Chapter 4

Related Works on Class
Discovery and Class Prediction

4.1 Introduction

Class discovery refers to the process of dividing samples into reproducible classes
that have similar behavior or properties, while class prediction places new samples
into already known classes (Slonim et al., 2000). Class discovery is an unsupervised
learning method and clustering is the widely used method for it; class prediction is
a supervised learning method and different machine learning classifiers like support
vector machine (SVM)(Vapnik, 1995), C4.5 (decision tree) (Quinlan, 1993), k-
nearest neighbor (kNN) (Dasarathy, 1991), naive-Bayes classifier (NBC), weighted
voting classifier (WVC) (Golub et al., 1999; Slonim et al., 2000), artificial neural
network (ANN), to name a few prominent classifiers, are used as class predictors.

The steps for class prediction are as follows:
1. Divide the available samples into training and test subsets.

2. Build a class predictor (classifier) using the training data set. In actual im-
plementation, the values of different parameters are learnt using the training

data in this step.

3. Using the test data set, evaluate the performance of the classifier built in

previous step.

Sometimes, to extract an informative gene subset using a wrapper approach, the

training data set is divided into internal training and validation subsets. For a
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gene subset, the internal training subset is used to build the classifier and the

internal validation subset is used to calculate the fitness.

4.2 Clustering of samples for class discovery

A widely used technique for microarray data analysis is clustering of the samples
(Eisen et al., 1998; Ben-Dor et al., 1999; Alon et al., 1999; Alizadeh et al., 2000). In
most cases, clustering is applied on reduced dimensional data after selecting some
predictive genes using a suitable method. Self-organizing maps (SOM) (Kohonen,
1990), hierarchical clustering (Johnson, 1967), and consensus clustering (Swift
et al., 2004; Monti et al., 2003) are traditional methods of clustering. There are
two steps in clustering of data: determining the number of clusters and then
clustering the data. Determination of optimal number of clusters for a training

data is not a trivial task, and sometimes dynamic clustering method is applied.

4.2.1 Self-organizing map

SOM has a set of nodes with a simple topology (e.g., two dimensional grid)
and a distance function d(N;,N,) (usually Euclidean distance) on the nodes
(Tamayo et al., 1999). The Euclidean distance between two nodes/data points
N, = (ng”,ng",.,.,:cé‘V”) and Ny = (:zrgN"’),:z;gNZ),i..,:J;;N?}) is calculated as

follows:
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i=1
Before clustering begins, all the data points (samples) of n-dimensional feature
space are projected into a reduced dimensional work space through gene selection

using a score metric. Then the clustering progresses in the following way:

1. Determine the number of clusters (nodes) m and randomly project the m
nodes (Ny,Ny,...,Ny,) on the two dimensional grid. That is, at initial,
the coordinates (z,z,...,z,) of the nodes are randomly chosen. Let the

position of each node Ny(k = 1,2,...,m) at iteration t be N(¢).



2. Randomly select a sample (data point) x = (v, 22,...,2,) and find the
nearest distance node N(¢) and the neighborhood set C(t) (a set of indices
of nearest neighbors) of N.(t). Move the nodes towards x using the following
formula:

Ni(t 4+ 1) = Ne(t) + gr()x — Ny(1)] (4.2.2)
where @i(t) (0 < wr(t) < L1k = 1,2,...,m) is called adaptation gain.
Different researchers have defined @x(t) in different ways; however, in all
cases, it 1s a decreasing function of iteration and eventually becomes zero at
some iteration.

In GeneCluster (Tamayo et al., 1999), adaptation gain is defined as follows:

o) = { 0:027/(T + 1000 it k e C(t),
PREY= 0 otherwise;

where 7" is the maximum number of iterations.

Kohonen (1990) has proposed the following function for gy (t):

_ [ a(t) exp(—||Nk(t) — N(1)[|*/o?(t)) if ke C(1),
(t) = { (C; ‘ otherwise;

with a(t) and o(t) being decreasing functions of iteration and can be con-
sidered as the same. In (Smith and Ng, 2003), the authors have defined «(t)

as follows: a(t) = a(tgf(tg)(t :

According to equation (4.2.2), the closest node N.(t) is moved the most,
whereas other nodes are moved by smaller amounts depending on their dis-
tance from N() in the initial geometry. The number of members in C(t)
will be higher at the beginning and will decrease in successive phases, and

finally would be zero.

3. Repeat step 2 for maximum number of iterations defined by the user. In

GeneCluster, the.process continues for 20,000-50,000 iterations.

4.2.2 Hierarchical clustering

Hierarchical clustering is widely used to build phylogenetic tree from biological

data. The length of each branch represent the similarity between two objects.



Hierarchical clustering finds the pair of samples that are most similar, joins them
together, and then identifies the next most similar pair of samples. This process
continues until all the samples are joined into one giant cluster.

Before starting of the clustering process, we need to define a score metric for
measurement of similarity between two samples. Since each sample is a vector of
real-valued gene expressions, the Euclidean metric (minimum distance being the
better) or the Pearson correlation coeflicient metric (higher value being the better)
can be used as a measure of similarity.

Once a table of similarity values between each pair of samples is built, the
clustering process starts. The steps in a hierarchical clustering are as follows:

1. Assign each sample to its own cluster. Therefore, if there N samples in a

data set, the total number of initial cluster will be N.

2. Find the most similar pair of clusters and merge them into a single pseudo-
cluster, so that now you have one less cluster.

3. Remove the two clusters that were merged in the pseudo-cluster and calculate
new distances (similarities) between the newly merged pseudo-cluster and
each of the old clusters.

4. Repeat steps 2 and 3 until all items are clustered into a single cluster of size
N.

There are three ways to calculate distance between two clusters in step 3: single-
linkage, complete-linkage and average-linkage clustering. Let the two clusters be
Cy and C, and sim(c;, ¢;) be the similarity score of the samples indexed by ¢; and
¢;. The similarity score between cluster C; and C, are calculated as follows:

¢ Single-linkage:

sém(Cl, Cg) == p;gé?%}f{e(‘jg{gim(cﬁ Cj)} .
‘i i€y

e Complete-linkage:

sim(Cy, Cy) = Cvecr?icngcg{sim(q, ¢t
.cCrc,€



Initial cluster Distance matrix
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Figure 4.1: An example of hierarchical clustering of samples A, B, C, and D
e Average-linkage:
sim(Cy, Cz) = avg,cc, o, {51mleci, ¢;)} .

