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Abstract

Cancer diagnosis based on the morphological appearance of tumor is sometimes
difficult or impossible because tumors of different cancers may have identical ap-
pearances and show unequal responses to the same initial treatment. Recently
many researchers are investigating whether gene expression profiling, coupled with
class prediction methodology can be used to classify different types of tumor sam-
ples more reliably. Though different machine learning approaches have been pro-
posed in this context, their success is limited due to smaller number of available
samples compared to huge number of genes and due to many redundant genes.

The aim of this work is to develop a reliable and robust computational model for
gene expression based diagnosis of cancer and identification of potential biomarkers
of cancer. For this purpose, we propose two methods: random probabilistic model
building genetic algorithm (RPMBGA), and majority voting genetic programming
classifier (MVGPC). RPMBGA, a variant of genetic algorithm, is a gene selection
method and requires a classifier. Therefore, its accuracy as well the selected genes
is dependent on the classifier used to calculate the goodness of a gene subset.

MVGPC is based on genetic programming (GP) and majority voting technique
and improves the classification accuracy of GP. It uses an ensemble of GP rules
and predicts the label of a sample by employing majority voting technique. For
identification of potential biomarkers, we propose that classifier be first devised,
which will obtain higher classification accuracy, and then the evolved rules be
analyzed to determine the most frequently occurring genes, i.e. first classification,
then gene selection. To get a more stable frequency distribution of selected genes,
MVGPC should be repeated several times on the microarray data. The ways the
optimum ensemble size be determined, the label of a test sample be predicted
using the ensemble, and the potential biomarkers be extracted from microarray
data are our main contributions in MVGPC.

By performing experiments on microarray data sets, we have found that MVGPC
is more reliable than RPMBGA, and the test accuracies obtained with MVGPC
are significantly better than those with other competitive methods of gene selec-
tion and classification including AdaBoost+GP, and some of the more frequently
selected genes in the ensemble of MVGPC are known to be associated with the

types of cancers being studied in this dissertation.
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Chapter 1

Introduction

1.1 What is cancer?

Cancer is a genetic disease or disorder that is caused by the damages in genes that
regulates the cell growth and division. Proto-oncogenes promote cell growth while
tumor suppressor genes discourage cell growth or temporarily halt cell division to
carry out DNA repair. In general, mutations in both types of genes are required
to create a malignant tumor. In normal condition, the cells proliferate to produce
new cells and some old cells die in a programmed way. However, when these two
types of genes are mutated, the cells grow and divide in an abnormal way and the
old cells, that are supposed to die, survive and form a tumor. Sometimes, these
tumors are benign and do not cause cancer; sometimes, they are malignant and
cause cancer. These cancerous cells invade and destroy other cells either by direct
growth into adjacent cells through invasion or by implantation into distant sites

through metastasis.

1.2 Cancer related deaths

In Japan, cancer ranks the top causes of deaths since 1981 (National Cancer
Center, 2006). In 2004, the cancer related deaths in Japan were 320,315 and
accounted for 31.1% of total deaths. For males, the three most common causes
of cancer related deaths are lung cancer (22.3%), stomach cancer (17.2%) and
hepatic cancer (12.5%) while for females, the three most common causes of cancer
related deaths are colorectal cancer (14.6%), stomach cancer (14.2%) and lung

cancer (12.3%).



In USA, cancer is the second leading cause of deaths, exceeding by heart dis-
eases and it accounts for 25% of overall deaths (American Cancer Society, Inc,
2005). The three most common causes of cancer deaths for males are lung can-
cer (31%), prostate cancer (10%) and colorectal cancer (10%) while for females,
lung cancer (27%), breast cancer (15%) and colorectal cancer (10%) are the three

leading causes of cancer deaths.

1.3 Traditional method of cancer diagnosis

Traditional method of cancer diagnosis is based on the morphological appearance
of the tumor——the origin, the microscopic appearance and the location of the
cancerous cells. For this purpose, tissues are collected through either biopsy or
surgery. A cancerous tissue has a distinctive appearance under the microscope.
Among the distinguishing traits are a large number of dividing cells, variation in
nuclear size and shape, variation in cell size and shape, loss of specialized cell
features, loss of normal tissue organization, and a poorly defined tumor bound-
ary. Immunohistochemistry and other molecular methods may characterize spe-
cific markers on tumor cells, which may aid in diagnosis and prognosis.

However, sometimes the task of cancer diagnosis is difficult or impossible be-
cause of atypical clinical presentation or histopathology (Ramaswamy et al., 2001).
Tumors of identical appearance may progress at different speeds; some progress ag-
gressively and require aggressive treatment while others remain inactive for a long
period and may not need any treatment. These tumors can only be distinguished
by observing a patient over a long period of time and discovering whether or not
the initial treatment was aggressive (Golub et al., 1999). Moreover, collection of

tissue samples sometimes requires surgery and may be risky.

1.4 Molecular diagnostics

Recently many researchers are investigating whether gene expression profiling,
coupled with class prediction methodology, can be used to classify different types of

tumor samples in a manner more objective, explicit and consistent than standard
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¥ Genes X, and X; are potential bio-markers

Figure 1.1: Systematic differences in gene expression levels of some genes across
cancerous and healthy (normal) samples

pathology. The hypothesis behind this research is that gene expression levels are
affected by a large number of environmental factors, including temperature, stress,
light, and other signals, that lead to change in the levels of hormones and other
signaling substances, and many or all human diseases may be accompanied by
specific changes in the expression levels of some genes (Schena, 2000). In Fig. 1.1,
we have illustrated this hypothesis.

