected from the field are usually discrete and the
physical meanings of the data are not always well known. To estimate the outcomes
and, eventually, to have a better understanding of the physical phenomenon, a more
analytically controllable function that fits the field data is desirable. The process of
finding the coefficients for the fitting function is called curve fitting; the process of
estimating the outcomes in between sampled data points is called interpolation;
whereas the process of estimating the outcomes beyond the range covered by the
existing data is called extrapolation.

Suppose we are given a sequence of n distinet numbers xy, 29, 23, ,x, (say
T < xp < - < I, ) called nodes and for each z; (i = 1,2,--- ,n) a second number
y; (i =1,2,--- ,n) which are value of a function f(x). We don’t know any analytic
expression for f(x) using that we can calculate its value at any arbitrary point and

we are looking for a function f so that
flz) =y

A pair {z;,y;} is called a data point and f is called the interpolant for the
data points. Often x;’s are equally spaced, but not necessarily. The task is now to
estimate f(z) for arbitrary z by, in some sense, drawing a smooth curve through
(and perhaps beyond) the z; [100]. If the desired z is in between the largest and
smallest of the x;’s, the problem is called interpolation.

A reasonable functional form should be used in an interpolation or extrapolation
scheme in order to model the function within the given points and beyond. Such a
functional form should be general enough to approximate wide range of functions

that may be encountered in practice [100].
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There are many different interpolation methods. When choosing an appropriate
interpolation method the issues to be resolved are: How accurate is the method?
How expensive is it?7 How smooth is the interpolant? How many data points are
needed? [28].

One of the simplest methods is linear interpolation. It is easy and fast and pays
its price by not being accurate. Polynomial interpolation is a generalization of linear
interpolation. Note that the linear interpolant is a linear function. And in polyno-
mial interpolation this linear function is replaced by a higher order polynomial. This
is one of the most commonly used types of interpolation. Polynomial interpolation
solves most of the problems of linear interpolation. But, polynomial interpolation
also has some disadvantages. Calculating the interpolating polynomial is relatively
very computationally expensive. Furthermore, polynomial interpolation may not
be so exact after all, especially at the end points [28]. These disadvantages can be

avoided by using spline interpolation.

Spline Interpolation

It performs the interpolation of interorder background using smoothing spline poly-
nomials. Spline interpolation consists of the approximation of a function by means
of series of polynomials over adjacent intervals with continuous derivatives at the
end-point of the intervals. That is, here, the interpolant is a special type of piece-
wise polynomical known as spline. Spline interpolation is preferred over polynomial
interpolation because the interpolation error can be made small even when using
low degree polynomials for the spline.

Given k+ 1 distinct knots z; such that zy < 2; < -+ <z with £+ 1 knot values

y; we are trying to find a spline function S(x) of degree k such that
e The domain of S is an interval [a, b].
e 5,8, .-+ S 1) are continuous on [a,b].

e There are points x; such that ¢ = g < x; < --- < 1, = b and such that S is

a polynomial of degree at most k on each [z;, z;.].

In other words, splines are piecewise polynomial functions whose derivatives obey
certain continuity constraints. When k = 1, the splines are called linear splines.
When k = 2, the splines are called quadratic splines, and when k = 3, the splines

are called cubic splines.
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Figure B.1: Linear Spline Interpolation

Linear Splines

Linear spline interpolation is the simplest form of spline interpolation. The data
points are graphically connected by straight lines. The resultant spline is just a
polygon (Fig. (B.1)). That is, here, we seek a linear spline function S(x) such that
S(z;) =y for0<i<n.

Let

So(x) To < T

Si(z) 71 <z <19

S(z) = (B.1)

Sk-1(r) TH1 ST < T
where each S;(xz) is linear.
Let us consider the linear function S;(z). The line passes through the points
(zi,yi) and (Tis1,¥is1), s0 the slope of Si(z) is
m; = Yiv1 — Yi (B.2)
Tiy1 — T
Also, it can be stated that the line passes through the points (z;, y;) and (z, S;(z))

for any z in the interval [z;, z;4,], so for any z in this interval,

- Si(z) — ui (B.3)

=
I — X

which gives
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Si(x) = yi + my(x — 1y) (B.4)

Strategy for Linear Spline Interpeiation

1. Compute m; for 0 < i < n — 1 using (B.2)
2. For any x € [xg; x,], find the correct interval in which z lies, and evaluate the

corresponding spline using (B.4).

Algorithm

(given zy, y;, my, for 0 <z <n -1 and z)

fore=0: n-1
if r <y
break
end
end
S(z) = yi + mi(z — x)

Compared to polynomial interpolation, linear spline interpolation is very cheap:
the slopes can be computed in ~ 3n flops, and given these slopes, the spline func-
tion can be evaluated in exactly 3 flops. Therefore, linear spline is free from the

disadvantages of other splines, i.e. not expensive and easy to implement.

Cubic Spline

The cubic spline interpolation uses third degree polynomials to connect the data
points which often results in strikingly smooth curve fits. It is assumed that the cubic
polynomial function’s first and second derivative is continuous at the interpolation
nodes.