An example of hierarchical clustering of four samples (A,B,C,D) using average
linkage score metric is shown in Fig. 4.1.

Though hierarchical clustering has been a valuable method for class discovery,
it has some shortcomings. Hierarchical clustering has been noted by statisticians
to suffer from lack of robustness, nonuniqueness, and inversion problems that
complicate the interpretation of the hierarchy. Finally, the deterministic nature
of hierarchical clustering can cause points to be grouped based on local decisions,
with no opportunity to reevaluate the clustering. It is known that the resulting

trees can lock in accidental features, reflecting idiosyncrasies of the agglomeration
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rule (Tamayo et al., 1999). Moreover, the inverse relationships among the sam-
ples cannot be detected using a hierarchical clustering. For example, if Pearson
correlation coefficient metric is used as a measure of similarity, and a sample x
is perfectly negatively correlated with a sample y (correlation coefficient=-1.00),
samples x and y will never cluster together even though they are obviously nega-

tively related.

4.3 Different classifiers for class prediction

4.3.1 Weighted voting classifier

Classifier based on weighted voting has been proposed in (Golub et al., 1999;
Slonim et al., 2000). We will use the term weighted voting classifier (WVC) to
mean this classifier. To determine the class of a sample, weighted voting scheme
has been used. The vote of each gene is weighted by the correlation of that gene
with a particular class. The weight of a gene X is the signal-to-noise ratio defined
as

e ,
W(X;) = e (4.3.1)

where i, o1 and pg, 0y are the mean and standard deviation of the values of gene
X; in class 1 and 2, respectively. (Note that W(X;) = SNR(X;).) The weighted
vote of a gene X; for an unknown sample x = (21,23, ...,2,) is

wmxwmg@mﬂ%@> (4.3.2)

where z; is the value of gene X; in that unknown sample x. Then, the class of the
sample x is
class(x) = sign { Z V(X})} (4.3.3)
Xi€C
where G is the set of selected genes. If the computed value is positive, the sample
x belongs to class 1; negative value means x belongs to class 2. This classifier is

applicable to binary classification problems.



Prediction strength of WVC

[t is always preferable for a classifier to give a confidence measure (prediction
strength) of a decision about the class of a test sample. One can define a metric
for decision confidence and determine empirically the probability that a decision
of any particular confidence value is true according to that metric. By defining a
minimum confidence level to classification, one can decrease the number of false
positive and false negatives at the expense of increasing the number of unclassified
samples. The combination of a good confidence metric and a good threshold value
will result in a low false positive and/or low false negative rate without a con-
comitant high unclassified samples. The choice of appropriate decision confidence
metric depends on the particular classifier and how the classifier is employed.
Golub et al. (1999) and Slonim et al. (2000) defined the prediction strength
for weighted voting classifier as follows:
V- Vul

TN (4.3.4)

ps =

where V. and V_ are respectively the absolute values of sum of all positive V (X;)
and negative V(X;) calculated using equation (4.3.2).

The classification of an unknown sample is accepted if ps > 0(0 is the prefixed
prediction strength threshold), else the sample is classified as undetermined. In

our experiment, we consider undetermined samples as misclassified samples.

4.3.2 Naive-Bayes classifier

Naive-Bayes classifier (NBC) uses probabilistic approach to assign the class to
a sample. That is, it computes the conditional probabilities of different classes
given the values of the genes and predicts the class with highest conditional prob-
ability. During calculation of conditional probability, it assumes the conditional
independence of genes.

Let C denote a class from the set of m classes, {c1,c2,...,¢n}, X is a sample
described by a vector of n genes, i.e., X = (X, Xs,...,X,); the values of the

genes are denoted by the vector x = (z,,29,...,1,). Naive-Bayes classifier tries
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to compute the conditional probability P(C = ¢;|X = x) (or in short P(¢]x)) for
all ¢; and predicts the class for which this probability is the highest. Using Bayes’

rule, we get

P(x|c;) P(¢;)
P(x)

Since NB classifier assumes the conditional independence of genes, (4.3.5) can be

P(cilx) = (4.3.5)

rewritten as

_ P(zi|ci) P(@a]es) - - - Planlei) P(ci)
P(g:h:sz,. . (5:1;,«,) '

P(c;]x) (4.3.6)

The denominator in (4.3.6) can be neglected, since for a given sample, it is fixed
and has no influence on the ranking of classes. Thus, the final conditional proba-

bility takes the following form:
P(ci|x) < P(z1]¢;) P(za|e;) - - P(xp|ci) P(e;) . (4.3.7)
Taking logarithm we get,
In P(ci|x) o< In P(zy|c;) + - - + In P(x,|c;) + In P(e;) . (4.3.8)

For a symbolic (nominal) gene,

#(C = ¢;)

where #(X; = z;,C = ¢) is the number of samples that belong to class ¢; and

P(a;lc;) = (43.9)

gene X; has the value of z;, and #(C = ¢;) is the number of samples that belong
to class ¢;. If a gene value does not occur given some classes, its conditional
probability is set to EEN—, where N is the number of samples. For a continuous
gene, the conditional density is defined as

€y ‘1{ 2
1 H{ 20’% >
P(zjle;) = ——=—e¢ *»

27 Jji

where f1;; and oj; are the expected value and standard deviation of gene X; in

(4.3.10)

class ¢;. Taking logarithm of equation (4.3.10) we get,

1 1 (2~ i\ >
In P(l‘jtci) = ‘““2' In(2'n’) ~1In Tji — 5 (M) (4311)

O'jg
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Since the first term in (4.3.11) is constant, it can be neglected during calculation
of In P(¢;|x).
The advantage of the Naive-Bayes classifier is that it is simple and can be

applied to multi-class classification problems.

Prediction strength of NBC

For Naive-Bayes classifier, the prediction strength metric for two class problems
can be defined as the relative log likelihood difference of the winner class from the
loser class (Keller ef al., 2000b). That is, the prediction strength of the classifier
for an unknown sample x is

In P(Cwirme*r{x) T In P(Clogertx)
In P(Cwi'rmerlx) +In P(Claserlx) '

ps = (4.3.12)

4.3.3 Decision tree: C4.5

The C4.5 (Quinlan, 1993) represents a classification model by a decision tree. It is
run with the default values of its parameters. The tree is designed in a top-down
way, dividing the training set and beginning with the selection of the best variable
at the root of the tree. The best gene is selected by maximizing a splitting criterion
based on information theoretic approach.