Recent advances in DNA microarray technology allow scientists to measure
expression levels of thousands of genes simultaneously in a biological organism
and have made it possible to create larger data sets of molecular information that
represent. molecular snapshots of biological systems of interest. Since the cancer
cells usually evolve from normal cells due to mutations in genomic DNA, com-
parison of the gene expression levels of cancerous and normal tissues or different
cancerous tissues may be useful to identify those genes that might anticipate the
clinical behavior of cancers. The objective of the research is to extract the possible
biomarkers of the cancers from the DNA microarray data of gene expression and
then to design a reliable and robust predictive model that will perfectly classify
different types of samples (see Fig. 1.2). In other words, there are two objec-
tives: minimization of number of selected important genes and maximization of
classification accuracy.

The main challenges for this research are:

1. availability of a smaller number of training and validation samples compared
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Figure 1.2: Objectives of the research

to huge number of genes;

2. class imbalance—some classes have more training samples than some other

classes;

3. many irrelevant and redundant genes in gene expression profiles, which some-
times negatively affect the acquired classification accuracy of informative

genes; and

4. noisy nature of microarray data.

1.4.1 Different computational methods for molecular
diagnostics

Various machine learning techniques have been proposed for the identification of
informative genes and for the classification of gene expression data. There are two
categories of methods for identification of informative genes-—deterministic and
stochastic methods.

Deterministic methods use score metrics to filter out some informative genes.
Then these genes are used to build a classification model. Widely used score
metrics for ranking of genes are signal-to-noise ratio (SNR) (Golub et al., 1999),
disorder score (Park et al., 2001), likelihood score (Keller et al., 2000a) and thresh-
old number of misclassification score (Ben-Dor et al., 2000). The problem of this

approach of gene selection is that it totally ignores the effects of the classifier on
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the selected genes, whereas an optimal selection of genes may not be independent
of the algorithm to be used to construct the classifier. In addition to rank-based
methods, there have been proposed some deterministic searches like sequential for-
ward search (SFS) for gene selection, which starts from an empty set of genes and
sequentially adds genes until no improvement in classification accuracy is obtained
(Inza et al., 2002).

The most widely used stochastic methods for gene selection are evolutionary
computation methods that employ wrapper approaches (Kohavi and John, 1997)
of gene selection, where classifiers are used to measure the goodness of gene subsets
(Liu and Iba, 2001, 2002; Ando and Iba, 2004; Deb and Reddy, 2003; Li et al.,
2004; Deutsch, 2003; Kim et al., 2004; Liu et al., 2005; Rowland, 2003; Ooi and
Tan, 2003).

To build a predictive model, clustering, weighted voting classifier (Golub et al.,
1999), k-nearest neighbor (kNN) (Dasarathy, 1991), support vector machine (SVM)
(Vapnik, 1995), Bayesian classifier, to name a few prominent ones, have been ap-
plied (Ben-Dor et al., 1999: Eisen et al., 1998; Slonim et al., 2000; Ding, 2000; Pan
et al., 2004; Bhattacharjee et al., 2001; Nutt et al., 2003; Singh et al., 2002; Boser
et al., 1992; Guyon et al., 2002; Li et al., 2006; Ramaswamy et al., 2001; Shen
and Tan, 2006). The main disadvantage of the above methods is that it is very
difficult to find an optimal pair of a gene selection algorithm and a classifier.

Recently, genetic programming (GP) (Koza, 1992), an evolutionary compu-
tation method based on natural selection and evolution, has been applied to the
classification of gene expression data (Mitra et al., 2006; Moore ¢t al., 2002; Driscoll
et al., 2003; Hong and Cho, 2004; Langdon and Buxton, 2004). The main advan-
tage of GP is that it acts as a classifier as well as a gene selection algorithm. In its
typical implementation, a training set of gene expression data of patient-samples
is presented to GP to evolve a Boolean or an arithmetic expression of genes de-
scribing whether a given sample belongs to a given class or not. Then the evolved
best rule (s) is (are) applied to the test samples to get the generalized accuracy
on unknown samples. However, the potential challenge for genetic programming

is that it has to search two large spaces of functions and genes simultaneously to



find an optimal solution. In most cases, the evolved single rules or sets of rules

produce very poor test accuracies.

1.5 Objective and scope of the dissertation

The aim of this dissertation is to develop a reliable and robust computational
model for classification of microarray gene expression data and identification of po-
tential biomarkers of cancers. In this dissertation, we concentrate on Affymetrix’s
GeneChip software generated gene expression data and take into consideration
both binary and multi-category public cancer data sets.

To this end, we propose two methods: random probabilistic model building
genetic algorithm (RPMBGA) and majority voting genetic programming classifier
(MVGPC). RPMBGA, a variant of genetic algorithm, is a gene selection method
and requires a classifier. Therefore, its accuracy as well the selected genes is
dependent on the classifier used to calculate the goodness of a gene subset.