The cubic spline not only interpolates the data but matches the first and second
derivatives at the knots. Notice, from the above definition, one is free to specify con-
straints on the endpoints. One common end point constraint is 5”(a) = 05"(b) = 0,
which is called the natural spline. In other words, the natural cubic spline has zero

second derivatives at the endpoints. It is the smoothest of all possible interpolating
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curves in the sense that it minimizes the integral of the square of the second deriva-
tive. Other popular choices are the clamped cubic spline, parabolically terminated
spline and curvature-adjusted spline. Cubic splines are frequently used in numerical
analysis to fit data. Compared to linear splines cubic splines are naturally more
expensive to evaluate and difficult to implement.

Spline interpolation is a powerful data analysis tool. Splines correlate data ef-
ficiently and effectively, no matter how random the data may seem. Once the al-
gorithm for spline generation is produced, interpolating data with a spline becomes

an easy task.



Appendix C

Benchmark Functions

The test suite that was used for different experiments of Chapter 5, consists of 20
benchmark functions. The first 10 test functions of the suite are functions commonly
found in the literature and the other benchmarks are the first 10 functions from the
newly defined test suite for CEC 2005 special session on real-parameter optimization

[125]. The test suite was as follows:

1. Fypn: Sphere Function

2. F,.s: Rosenbrock’s Function

3. F,u: Ackley’s Function

4. Fyry: Griewank’s Function

5. Fr4: Rastrigin’s Function

6. F,.: Generalized Schwefel’s Problem 2.26

F,u: Salomon’s Function

-3

8. F,n: Whitely’s Function

9. Fyn: Generalized Penalized Function 1

10. Fpn2: Generalized Penalized Function 2

11. Fy: Shifted Sphere Function

12. Fy: Shifted Schwefel’s Problem 1.2

13. Fj: Shifted Rotated High Conditioned Elliptic Function

14. Fj: Shifted Schwefel's Problemn 1.2 with Noise in Fitness

15. Fy: Schwefel’s Problem 2.6 with Global Optimum on Bounds
16. Fg: Shifted Rosenbrock’s Function

17. Fy: Shifted Rotated Griewank’s Function without Bounds
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18. Fy: Shifted Rotated Ackley’s Function with Global Optimum on Bounds
19. Fy: Shifted Rastrigin’s Function
20. Fjo: Shifted Rotated Rastrigin’s Function

Definitions of the first ten functions are as follows

N
st)h(f) = Z‘T:fv -100 < r; < 100; E?pil, = F‘sph(oz"' ‘0) =0
i=1
N-1
Froo(®) = Y (100(ziy—a7)+(1=2:)); =100 < 25 < 100;  Flpg = Froe(1,-++,1) =0
i=1

Foer(T) = 20 + exp(1) — 20exp | —0.2

1 & 1 &
7 2333 — exp (ﬁ Zcos(%xi)) ;
i=1 i=1

=32 < x; <32 Foor = Faer(0,---,0) =0

N
Fgrw(l Z 2000 HCOS w+1 —-600 <z <_: 600; F;,,w o Fg7~w(0, e ,O) =0
Fros(Z) = 10N+Z(a:?— 10cos(2mz;));  —5< 2 <5; Fr. = Fras(0,--+,0) =0

Fon(F) = 418.9820N — Z(Jsf a,m(\/[‘ifi));

—500 < z; €500; %, = Fu,(420.9687, - ,420.9687) = 0

—“100§’El§100; }'*[‘“Psul(ﬂ 0):0

N N 2 . )
Fun(T) = E Z (4—%%5 — cos(yij) + 1) o where iy = 100(z; — z2)% 4+ (1 — 2;)*
4 y 1

— 100 < z; < 100; Fipe=For(l,---,1)=0
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i

N-1
- T Y L .
Fom(7) = {lﬁh‘m?(ﬁyl) + ) (i = D1+ 10sin® (ryie)] + (yn — 1)2}
i=1
al 1
+ Zu(x;, 10,100, 4}); where y; =14 =(x; +1) and
=1 4
k(xz, —a)™, a;>a,
u(zi,a,k,m) =< 0, —~a <y < a,

k(wfl?,ﬁ - ('I;)m, I; < =—a.

— 50 < x; <50, F;m :Fpn](*l.;-‘* =1y =0

N-1
m2(Z) = 0.1 {sir12(7r3;1:1) + Z (zi — 1)?[1 +sin®(Brai)] + (an — DL + sinz(B:fr:z:N)]}

i==1
!‘\Y
+ 3 u(@i,5,100,4);
1==1
~50 <2 50, Flyg = Fpua(l,+,1) =0

Functions F to Fyg are designed by modifying classical benchmark functions to
test the optimizers ability to locate a global optimum under a variety of circums-
stances such as translated and/or rotated landscape, optimum placed on bounds,
Gaussian noise and/or bias added ete. [125]. A complete definition of these func-
tions are available online at http://www.ntu.edu.sg/home/epnsugan and in [125].
And more detailed description of the other functions can be found in [146, 101].
In this test suit Fy to Fy, Fy,, and I, are unimodal and the rest are multimodal

functions. All the chosen benchmarks are minimization problems.
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