For each gene in a microarray data set, a threshold, that maximizes the splitting
criteria, is determined by scoring the number of cases of the data set on the value
of the gene; every pair of values suggest a threshold in their midpoint, and the
threshold that yields the best value of splitting criterion is selected. A descendant
of the root node is then created for each possible value of the sclected gene, and
the training samples are associated with the appropriate descendant node. The
entire process is recursively repeated using the training samples associated with
each descendant node.

The process stops when all the samples at each node of the tree belong to the
same category or the best split of the node does not surpass a fixed chi-square

significant threshold. Then, the tree is simplified by a pruning mechanism to avoid



40

Leukemia
Data Set

U46499_at

<146 >146

Class: ALL L14848_s_at
<-43
Class: AML Class: ALL

Figure 4.2: An example of classification by decision tree

overspecialization. An example of classification by decision tree (taken from (Inza

et al., 2002)) is shown in figure 4.2.

4.3.4 k-Nearest neighbor classifier

The k-nearest neighbor (kNN) classifier (Dasarathy, 1991), an extension of nearest
neighbor classifier (IB1)(Aha et al., 1991), has long been used by the pattern
recognition and machine learning communities in supervised classification tasks.
The basic approach involves storing all the training samples, when a test sample
is presented, retrieving k training samples that are nearest to this test sample
and prediction of the label of the test sample by majority voting. The distance
between two samples x = (zy,%3,...,2,) and y = (y;,s,...,yn) is calculated as

follows:

d(x,y) = Zwi(ﬂfi - ¥i)? (4.3.13)

i=1
where n is the number of genes in the data set and w; is the weight of gene 4. In
our experiments, we set w; = 1, and the distance between two samples becomes
Euclidian distance. To avoid a tie, the value of k should be an odd number (and
of course, k < number_of_training_samples) for binary classification. Examples of

IB1 and kNN classifiers are given in Figs. 4.3 and 4 4.
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. n 5 Samples | X1 |[X2 | Class
distance(x,y) =" (x,— y,)’ 1 6 |7 |AML
i, 2 8 |9 |ALL
3 5 6 |AML
Test instance () 5[8]? 4 9 |8 |ALL

J 1T

Sample |Sample 1 | Sample 2 | Sample 3 | Sample 4 | Predicted Class:
Distance | 1.4142 | 3.1623 2 4 AML

Figure 4.3: Class prediction by nearest neighbor classifier (IB1)
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Figure 4.4: Class prediction by k-nearest neighbor (kNN) classifier
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Figure 4.5: Classification by a feed forward back propagation neural network

kNN is very easy to implement and can provide good classification accuracy if

the features are chosen and weighted carefully in computation of distance.

4.3.5 Artificial neural network

Artificial neural network (ANN) or simple neural network (NN) has been applied
in classification of gene expression data in (Hwang et al., 2002; Khan ¢t al., 2001).
Fig. 4.5 shows a feed forward back propagation neural network for classification
of gene expression data.

An artificial neural network consists of the following three types of layers: input
layer, hidden layer, and output layer. The typical back-propagation network has
an input layer, an output layer, and at least one hidden layer. However, the
number of hidden layers required to solve a problem depends on the complexity of
the problem. Usually two or one hidden layer(s) are required; however, for some
complex problems more than two hidden layers is required.

There are seven major components of an ANN (Anderson and McNeil, 1992):

1. Weighting factors: A neuron usually receives many simultaneous inputs.
Each input has its own relative weight which gives the input the impact that

it needs on the processing element’s summation function.

2. Summation function: The first step in a processing element’s operation



is to compute the weighted sum of all of the inputs. The total input signal is

the dot product of the input and weight vectors.

3. Transfer function: The result of the summation function, alinost always

the weighted sum, is transformed to a working output through the transfer
function. In the transfer function the summation total can be compared with
some threshold to determine the neural output. The threshold, or transfer
function, is generally non-linear. Typically the sigmoid function is used as
the transfer function. The sigmoid function is defined as follows:

= »lf:%:mﬁ; (4.3.14)
where X; is output of the summation function and Y; is the output activity
of node j. Prior to applying the transfer function, uniformly distributed ran-
dom noise may be added. The source and amount of this noise is determined

by the learning mode of a given network paradigm.

4. Scaling and limiting: The result of the processing elenient’s transfer func-

tion can pass through additional processes that scale and limit the transfer
value. Scaling simply multiplies the transfer value by a scale factor, and
then adds an offset. Limiting is the mechanism that insures that the scaled
result does not exceed an upper or lower bound. This limiting is in addition

to the hard limits that the original transfer function may have performed.

. Output function: Each processing element is allowed one output signal
which it may output to hundreds of other neurons. Normally, the output is
directly equivalent to the transfer function’s result. Some network topolo-
gies, however, modify the transfer result to incorporate competition among
neighboring processing elements. Neurons are allowed to compete with each
other, inhibiting processing elements unless they have great strength. Com-
petition can occur at one or both of two levels. First, competition determines
which artificial neuron will be active, or provides an output. Second, com-
petitive inputs help determine which processing element will participate in

the learning or adaptation process.
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6. Error function and back-propagated value: In most learning networks
the difference between the current output and the desired output is calcu-
lated. This raw error is then transformed by the error function to match a
particular network architecture. The most basic architectures use this error
directly, but some square the error while retaining its sign, some cube the
error, other paradigms modify the raw error to fit their specific purposes.
The artificial neuron’s error is then typically propagated into the learning
function of another processing element. This error term is sometimes called

the current error.

The current error is typically propagated backwards to a previous layer. Yet,
this back-propagated value can be either the current error, the current error
scaled in some manner (often by the derivative of the transfer function),
or some other desired output depending on the network type. Normally,
this back-propagated value, after being scaled by the learning function, is
multiplied by the incoming connection weights to modify them before the

next learning cycle.

7. Learning function: The purpose of the learning function is to modify
the different connection weights on the inputs of each processing element
according to some neural based algorithm. This process of changing the
weights of the input connections to achieve some desired result can also he

called the adaption function, as well as the learning mode.

In gene expression based classification using an ANN, the data corresponding to
the selected genes of a gene subset are presented to the input layer, and the number
of input nodes is equal to the number of selected genes. The number of output
layers depends on the problem. For a binary problem, only one output layer and
one slice point (threshold) («) is sufficient for the prediction of the labels, If the
output of the neural network is greater than or equal to «, the predicted class is
one type; otherwise, the predicted class is other type. However, for a multiclass
problem, usually the number of output layers and the number of slice points are

equal fo the number of types of samples in the data set. The determination of



optimal slice points for a multiclass problem is not an easy task; sometime, these

points are determined through some learning process.