MVGPC, based on genetic programming (GP) and majority voting technique,
improves the classification accuracy of GP. It uses an ensemble of GP rules and
predicts the label of a sample by employing majority voting technique. In its
typical implementation, we evolve multiple rules in different GP runs, apply them
one by one to a test sample and count their votes in favor of a particular class.
Then the sample is assigned to the class that gets the highest number of votes
in favor of it. However, the success of majority voting depends on the number of
rules in the ensemble. Here we also investigate the optimal number of rules in the
ensemble that produces the best results.

For identification of potential biomarkers, we propose that classifier be first
devised, which will obtain higher classification accuracy, and then the evolved
rules be analyzed to determine the most frequently occurring genes, ie. first
classification, then gene selection. To get a more stable frequency distribution of
selected genes, MVGPC should be repeated on the microarray data for several
times. Our proposal is based on the observation that some genes are frequently

always selected whatever gene selection algorithms and classifiers are used. These



more frequently selected genes may be either potential biomarkers of cancers or
junk genes that are highly correlated with distinction of different training and test
samples but have no biological significance.

We evaluate RPMBGA on publicly available microarray data sets and MVGPC

on both microarray and non-microarray data sets.

1.6 Outline of the dissertation

In Chap. 2, the process of gene expression, the method for measurement of gene
expression levels, and the different attributes of a microarray data set generated by
Affymetrix GeneChip’s software are discussed. Descriptions of some widely used
and publicly available microarray data sets and their preprocessing techniques are
provided here.

In Chap. 3, different deterministic and stochastic computational methods for
extraction of informative genes from a microarray data set containing huge number
of genes compared to a smaller number of available samples are described.

In Chap. 4, different class discovery and class prediction methods are deseribed.
Class discovery refers to the process of dividing samples into reproducible classes
that have similar behavior or properties while class prediction places new samples
into already known classes. Class discovery is an unsupervised learning method
and clustering is the widely used method for it; class prediction is a supervised
learning method and different machine learning classifiers are used as a class pre-
dictor. Therefore, this chapter gives an overview of different clustering methods
and classifiers.

In Chap. 5, random probabilistic model building genetic algorithm (RPM-
BGA), a variant of genetic algorithm, has been proposed for selection of infor-
mative genes from microarray data. In RPMBGA, a gene is selected based on
its probability distribution and this probability is updated by incorporating ran-
domness in the weighted average of probability of previous generation and the
marginal distribution of current generation. The performance of RPMBGA has

been evaluated by applying it to microarray data sets.



In Chap. 6. the application of genetic programming (GP) to the analysis of
microarry data is discussed. The advantages of genetic programming are that
it acts as a classifier as well as a gene selection algorithm and its transparent
algebraic rules provide an insight into the quantitative relationships among the
selected genes.

In Chap. 7, majority voting genetic programming classifier (MVGPC) has been
proposed. MVGPC uses an ensemble of different genetic programming rules, im-
proves the test accuracy of genetic programming rules and appears to be a reliable
and robust method for prediction of the label of a test sample. In this chapter,
we show how the optimum ensemble size be determined, the label of a test sample
be predicted using the ensemble, and the potential biomarkers be extracted from
microarray data. Here MVGPC has been evaluated and compared with other
methods on different microarray data sets.

In Chap. 8, MVGPC has been applied to non-microarray data sets to investi-
gate whether MVGPC will get competitive accuracies on these data sets or not.
Unlike microarray data sets, these non-microarray data sets have larger number
of available samples compared to number of features.

In Chap. 9, the conclusions of the dissertation and future works concerning
different unresolved technical issues are provided.

Finally, the documentation of the software for classification of microarray data

and identification of potential biomarkers is added in Appendix A.



Chapter 2

Gene Expression and Microarray
Data Files

2.1 Gene expression

The central dogma of molecular genetics states that DNA (deoxyribonucleic acid)
codes for RNA (ribonucleic acid) and RNA codes for protein. That is, the se-
quence of nucleotides in a DNA molecule specifies the sequence of nucleotides in
a molecule of messenger RNA (mRNA); in turn, the sequence of nucleotides in
mRNA specifies the sequence of amino acids in the polypeptide chain of a pro-
tein (Hartl and Jones, 2005). There are two steps: transcription and translation
involved in synthesis of protein. The step DNA—RNA is called transcription
while the step RNA—protein is called translation. Figs. 2.1 and 2.2 illustrate the
central dogma of molecular genetics. The whole process by which RNA and even-
tually protein is synthesized from the DNA template of each gene is called gene
expression. Gene expression level indicates the amount of mRNA produced in a
cell during protein synthesis; and is thought to be correlated with the amount of
corresponding protein made.

In protein synthesis, three types of RNA: mRNA (messenger RNA), rRNA
(ribosomal RNA) and tRNA (transfer RNA) take part (Hartl and Jones, 2005).

The roles of these RNA molecules are given below:

e mRNA carries information from DNA and is used as a template for protein
synthesis. An mRNA molecule consist of coding and non-coding regions;
however, in most mRNA molecules, a high portion of nucleotides code for

amino acids.
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e 'RNA molecules are the major constituents of ribosome on which polypep-

tide synthesis takes place. Four types of rRNA take part in protein synthesis.

e A tRNA molecule carries a particular amino acid and a three-base recog-
nition regions that base-pairs with a group of three adjacent bases in the
mRNA. After translation, the amino acid of a tRNA molecule becomes the
terminal subunit added to the length of the growing polypeptide chain of
a protein. A set of about 45 tRNA molecules take part in the translation

phase of protein synthesis.

2.2 DNA microarray

The identification of those genes that are differentially expressed across normal and
tumor tissues is the first step in cancer diagnosis and treatment. The expression
level of a gene may be changed in response to a number of intra-cellular and extra-
cellular signals. The changes in gene expression can be monitored using northern
blotting (Thomas, 1980), reverse transcription -polymerase chain reaction (RT-
PCR) (Mocharla et al., 1990) and DNA microarray (Shalon et al., 1996).

DNA microarray technology provides a rough measure of the cellular concen-
tration of different mRNAs at a time. A DNA microarray (also called DNA chip
or gene chip) is a collection of thousands of microscopic DNA spots attached on a
slid surface like glass, plastic or silicon chip. Each spot on the DNA chip contains
a known DNA sequence (a probe) and acts as a template for the binding of one
or two labeled cDNA fragment(s). The sequence of steps required to measure the

expression labels of genes using DNA microarrays are as follows (Reece, 2005):

1. RNA samples from two sets of cells grown in two different conditions (for

example, a tissue grown in normal and cancerous states) are collected.

2. Single strands of ¢cDNA are produced using reverse transcriptase from an
oligo-dT primer. One of ¢cDNA samples is labeled with a green fluorescent

dve (Cy3) while the other one is labeled with a red fluorescent dye (Cy5).



3. The ¢cDNA samples are mixed in equal proportions and hybridize to the

niicroarray.

4. The color and intensity of each spot on the microarray is then monitored
using a fluorescent scanning confocal microscope. The labels are excited
using a laser, and the fluorescent at each spot detected with the microscope
gives an indication of the relative amount of each mRNA species within the
original sample. If a gene is expressed at equal levels in both samples, the

corresponding spot will be yellow.

In Fig. 2.3, the sequence of steps required for preparation of a DNA microarray is
shown. DNA microarray chips are now commercially available from companies like
GE Healthcare, Affymetrix, or Agilent. These microarrays give estimations of the
absolute value of gene expression, and therefore the comparison of two conditions

requires the use of two separate microarrays.

2.3 Affymetrix’s GeneChip data

For measurement of gene expression levels, Affymetrix’s GeneChip is widely used.
In this context, different GeneChip assays are prepared, scanned and the images
are processed by Affymetrix software, Microarray Suite (MAS). (MAS has recently
been replaced by GeneChip Operating Software (GCOS).) MAS 5.0 generates five
types of files (* EXP, * DAT, *.CEL, *.CHP and *.RPT) during process of a
GeneChip array experiment. Among these files, the chip file (*.CHP) is the output
file from the MAS expression analysis of the Probe Array and contains the data
that are used for statistical and data mining analysis.

MAS analysis metrics are (retrieved from http://www.ohsu.edu/gmsr/amc/

amc_technology.html on Feb 5, 2007):
¢ Signal: a measure of the abundance of transcript.

e Detection: the call that indicates whether the transcript is detected (P,

present), undetected (A, absent), or at the limit of detection (M, marginal).
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Detection p-value: p-value that indicates the significance of the detection

call.

Signal log ratio: the change in expression level of a transcript between a

baseline and an experiment array. This change is expressed as the log, ratio.

A log, ratio of 1 is equal to a fold change of 2.

Change: the call that indicates the change in the transcript level between a
baseline and an experiment (increase (I), marginal increase (MI), no change

(NC), marginal decrease (MD), decrease (D)).

Change p-value: p-value that indicates the significance of the change call.

Each probe set on a GeneChip array has a unique name known as the Probe set ID.
Probe set ID’s have different extensions (examples: 1013.at, 1016_s.at,1022 f_at,
1089.i_at) that denote important information about how the probe set was de-
signed. Detailed information about Affymetix GeneChip can be found at http:

//wuw.affymetrix.com/.

2.4 Preprocessing of microarray data

Usually, an Affymetrix’s GeneChip gives estimations of the absolute values of gene
expressions. The MAS output files are organized such that each column contains
expression levels of different genes in a single sample, and each row contains ex-
pression levels of a single gene in different samples. In Fig. 2.4, a snapshot of a
DNA microarray data file opened with Microsoft Excel is shown.

These files may have many negative values that are replaced by using a thresh-
old of 6, and a ceiling of 0. If a value is less than 6, , it is replaced with 0;
similarly, if a value is greater than ), it is replaced with 6. Missing values, if
any, are determined by applying kNN method. Then variation filters are applied to
exclude those genes that violate maz(g) — min(g) > A and max(g)/min(g) > Q.
Different researchers have applied different values of 6, 6, A and €2 for prepro-
cessing of their microarray data. Then, these values (sometimes after taking log)

are scaled. If y is the expression value of a gene g, its linearly scaled value in
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y—mmanval
mazval —ninval

the range [a.b] will be (b — a) + a where minval and maxval are the
minimum and maximum values of gene expressions across all genes and samples.
The standard normalized value of y will be =t where p and ¢ are the mean and

standard deviation of genes across all genes and samples.