4.3.6 Support vector machine

Support vector machine (SVM) (Vapnik, 1995) in binary classification maximizes
the distance between a hyperplane w and the closest samples from the hyperplane.
The hyperplane found by the SVM in feature space corresponds to a non-linear
decision boundary in input space.

Let us assume that we have [ training samples and the class of each training
vector Xj = (T, T4y, ..., 24,) (i = 1,2,...,1) is given by y; € {=1,+1}. Given a
new test sample x = (21, 29,...,%,) to classify, its label is assigned according to

the following decision function:

!
D(x) = sign (Z oy K (%, %) + b) (4.3.15)

i=1
where K(x;,x) = ¢(x;)T¢p(x) is called kernel function, oy (0 < a; <C; C: ocost)
is the weight of x; and b is a biased value. Some widely used kernel functions are:
polynomial kernel [K (x;,x;) = (ax]'x; + )], RBF (Radial Basis Function) kernel
[K(xi,x;) = e =% "and linear kernel [K(x;,x;) = xTx,]. The value of a; is

found by minimizing the following equation:

1 !
1 , ,
F((l’) == ~?~ it;ﬂ (;yécxjyiyjﬁ’(xh Xj) - ; ¥ (4316)
subject to
l
Zaiyi =0. (4.3.17)
i=1

The maximum margin hyperplane is given by
!
W = Z iy p(x;) - (4.3.18)
i=1

An example of optimal hyper-plane for SVM is shown in Fig. 4.6.
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Figure 4.6: Examples of hyper-planes in support vector machine

After successful training of SVM, most a;’s are zero, and the training patterns
with non-zero weights are called support vector, and those with strict inequality
0 < a; < C are called marginal support vectors. Many information about SVM
can be found at http://www.kernel-machines.org.

Though the original SVM was intended for binary classification, it has been ex-
tended to multiclass classification using ‘one-vs-other’ and ‘one-vs-one’ (all pairs)
methods. We will describe only the second method (‘one-vs-one’) of SVM for
multiclass classification due its use in our experiments. In ‘one-vs-one’ method
(KreBel, 1999), e(c — 1)/2 classifiers (e= number of classes) are constructed, where
each classifier is trained on data from two classes (i,7), and the class of a test
sample x is predicted by ‘winner-takes-all’ voting strategy. If the decision func-
tion says that x is in class class i, the vote for the ith class is increased by one,
else the vote for jth class is increased by one. Then x is predicted to be in the
class that has the highest votes. In the case that two classes have identical votes,
the one with lower index is selected.

The SVM experiments used in this dissertation are performed by using an
implementation of LIBSVM (Chang and Lin, 2001) (software available at http:

//www.csie.ntu.edu.tw/~cjlin/libsvm).

4.4 Accuracy estimation through cross-validation

When the number of samples in a training data set is small, cross-validation tech-

nique is applied to measure the goodness of a gene subset using a classifier. In
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Figure 4.7: An example of leave-one-out-cross-validation technique for accuracy

estimation

k-fold cross-validation, the data D is randomly partitioned into k& mutually exclu-
sive subsets, Dy, Ds, ..., Dy of approximately equal size. The classifier is trained
and tested k times; each time i(i = 1,2,..., k), it is trained with D\ D; and tested
on D;. When k is equal to the number of samples in the data set, it is called
leave-one-out-cross-validation (LOOCV) (Kohavi, 1995). The cross-validation ac-
curacy is the overall number of correctly classified samples, divided by the number
of samples in the data. When a classifier is stable for a given data set under k-fold
cross-validation, the variance of the estimated accuracy would be approximately
equal to “—“N;“) (Kohavi, 1995), where a is the accuracy and N is the number of
samples in the data set. An example of leave-one-out-cross-validation technique

for accuracy estimation is given in Fig. 4.7.
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4.5 Summary

In this chapter, different class discovery and class prediction methods are de-
scribed. For class discovery, SOM is widely used whereas for prediction of the
label of a test sample, the most widely used classifier is k-nearest neighbor clas-
sifier since it can be easily implemented and applied to multiclass classification,
and on some microarray data sets, kNN produces better classification accuracies
than support vector machine. Since the number of available training samples is
very small, leave-one-out-cross-validation technique is usually used to evaluate a

gene subset with a classifier.



Chapter 5

Gene Selection by Random
Probabilistic Model Building
Genetic Algorithm

5.1 Introduction

In this chapter, we propose a new adaptive search method to extract informative
genes from microarray data.We call our gene selection method random prob-
abilistic model building genetic algorithm (RPMBGA). Our method be-
longs to the category probabilistic model building genetic algorithm (PMBGA)
(Pelikan et al., 1999), which is a variant of genetic algorithm (GA). Instead of
applying crossover and mutation operators, a PMBGA generates new possible so-
lutions (individuals) by sampling the probability distribution that is calculated
from the selected solutions of previous generations. Different PMBGAs assume
different structures of variables and calculate probability distribution accordingly.
A good review on PMBGASs (also known as estimation of distribution algorithms
(Miihlenbein and Paafl; 1996)) can be found in (Larranaga and Lozano, 2001; Paul
and Iba, 2003a,b). PMBGA has been proved to be an efficient method for solving

certain kinds of problems that are very hard for ordinary genetic algorithms.

5.2 Motivation

The success of a traditional genetic algorithm depends on the appropriate choice

of crossover and mutation operators; similarly, the success of a PMBGA depends
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on its capability of learning a structure of the variables from the selected indi-
viduals. The structure of genes of a microarray data set can be described by a
Bayesian network. But learning of a Bayesian network from data is an NP-hard
problem. For medium size problems, a Bayesian network of variables is built
from the selected individuals by using some kinds of greedy algorithms, which use
either bayesian information criterion (BIC)(Schwarz, 1978) or bayesian dirichlet
equivalence (BDe)(Geiger and Heckerman, 1994) metric to measure the goodness
of a structure. For the problems containing thousands of variables, it would be
virtually impossible to build a network structure from data.

On the other hand, if the recombination operators (especially mutation oper-
ator) of a GA are not carefully designed, it would be very diflicult to generate
compact size gene subsets and take much time to calculate classification accura-
cies of bigger size gene subsets. These have motivated us to design RPMBGA
that successively reduces the number of genes of different individuals but keeps
diversity in the population of individuals in successive generations. The details of

RPMBGA are given below.