2.5 Some widely used microarray data sets

In this section, descriptions of different microarray data sets, publicly available
and widely used as bench-mark data, are provided. Among these data sets, we
have used brain cancer (Nutt et al., 2003), breast cancer (Hedenfalk et al., 2001),
lung carcinoma (Bhattacharjee et al., 2001), prostate cancer (Singh et al., 2002),
scleroderma (Whitfield et al., 2003), and small round blue cell tumors (SRBCTs)
(Khan et al., 2001) data sets in different experiments for this work. The SRBCTs
data set is already divided into training and test subsets; we divide the other
data sets into mutually exclusive training and test subsets for our experiments.
The colon cancer (Alon et al., 1999), diffused large B-cell lymphoma (DLBCL)
(Alizadeh et al., 2000) and leukemia (Golub et al., 1999) data sets have been used

by others authors in related works.

2.5.1 Brain cancer data

The brain cancer data set (Nutt et al., 2003) contains expression levels of 12625
genes of 50 gliomas samples: 28 glioblastomas (GBM) and 22 anaplastic oligo-
dendrogliomas (AO) divided into two subsets of classic and non-classic gliomas.
The classic subset contains 14 glioblastomas and 7 anaplastic oligodendrogliomas
with classic histology while the non-classic subset contains 14 glioblastomas and
15 anaplastic oligodendrogliomas samples that are clinically common but his-
tologically non-classic gliomas. The complete set of data is available at http:
//wuu-genome.wi.mit.edu/cancer/pub/glioma. After preprocessing of the data
with 6, = 20, 8, = 16000, A = 100 and © = 3, only 4434 genes were left. For
experiments with random probabilistic model building genetic algorithm (RPM-

BGA) (Chap. 5) and genetic programming classifier (Chap. 6), we use the classic
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subset as the training data and the non-classic subset as test data. However,
for experiments with majority voting genetic programming classifier (MVGPQC)
(Chap. 7), we divide the data set into mutually exclusive training and test sub-
sets containing 28 and 22 samples, respectively. The training subset consists of
14 glioblastomas and 14 anaplastic oligodendrogliomas samples; the test subset

consists of 14 glioblastomas and 8 anaplastic oligodendrogliomas samples.

2.5.2 Breast cancer data

The breast cancer data set contains 22 cDNA microarrays, each representing 5361
genes based on biopsy specimens of primary breast tumors of patients with germ-
line mutations of BRCA1 and BRAC2 and with sporadic cases. After prepro-
cessing of this data set, only 3226 genes were left. The preprocessed data set is
available at http://research.nhgri.nih.gov/microarray/NEJM_Supplement/.
One sample in this data set labeled as ‘Sporadic/Meth.BRCA1’ was treated as
‘BRACT’ in our experiments because we have found by performing many exper-
iments with different methods described later that it has much similarity with
samples of 'BRAC1’ class rather than with samples of ’sporadic’ class. Therefore,
the numbers of BRAC1, BRAC2 and sporadic samples in the data set were 8, 8
and 6, respectively.

For experiments with genetic programming classifier (Chap. 6), we construct
a training subset containing 6 BRACI1, 6 BRAC2 and 5 sporadic samples and the
test subset containing the remaining 5 samples. However, for experiments with
majority voting genetic programming classifier (MVGPC) (Chap. 7), 22 samples
were randomly divided into mutually exclusive training and test subsets into ap-
proximately 2:1 ratio. The numbers of BRAC1, BRAC2 and sporadic samples in
the training subset were 6(=[8 x 2/3]), 6(=[8 x 2/3]), and 4(=[6 * 2/3]), respec-

tively; the remaining 6 samples went to the test subset.

2.5.3 Colon cancer data

This data set, a collection of expression values of 62 colon biopsy samples measured

using high density oligonucleotide microarrays containing 2000 genes, is reported



by Alon et al. (1999). It contains 22 normal and 40 colon cancer samples. It is

available at http://microarray.princeton.edu/oncology.

2.5.4 Diffused large B-cell lymphoma data

The diffused large B-cell lymphoma (DLBCL) data set (Alizadeh et al., 2000)
contains gene expression measurements of 96 normal and malignant lymphocyte
samples, each measured using a specialized ¢cDNA microarray, containing 4026
genes that are either preferentially expressed in lymphoid cells or of known im-
munological or oncological importance. The expression data in raw format are
available at http://11lmpp.nih.gov/lymphoma/data/figurel/figurel.cdt. It
contains 42 samples of DLBCL and 54 samples of other types. There are some
missing gene expression values in this data set. In (Deb and Reddy, 2003), the
authors have applied k-nearest neighbor algorithm to determine the missing val-

ues.

2.5.5 Leukemia data

This data set is a collection of gene expressions of 7129 genes of 72 leukemia
samples reported by Golub et al. (1999). The data set is divided into an initial
training set of 27 samples of acute lymphoblastic leukemia (ALL) and 11 samples
of acute myeloblastic leukemia (AML), and an independent test set of 20 ALL and
14 AML samples. The data sets can be downloaded from http://uww.genome.wi .
mit.edu/MPR. These data sets contain many negative values which are meaningless
for gene expressions, and need to be preprocessed. After preprocessing of this data
set with 6, = 20, 6, = 16000, A = 500 and Q = 5, only 3859 genes arc left (Deb
and Reddy, 2003).

2.5.6 Lung carcinoma data

The lung carcinoma data set (Bhattacharjee et al., 2001) contains mRNA expres-
sion levels corresponding to 12,600 transcript sequences in 203 lung tumor and
normal samples. The 203 samples consist of 139 lung adenocarcinomas (AD),

21 squamous (SQ) cell carcinoma cases, 20 pulmonary carcinoid (COID) tumors



19

and 6 small cell lung cancers (SCLC), as well as 17 normal lung (NL) sam-
ples. Negative gene expression values were replaced by setting a lower thresh-
old of 0. Using a standard deviation threshold of 50 expression units, only 3312
genes were selected out of 12600. The original data sets are available at http:
//research.dfci.harvard.edu/meyersonlab/lungca.html. This data set is a
five-class (AD, SQ, COID, SCLC and NL) classification problem. Since this data
set is not divided into training and test sets, we divide it into mutually exclusive
training subset containing 103 samples (AD:70, SQ:11, COID:10, SCLC:3 and
NL:9), and test subset containing 100 samples (AD:69, SQ:10, COID:10, SCLC:3

and NL:8) for our experiments.

2.5.7 Prostate cancer data

The initial data set of prostate cancer (Singh et al., 2002) contains gene expression
profiles that were derived from 52 prostate tumors (PT) and 50 non-tumor prostate
(normal)(NL) samples using oligonucleotide microarrays containing probes for ap-
proximately 12,600 genes and ESTs. The independent data set contains 8 nor-
mal and 27 tumor prostate samples. Raw data of initial set are available at
http://wwu-genome.wi.mit.edu/MPR/prostate. Raw expression values were
preprocessed with 6, = 10, 6, = 16000, A = 50 and 2 = 5. After preprocess-
ing of raw expression values, only 5966 genes were left. Due to unavailability of
the independent data set, we divide the initial set into mutually exclusive training
and test sets, each set containing 51 samples (prostate tumors: 26 and normal:

25).

2.5.8 Scleroderma data

The scleroderma data set (Whitfield et al., 2003) contains the expression levels of
more than 12000 genes across 27 oligonucleotide microarrays of systemic sclerosis
and normal biopsies. Out of these 27 oligonucleotide microarrays, 12 are signal
amplification replicates. These data were preprocessed to get rid of negative val-
ues. After preprocessing, 7777 genes were left. The full set of data is available at

http://genome-www.stanford.edu/scleroderma.



2.5.9 Small round blue-cell tumors

The small round blue-cell tumors (SRBCTSs) data set (Khan et al., 2001) contains
expression levels of 6567 genes of 88 cells of four sub-types of SRBCTs: the Ewing
family of tumors (EWS), Neuroblastoma (NB), Rhabdomysarcoma (RMS), and
Burkitt Lymphomas (BL), a type of non-Hodgkin lymphoma. These data were
filtered to remove those genes whose expression levels were below a minimum level
of expression leaving a total of 2308 genes. The data of 88 cells are divided into
mutually exclusive training set of 63 samples, and a test set of 25 samples. The
complete set of data including supplementary information is available at http:

//research.nhgri.nih.gov/microarray/Supplement/.

2.6 Summary

In this chapter, we describe the process of gene expression and measurement of
gene expression levels, and some widely used microarray data sets. The Affymetrix’s
GeneChip generated microarray data files are widely used for investigation of ge-
netic diagnosis of cancer and identification of biomarkers of the diseases. These
data sets usually contain gene expression levels of cancerous and normal tissues or
different types of tumorous tissues. The main characteristic of these microarray
data files is that it contain a huge number of genes compared to a smaller number
of samples. The identification of those genes that might anticipate the clinical
behavior of cancers and the development of a reliable classifier using those genes
are very important steps in gene expression based cancer diagnosis and treatment.
In the next two chapters, we describe different gene selection and classification

methods.



Chapter 3

Related Works on Gene Selection

3.1 Introduction

Since the cancerous cells usually evolve from normal cells due to mutations in
genomic DNA, comparison of the gene expression levels of cancerous and normal
tissues or different cancerous tissues may be useful to identify those genes that
might anticipate the clinical behavior of cancers. However, this gene identification
task faces many challenges due to availability of a smaller number of patient
samples compared to a huge number of genes, class imbalance and the noisy nature
of microarray data.

The main target of gene identification task is to maximize the classification
accuracy (sensitivity and specificity as well) and minimize the number of selected
genes. For a given classifier and a training set, the optimality of a gene identi-
fication algorithm can be ensured by an exhaustive search over all possible gene
subsets. For a data set with n genes, there are 2" gene subsets. So, it is im-
practical to search whole space exhaustively, unless n is small. There are two
approaches, filter and wrapper approaches (Kohavi and John, 1997), for selection
of gene subsets. The two approaches are illustrated in Figs. 3.1 and 3.2.

In filter approach, the data are preprocessed and some top rank genes are
selected using a quality metric, independently of the classifier. Class prediction
based on gene expression using filter approach has been proposed in the works
(Golub et al., 1999; Slonim et al., 2000; Keller et al., 2000b). Though the filter
approach is computationally more efficient than wrapper approach, it ignores the

effects of the selected genes on the performance of the classifier but the selection
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of optimal gene subset is always dependent on the classifier.