5.3 Details of RPMBGA

5.3.1 Notations

Before the details of RPMBGA, let us give some notations we use in this chapter.
We use the term individual or gene subset to mean a possible solution of the
problem. If there are n genes in a microarray data set, each possible solution
would be an n-bit binary string. In a binary string, the genes at the positions
marked with a 1 are included in that gene subset. Suppose, the random variable
X; € {0,1} corresponds to gene i, and z; is the value of X;. So, a solution of
the problem is represented as x = (z1, Zs, ..., x,). p(z;,t) is the probability of X
being 1 at generation ¢, and g(z;,t) is the marginal distribution of X; across the
selected individuals at generation ¢t. N is the number individuals in a population,

M is the number of individuals selected from a population, and :z:,f is the value of



the variable X; in individual j.

5.3.2 Initial population generation

In our algorithm, whether a gene would be selected or not depends on its proba-
bility p(z;,t). Initial population of different gene subsets is generated by setting
the probability p(x;,t) to 0.5 and applying the following decision rule:

L oifr < p(ay,t);

i = { 0 otherwise (5.3.1)

where r € [0,1] is a random number usually generated by calling the rand()
function of a programming language. Let us give an example of generating initial
population of four genes in detailed. Given the initial probability vector p(x,0) =
(0.5,0.5,0.5,0.5), N random vectors are generated. Suppose two of them are
R, = (0.002,0.69,0.045,0.85) and Ry = (0.73,0.032,0.45,0.21). By using decision
rule (5.3.1), we get two gene subsets as (1,0,1,0) and (0,1,1,1).

5.3.3 Generation of new solutions (offspring)

After generation of initial population, we need to update the probability vector to
produce new solutions. In PBIL (Baluja, 1994), a member of the group PMBGA,
the probability of a variable X; is updated by the weighted average of p(z;,t) and

the marginal distribution of that variable ¢(z;,t):
p(zi, t + 1) = ap(z;, t) + (1 — a)g(z;, t) (5.3.2)

where a € [0,1] is called learning rate that is usually fixed at a value during
initialization. In a data set containing smaller number of genes, PBIL may produce
good results but in microarray data sets containing huge number of genes, it
may not return compact size gene subsets for a fixed value of a. We performed
experiments on different microarray data sets with different values of « but in each
run, it terminated with many genes selected. In the research on microarray data,

it is assumed that only a few genes anticipate the pathological behavior of cancers.



Smaller number of genes will be selected if we can somehow reduce the probability
of a gene being selected and can keep the search adaptive. Though theoretical
analysis of our method would not be provided in this chapter, we achieve this
goal by incorporating a random variable in (5.3.2). So, we update probability as
follows:

plzit + 1) = aBip(z;, t) + (1 — a)(1 = B)q(ay, t) (5.3.3)
where 3; € |0,1] is a random number. For a fixed value of «, p(x;,t + ) pgrp >
p(z;,t+ 1)rprea. Therefore, our method will select smaller number of genes as

compared to PBIL. The marginal distribution of X; is calculated as follows:

M g
i1 L;
q(;,t) = WZ“R/; (5.3.4)

where 77 is the value of the variable X; in individual j.

5.3.4 Evaluation of a gene subset

A gene subset (individual) is evaluated by its accuracy on the training data and
the number of genes selected in it. Usually, the value of the fitness function is used
as an evaluation measure. In our method, we calculate the fitness of an individual

as follows:
fitness(x) = w* A(x) + (1 —w) * (1 = NGS(x)/n) (5.3.5)

where A(x) € [0,1] is the accuracy on training data using only the expression
values of the selected genes in x, NGS(x) is the number of genes selected in x and
w € [0, 1] is the assigned weight of accuracy. In (5.3.5), we have scalarized the two
objectives of gene identification task into one. In our experiments, we give more
emphasis on accuracy rather than on number of selected genes. Hence in all our

experiments, w > (1 — w).

5.3.5 Overall gene selection procedure

The steps in our gene selection algorithm are: generation and evaluation of ini-

tial population, selection of some promising individuals for calculation of marginal



probabilities, generation and evaluation of offspring, and creation of new popula-
tion by combining old population and new offspring. The overall procedure is as

follows:

PROCEDURE RPMBGA;
Generate initial population of different gene subscts;
Evaluate initial population using (5.3.5);
WHILE (termination_criteria NOT satisfied) DO
Select M promising individuals;
Calculate marginal distribution using (5.3.4);
Update probability vector according to (5.3.3);
FOR i=1 to @ DO //Q=number of offspring to gencrate
FOR j=1ton DO
r=rand();
Generate z using decision rule (5.3.1);
Evaluate the newly generated gene subsets using (5.3.5);

Create new population by combining old and new gene subsets;

5.3.6 Example of offspring generation by RPMBGA

Let us give an example of generation of new offspring in RPMBGA containing five

genes.
1. Suppose the initial probability vector is given as
p(x,0) = (0.5,0.5,0.5,0.5,0.5) ,

and the initial population contains the following individuals (fitness follows
colon):

(a) 10011:0.59 (b) 11010:0.60 (c) 10001:0.85 (d) 01110:0.75 (e) 00111:0.54.

2. Select some individuals based on fitness (b,c,d):
11010:0.60, 10001:0.85 and 01110:0.75.



3. Calculate marginal distribution of each X;:

4. Generate a random vector:

3 = (0.10,0.25,0.43,0.67, 0.90).

5. Update the probability vector using (5.3.3)(a = 0.9):

p(x,1) = (0.1050,0.1625,0.2125, 0.3235, 0.4083).

6. Generate a set of random vectors:

(a) Ry = (0.10,0.054,0.7,0.8,0.77),
(b) Ry = (0.23,0.56,0.20,0.15,0.95),
(¢) Ry = (0.45,0.054,0.17,0.53,0.57).

7. Generate new offspring by comparing p(x, 1) and each random vector R;(i =
1,2,3) and applying decision rule (5.3.1):
(a)11000 (b)00110 (¢)01100.

8. Evaluate new offspring, and generate new population by combining old pop-

ulation and new offspring.

5.4 Evaluations of RPMBGA on microarray

datasets

5.4.1 Microarray datasets

To evaluate the accuracy of our proposed method, we chose three microarray data

sets of cancer research. The data sets include lung carcinoma (Bhattacharjee et al.,
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Table 5.1: Microarray data sets used in the experiments

Data Set #Genes #Classes #Samples
Lung carcinoma 3312 5 203

Brain cancer 4434 2 50
Prostate cancer 5966 2. 102

2001), brain cancer (Nutt et al.,, 2003) and prostate cancer (Singh et al., 2002).
Summary of the data sets are shown in Table 5.1. In the table, #Genes denotes the
number of genes that were left after preprocessing. After preprocessing of the data
sets (see Chap. 2), the values of cach gene across different samples were linearly
normalized in [0,1]. The lung carcinoma and the prostate cancer data sets were
divided into mutually exclusive training and test subsets containing (103,100), and
(51,51) samples, respectively (ratio is 1:1) whereas the 21 classic samples of brain
cancer were used as training data and the remaining 29 non-classic samples as test
data. This split of each data set into training and test subsets remained the same

for all the experiments.

5.4.2 Experimental setup

We generated initial population randomly with the probability of each gene be-
ing selected was 0.5 (equal probability of being selected or not). The settings
of the parameters of gene selection algorithm were: population size=100, off-
spring size=100, maximum number of generation=100, total run=20, w = 0.75
and « = 0.1. The value of w was chosen to give more emphasis on accuracy rather
than on the number of selected genes because the ultimate objective of this re-
search is the accurate classification of patient samples. Our replacement strategy
was CHC (Eshelman, 1991) in which we combined the old population and the
newly generated offspring and then selected the best 100 individuals for the next
generation. For calculation of marginal probabilities, we selected the best half of
the population.

We used support vector machine (SVM) and k-nearest neighbor (kNN) as clas-

sifiers. SVM is well suited to the analysis of broad patterns of gene expressions



from DNA microarray data. It can easily deal with a large number of genes with
a smaller number of training patterns. kNN is easy to implement and widely used
in analysis of gene expression data. For SVM, we used RBF kernel with values
of C=32, and v = 0.0078125; these values were obtained by applying grid search
on the training data as recommended in (Chang and Lin, 2001). In this chapter,
we report the experimental results of kNN with & = 11 because by performing
different experiments with k& = 10 and 11, we found that kNN with k£ = 11 had
produced the better results on the data sets. Our gene selection algorithm termi-
nated when there was no improvement of the fitness value of the best individual in
the population in 10 consecutive generations or maximum number of generations
had passed. After termination of the algorithm, instead of taking the best one
that had the highest fitness value, we took all the gene subsets from the population
that had the best training accuracy (fitness might be different) and calculated test
accuracy of each gene subset by using either SVM or kNN, whatever might be the
case. That is why, the number of gene subsets selected by our method in 20 runs

were greater than or equal to 20.

5.4.3 Results

The experimental results presented in this section pursue two objectives. The
first objective is to show that gene selection is needed for better classification of
microarray data while the second objective is to show that adaptive searches like
RPMBGA select highly discriminative genes than SNR does. To achieve these
objectives, we performed six types of experiments. In the first four experiments,
we calculated the accuracies of single genes, all genes, and the genes selected by
RPMBGA and SNR on the three data sets. Then, we calculated the training and
test accuracies of the genes selected with RPMBGA and SNR. To denote a gene,

we use feature# (probe_set#) of that gene in the microarray data set.
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Table 5.2: Overall accuracies by single genes on each data set
Data Set SVM i kNN
34842_at (77.34, 76.85)  41325.at (72.91, 80.79)
Lung carcinoma 36160s_at (77.34, 77.83) 33322..at (68.47, 80.30)
40825_at (77.34, 78.32)  32321.at (68.47, 79.80)

36617_at (72.0, 74.0) 630_at (62.0, 84.0)
Brain cancer 40367 _at (72.0, 64.0) 35163_at (68.0, 82.0)
1113.at (70.0, 68.0) 41753.at (56.0, 82.0)

37630 at (34.31, 83.33)  32508.at (62.75,88.23)
Prostate cancer  37720_at (84.31, 80.39)  40856_at (66.67, 84.31)
34840_at (79.41, 76.47) 1767 s.at (71.57, 83.33)

Overall accuracies of single genes and all genes

Before implementation of our gene selection method on the data sets, we applied
both SVM and kNN classifier to the data containing single genes’ expression values
to determine whether a single gene exists that can classify all the (training-+test)
samples without any error. Our findings are summarized in Table 5.2. In the table,
we have reported the top 3 genes that produced the higher overall accuracies. For
each gene, the accuracies found by SVM and kNN are written in the parenthesis;
the kNN accuracy follows the comma in the parenthesis. For each data set, the
top three genes selected by SVM were different from those by kNN. For a single
gene, the accuracy by SVM was also different from the accuracy by kNN. None of
the genes produced 100% classification accuracy on any data set. The best overall
accuracies using SVM were 77.34%, 72% and 84.31%, respectively on lung carci-
noma, brain cancer and prostate cancer data sets; using kNN as a classifier, the
best overall accuracies found on those data sets were 80.79%, 84.0% and 88.23%,
respectively.

Since we did not find any single gene that can classify all the samples 100%
accurately, we next calculated the overall accuracy on those samples using the
expression values of all genes. The results are shown in Table 5.3. For each
data set, the best accuracy was obtained by applying SVM but that was less than

100%. Then we investigated whether there could be found gene subsets that would



Table 5.3: Overall accuracy by all genes on each data set
Data Set SVM kNN
Lung carcinoma 95.07 93.10
Brain cancer 84.0  80.0
Prostate cancer 89.22 84.31

produce better classification accuracies on these data sets or not.

Overall accuracies of the genes selected with RPMBGA and SNR

Next we applied our gene selection algorithm RPMBGA on all the samples. The
best results are presented in Table 5.4 while the average results are reported in
Table 5.5. In Table 5.5, a value of the form a + b represents average value a with
standard deviation b. From these tables, we find that whatever classifier is used,
the best as well as the average overall accuracy of RPMBGA is much better than
the accuracy of either a single gene or all genes. Moreover, a smaller size gene
subset that results in higher classification accuracy may provide more insights into
molecular classification and diagnosis of cancers. This suggests that we need gene
selection.