In wrapper approach, the gene subset selection algorithm conducts the search
for a good subset by using the classifier itself as a part of evaluation function.
The classification algorithm is run on the training set, partitioned into internal
training and validation sets, with different gene subsets. The internal training set
is used to estimate the parameters of a classifier, and the internal validation set is
used to estimate the fitness of a gene subset with that classifier. The gene subset
with the highest estimated fitness is chosen as the final set on which the classifier
is run. Usually in the final step, the classifier is built using the whole training set
and the final gene subset, and then accuracy is estimated on the test set. A major
disadvantage of the wrapper approach is that it requires much computation time.

Ranking of genes, principal component analysis, sequential forward search, and
genetic algorithm are some widely used gene selection methods; in this chapter,

we describe these methods.

3.2 Ranking of genes

Widely used score metrics for ranking of genes are signal-to-noise ratio (SNR)
(Golub et al., 1999), disorder score (Park et al., 2001), likelihood score (Keller
et al., 2000a) and threshold number of misclassification score (Ben-Dor et al.,

2000).

3.2.1 Signal-to-noise ratio

The traditional gene selection method in molecular classification selects those
genes that individually classify best the training samples. Widely used method
for evaluation of how well a gene separates training samples is signal-to-noise ratio
(Golub et al., 1999). The signal-to-noise ratio of a gene X; in binary classification
is defined as

SNR(X;) = L2 (3.2.1)
o1+ 09
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where y; and oy, and ps and g2 are means and standard deviations of expression
levels of gene X; in class 1 and 2, respectively. Genes with the most positive
and the most negative SNR(X;) values are selected in parallel and are grouped
together in equal number in the final classifier. For a multi-class problem having
k classes, f‘-ﬁ‘-g—fi)- pairwise classifiers are considered. If we need to select n genes
in total, we select ?»17::?—’177 distinct genes from each pair ¢ and j. For each pair, we
apply the above rule of binary classification to select top rank genes. If some of
the selected genes of each pair are already included in the final subset, we exclude
those genes and select the genes next to them in the ranking list. For binary
classification, if n is odd, we select [%] genes having the most positive values, and
| 5] genes having the most negative values.

Variant forms of signal-to-noise ratio have also been used for gene ranking.
For example, Furey et al. (2000) have used the absolute value of SNR(X;) as
the ranking criterion while Pavlidis et al. (2001) have used % as the score
metric for gene ranking.

The serious limitation of this method of gene selection is that it may include
some redundant genes and exclude those complementary genes that individually

do not separate data well.

3.2.2 t-Test method

Ding (2003) used t-test to filter out important genes from microarray data.

The t-test score of a gene X is defined as follows:

=t o (- 1ot + (nz = 1)og (3.2.2)

f o=

o n -2

where p; and oy, and 4 and o9 are means and standard deviations of expression
levels of gene X; in class 1 and 2, respectively; n; and ny are the numbers of
samples in class 1 and 2, respectively. Then the genes having higher absolute ¢

values are selected as the discriminative genes.



3.3 Principal component analysis

Principal component analysis (PCA)(Jolliffe, 2002), a technique for reduction of
dimensionality of a problem, has been applied for selection of biomarkers from
microarray data in (Khan et al., 2001). It is a way of identifying patterns in
data, and expressing the data in such a way that represent the similarities and the
differences.

To use PCA, the gene expression data should be represented in the following

N X n matrix form:

Ty Tz 0 T
Tar Taz . T
IN1 ZN2 - TnNn

where z;. is the gene expression value of gene k in sample ¢ (x;), n and N are
the number of genes and the number of samples in the data set. To identify the

principal components (informative genes), the following steps are done:

1. Calculate the covariance matrix using the data. Since the gene expression

data of a sample is n-dimensional, the covariance will be n x n.

2. Calculate the eigenvectors and eigenvalues of the covariance matrix. The
eigenvector corresponding to the highest eigenvalue is the principal compo-

nent of the data.

3. Take the genes corresponding to the higher eigenvalues as the informative
genes. This way the dimensionality of the original data is reduced.

4. Apply a classifier to the reduced dimension data and get the classification
accuracy.

PCA is also a filter approach since it selects genes independently of the classifier

and suffers the same problems of overfitting like other filter approaches.
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3.4 Sequential forward search

Sequential forward search (SFS) is a hill-climbing, deterministic heuristic search
algorithm that starts from an empty set of genes. It selects genes until no improve-
ment is achieved in evaluation value (Inza et al., 2002). The goodness of a gene
subset is estimated using LOOCV procedure with a machine learning classifier.
SFS performs major part of its search near the empty feature set. SFS is used
based on the idea of microarray data analysis that few genes are needed to classify

_patient samples among different classes.

3.5 Genetic algorithm

Genetic algorithm (GA) (Holland, 1975), based on natural selection and adapta-
tion, is developed to solve complex real-world problems. GAs are widely used to
solve those problems which are highly non-linear, contain inaccurate and noisy
data, and whose objective function can not be expressed mathematically.