Since SNR is widely used to identify discriminative genes from microarray
data, we performed experiments using different number of genes selected by SNR
to determine whether our method is superior to SNR or not. On brain and
prostate cancers, we performed 20 experiments using different number of genes
(5,10,15,...,100). Similarly, we performed 20 experiments on lung carcinoma data
using 10, 20, ..., 200 genes. Moreover, we performed experiments using the same
number of genes as of RPMBGA that produced the best overall accuracies using
SVM and kNN. In Table 5.6, we report those results. The 90-gene subset, selected
by SNR, produced the best 97.04% and 97.54% overall accuracies on the lung car-
cinoma data using SVM and kNN, respectively. On the brain cancer data, the 30-
and 75-gene subsets produced the best 88% and 92.0% overall accuracies using

SVM and kNN, respectively. Similarly, the best accuracy obtained on prostate



cancer data was 95.10% using either a 17-gene subset with SVM or a 5-gene sub-
set with kNN. All the best overall accuracies of RPMBGA were superior to the
accuracies of the gene subsets found by SNR with corresponding classifier, except
the best overall accuracy of kNN on lung carcinoma. Even the average accuracy
of the gene subsets of RPMBGA on each data set, except kNN accuracy on lung
carcinoma data, was superior to the best accuracy of the gene subset selected by
SNR. Since all the best overall accuracies of RPMBGA, except kNN accuracy on
lung carcinoma, are better than the accuracy of the single genes, all genes or the

best gene subset found by SNR, we can claim that RPMBGA can be used to select

Table 5.4: Best results of RPMBGA on all samples

Data set Overall Accuracy #Genes
SVM kNN SVM kNN
Lung carcinoma 98.03 95.56 67 29
Brain cancer 96.0 98.0 4 10
Prostate cancer 98.04 99.02 17 4

Table 5.5: Average results of RPMBGA on all samples

Data set Metric SVM kNN

Lung carcinoma | Overall accuracy | 97.304+0.44 | 94.28 +0.53
#Genes 73.09+21.83 | 39.04+13.68

Brain cancer Overall accuracy | 93.17+2.02 | 94.40+40.90
#Genes 20.55+7.51 | 10.9142.15

Prostate cancer | Overall accuracy | 96.624+0.62 | 96.81+1.10
#Genes 48.52:4+47.07 | 6.37+4.20

highly discriminant genes for classification of tumor samples.

Table 5.6: Overall accuracy by the genes selected by SNR

Lung carcinoma Brain cancer Prostate cancer
#Genes SVM kNN | #Genes SVM kNN | #Genes SVM kNN
29 92.61 93.60 | 4 780 86.0 |4 90.2 94.11
60 96.55 97.04 | 10 84.0 900 |5 91.18 95.10
67 96.06 96.06 | 30 88.0 86.0 |17 95.10 93.14
90 97.04 97.54 | 75 88.0 920 |20 95.10 93.14




Interestingly, among the members of the best gene subsets found by SNR with
SVM. and those by RPMBGA with SVM, all the top three single genes of a data
set found by SVM are included in the best gene subset found by SNR, but none of
them appear in the best gene subset found by RPMBGA. From this, we can infer
that there exist some kinds of correlations among the selected genes of the best
subset; when we take a single gene from the subset, the correlation breaks down
and it does not produce good accuracy on the data set. SNR fails to select an
informative gene subset because it does not consider the interactions among the
genes, rather it selects genes based on single genes’ capability of data separation.
On the contrary, RPMBGA that generates subsets of more than one genes a
time, preserves the interactions among the genes that result in good classification

accuracy.

Training and test accuracies of the genes selected with RPMBGA and
SNR

We performed experiments using RPMBGA and SNR with either of the classifiers
on each data set divided into mutually exclusive training and test data. During
selection of the best gene subset, only training data were used. The best and
average results of RPMBGA on training and test data are presented in tables 5.7
and 5.8. Here we use the notation (a,b) (if needed and not otherwise stated) to
denote training accuracy a and test accuracy b. SVM obtained better accuracies
than kNN on lung carcinoma data. However, the accuracies of the two classifiers
on the other two data sets were almost similar.

On lung carcinoma data, we obtained 48 and 49 gene subsets in 20 runs by
using RPMBGA with SVM and kNN, respectively. Out of these gene subsets,
the best training and test accuracies by SVM and kNN were found by 107- and
44-gene subsets, and the accuracies were (97.09%, 98.0%) and (95.15%, 92.0%),
respectively. The lowest training and test accuracies by SVM and kNN were
(96.12%, 87.0%) and (91.26%, 85%), which were obtained by the gene subsets

having respectively 63 and 86 genes.



61

Applying RPMBGA with SVM on brain cancer data, we got 1971 gene subsets
in 20 runs each having 100% training accuracy on 21 training samples; however,
the test accuracy on the 29 test samples was in the range [72.41%, 48.28%]. Using
kNN as the classifier, we got 859 genes that produced 100% training accuracy,
and test accuracy in the range [75.86%, 37.93%]. The descriptions of the selected
genes of the best subset, obtained by applying RPMBGA with SVM, are given in
Table 5.10.

By running our method with SVM on prostate cancer data, we found 76 gene
subsets that resulted in 100% training accuracy; the test accuracy of these gene
subsets was in the range [98.04%, 78.43%]. Using kNN as classifier, we did not
find any gene subset that produced 100% training accuracy. The highest 98.04%
training accuracy was obtained by 67 gene subsets, and the highest and the lowest
test accuracies of these subsets were 98.04% and 82.34%, respectively. The de-
scriptions of the selected genes in the best subset, obtained by applying RPMBGA
with SVM, are given in Table 5.11.

We further investigated the performance of SNR on three data sets when they
were divided into training and test sets. Our findings are summarized in Table 5.9.
The best accuracies by SVM on the lung carcinoma, brain cancer and prostate
cancer were: (96.12%, 97.0%), (100.0%, 48.28%) and (96.08%, 94.12%) using the
gene subsets of 160, 20 and 55 genes, respectively. Using kNN as a classifier, the
best accuracies observed on those data were: (92.23%, 92.0%), (100%, 62.07%)
and (96.08%, 96.08%) using the 30, 40 and 5-gene subsets, respectively. The
accuracies corresponding to our best gene subsets are also provided in the table.
Again, our method outperforms SNR in terms of acquired classification accuracy.