A typical genetic algorithm might consists of the following:
1. a population, guesses of the solution to the problem;

2. a way of calculating the goodness of each candidate solution in the popula-

tion;
3. a method for selection of good solutions for mixing;
4. a method of mixing fragments of better solutions to form new solutions;
5. a mutation operator to maintain diversity in the population; and

6. a strategy to create the new population from old population and new solu-

tions.

In a GA, each candidate solution is evaluated using some score metrics, and
some of the better solutions are selected for reproduction. There are two main

genetic operators, crossover and mutation, for reproduction of offspring. Crossover



operator creates offspring by combining parts from two or more parents (selected
solutions); whereas, mutation generates an offspring by making changes in a single
solution. The offspring are evaluated, and some of them are combined with the old
population to generate the new population. This completes one cycle of generation.
After several generations, the algorithm terminates converging to an optimal or a
sub-optimal solution.

Recently, genetic algorithm and its variants (parallel genetic algorithm, multi-
objective evolutionary algorithm, probabilistic model building genetic algorithm)
have been applied to selection of informative genes from the microarray data (Liu
and Iba, 2001, 2002; Deb and Reddy, 2003; Ooi and Tan, 2003; Deutsch, 2003:
Ando and Iba, 2004; Li et al., 2004; Kim et al., 2004; Liu et al., 2005). These
methods usually employ a wrapper approach (Kohavi and John, 1997) of gene se-
lection, where a classifier is used to measure the goodness of a gene subset. These
GA-based methods obtain better classification accuracies than ranking based gene
selection methods because different combinations of genes are evaluated in evolu-
tionary computations through generation of different individuals of a population.
However, the success of identification of a smaller size predictive gene subset de-
pends on the choice of the appropriate recombination operators of an evolutionary

computation method as well as on the choice of the appropriate classifier.

3.5.1 Representation of an individual

In selection of informative genes from microarray gene expression data, an in-
dividual (gene subset) of a genetic algorithm population is encoded as a binary
string with each bit for each gene. If a bit is ‘1’, it means that the gene is se-
lected in the gene subset; ‘0’ means its absence. For example, in the binary string
“10001001117, genes 1, 5, 8, 9, 10 of a microarray data set are selected as possible
informative genes. The main advantage of these binary-coded individuals is that

the design of a crossover and a mutation operator is easy.
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3.5.2 Initial population generation

Individuals of initial population for the problem are usually generated by random
compositions of 1 and 0’s. Half of the genes of the microarray data are expected to
be selected in each individual. However, due to this huge number of selected genes
in each individual, sometimes it becomes difficult to obtain compact gene subsets
through the applications of recombination operators, and the initial best fitness
does not improve over generations. To get compact gene subsets, the number of
selected genes in each individual of initial population can be restricted to be an
integer in [1,m] where m << n and n is the number of genes in the microarry

data.

3.5.3 Evaluation of an individual

Different methods have been proposed for evaluation of an individual. Some have
used the weighted average of the objectives (selection of minimum number of
genes and maximization of classification accuracy) as the fitness measure of a
gene subset; some have evaluated a gene subset using the pareto-optimal idea of
multi-objective optimizations. In Fig. 3.3, we have shown the steps in calculation
of fitness of a gene subset. Commonly, the fitness of an individual is a function of
the classification accuracy obtained by that individual and the number of genes
selected in that individual.

In the works (Liu and Iba, 2001; Paul and Iba, 2004b,a), average of the two

objectives of the gene identification task is used as a fitness function:
fitness(X) = wy * Accuracy(X) + wy * (1 — d(X)/n) (3.5.1)

where w; and wy are weights from [0, 1], a(X) is the accuracy obtained by the
individual X, d(X) is the number of genes selected in X, and n is the total
number of genes in the microarray data set.

To select informative genes, Liu and Iba (2002) have used a multi-objective
evolutionary algorithm (MOEA), in which the authors have identified three objec-

tives: minimization of the size of the gene subset, minimization of mismatches in
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Figure 3.3: Fitness calculation in genetic algorithm

the training data, and minimization of the difference in error rate among classes,
which is used to avoid bias due to unbalanced test patterns in different classes.
For fitness calculation, these three objectives have been aggregated.

In optimization using non-dominated sorting genetic algorithm-II (NSGA-II)
(Deb and Reddy, 2003), three objectives have been used. The first two objectives
are the same as above; the third objective is minimization of mismatches in the test
set. The number of mismatches in the training set is calculated using the leave-
one-out-cross-validation (LOOCV) technique, and that in the test set is calculated
by first building a classifier with the training data and the gene subset and then

predicting the class of the test samples by using that classifier.

3.6 Summary

In this chapter, we discuss different gene selection methods. Rank based methods
like signal-to-noise ratio and its variants are widely used to select a set of genes
that are differentially expressed across normal and cancerous tissues or different
tumorous tissues. These methods selects those genes that individually classify best
the training data. However, this method may miss those complimentary genes that

do not separate the data well but as a set of genes, they separate data very well.
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Recently genetic algorithm and its variants are used to select informative genes.
These methods use a wrapper approach of gene selection and are non-deterministic
in nature—different gene subsets may be obtained in different runs. These genetic
algorithm based methods usually obtain better classification accuracy than rank
based methods. The main disadvantages of these methods are that they need

settings of a number of parameters and are slower than rank based methods.