In figures 5.1, 5.2 and 5.3, we have plotted the training accuracy vs test ac-
curacy of different gene subsets selected with RPMBGA and SNR using SVM.
Since the accuracies corresponding to different gene subsets are not monotonic,
we have shown the graphs as dot plots. We have provided these graphs to show

the performance of RPMBGA and SNR in selection of predictive genes.
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Table 5.7: Best results of RPMBGA on training and test samples

Data set | Classifier | Best accuracy | #Genes
Training Test
Lung SVM 97.09 98.0 107
carcinoma | kNN 95.15 92.0 44
Brain SVM 100.0 72.41 9
cancer kNN 100.0 75.86 | 8
Prostate | SVM 100.0 98.04 10
cancer kNN 98.04 98.04 4

Table 5.8: Average results of RPMBGA on training and test samples

Data set  Classifier Average accuracy #Genes
Training Test
Lung SVM 96.454+0.47 93.37+£2.13 76.35+17.04
carcinoma kNN 92.154+0.74 90.06+1.72 35.61415.51
Brain SVM 100.00 52.824+4.41 8.95+2.18
cancer kNN 99.35+£1.63 52.26+5.13 8.48+0.75
Prostate ~ SVM 99.06-£0.98 87.86+3.97 17.50£19.37
cancer kNN 97.16£1.00 87.43+£6.04 5.98+4.59

Table 5.9: Training and test accuracies of the genes selected by SNR. For each
gene subset, first row contains training accuracy while second row contains test

accuracy
Lung carcinoma Brain cancer ; Prostate cancer

#Genes | SVM | kNN | #Genes | SVM | kNN | #Genes | SVM | kNN

30| 90.29 | 92.23 6 |95.24 | 95.24 4 190.20 | 96.08

93.0 | 920 55.17 | 65.52 90.20 | 94.12

44 1 95.15 | 91.26 10 | 95.24 | 90.48 5 186.27 | 96.08

92.0 | 92.0 58.62 | 62.07 90.20 | 96.08

107 | 94.17 | 91.26 20 | 100.0 | 100.0 10 | 92.16 | 96.08

93.0 92.0 48.28 | 58.62 94.12 | 92.16

160 [ 96.12 | 91.26 40 | 85.71 | 100.0 551 96.08 | 94.12

97.0 1 93.0 62.07 | 62.07 94.12 | 92.16
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Figure 5.1: Plot of training and test accuracies of different gene subsets of lung
carcinoma data
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Figure 5.2: Plot of training and test accuracies of different gene subsets of brain
cancer data



64

© Training Accuracy & Test Accuracy | E* Training Accuracy - Test Accuracy

105 100

100 o
— |8 =L
E 95 3y i (S e
E 904 b fﬁt} Eé % . Sgng DARBBRAD AL
I N - g I N
8 - 3
g w 8 wg

75 7 i

70 85 4 ,

5 15 25 35 45 55 65 75 5 15 25 35 45 55 65 75 85 95 105
Number of genes in a subset Number of genes in a subset

(a) Gene subsets selected by RPMBGA (b) Gene subsets selected by SNR

Figure 5.3: Plot of training and test accuracies of different gene subsets of prostate

cancer data

Table 5.10: Description of the selected genes in the best subset of brain cancer

data

Feature#  Accession# Description of Gene

1318_at X74262 RBBP4: retinoblastoma binding protein 4

32334_f.at  AB009010  Homo sapiens mRNA for polyubiquitin UBC

36699_at AF023450  human CHD2-52 down syndrome cell adhesion
molecule

36847.r.at  AA121509  AA121509:2k88c10.51 Homo sapiens cDNA,
3 end

38314_at AB002304  capicua homolog (Drosophila)

40132 g at  D89937 Homo sapiens mRNA for follistatin-related
protein (FRP)

40953_at S80562 calponin 3, acidic

41790_at ALO031230  glycosylphosphatidylinositol specific
phospholipase D1

41837_at AA149431  AA149431:2126a08.s1 Homo sapiens ¢cDNA,

3 end




Table 5.11: Description of the selected genes in the best subset of prostate cancer

data
Feature#  Accession# Description of Gene

32560_s_.at  'W30959 2c¢65h10.r1 Soares_fetal _heart NbHH19W CDNA clone

32898_at U20582 actin like protein

34678_at AL096713 FERI1L3: fer-1-like 3, myoferlin

37639.at  X07732 HPN: hepsin (transmembrane protease, serine 1)
37912_at X80200 TRAF4: TNF receptor-associated factor 4

38203.at  U69883 KCNNI1: potassium intermediate/small conductance

calcium-activated channel
39043_at AF006084 ARPCI1B: actin related protein 2/3 complex,
subunit 1B, 41kDa

39408 _at 780345 ACADS: acyl-Coenzyme A dehydrogenase,
C-2 to C-3 short chain
39545_at U22398 CDKNIC: cyclin-dependent kinase inhibitor 1C

(p57, Kip2)
41504_s.at AF055376 MAF: v-maf musculoaponeurotic fibrosarcoma,
oncogene homolog

Overfitting on microarray data

Overfitting (training accuracy>-test accuracy) is a major problem in classification
of microarray data. If the training and test samples are not carefully divided, it
may happen during classification of microarray data that one gets 100% accuracy
on training data but 0% accuracy on test data. If we look at Table 5.8, and figures
5.1-5.3, we find that overfitting has occurred in both SVM and kNN accuracies.
The big differences between training and test accuracies can be observed on brain
cancer data. The poor performance of classification models on this data set may
be due two reasons: first, the number of training samples is smaller than the
number of test samples; second, the expression values of test samples may be
totally different from those of training samples since test samples are of non-classic
gliomas. However, the classifier, not the gene selection algorithm RMPBGA, is
responsible for overfitting because RPMBGA proceeds depending on the accuracy
returned by the classifier; if a classifier assigns higher accuracy to an irrelevant
gene subset, RPMBGA will assign better fitness to it and eventually select it as

a parent for reproduction of new offspring in next generation, which in turn may
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produce irrelevant gene subsets causing overfitting. It is the characteristic of a
good classifier that assigns higher accuracy to relevant gene subsets but lower

accuracy to irrelevant gene subsets.

5.5 Summary

In this chapter, we have investigated the performance of two gene selection meth-
ods: RPMBGA and SNR with two classifiers: SVM and kNN on three microarray
data sets. By performing experiments, we have found that no single gene ex-
ists that can classify patient samples 100% accurately, and neither can all genes.
However, by applying our gene selection method, we found that some gene subsets
having very small number of genes could classify samples more accurately than
single genes or all genes or the genes selected by SNR using either of the classi-
fiers. Moreover, we found many combinations of gene subsets that, having or not
equal number of genes, produced the same classification accuracy. These findings
suggest that there are many redundant or irrelevant genes in microarray data, and
some of them act negatively on the acquired accuracy by the relevant genes, and
selection of some genes using only a score metric, independently of the classifier,
fails to include only the predictive genes.

We observed during our experiments that whatever gene selection method or
classifier is used, greater number of genes is required for classification of multi-
type tumor samples like lung carcinoma. This is desirable because the information
useful for multiclass tumor classification is encoded into complex gene expression
patterns that cannot be captured by a small number of genes.

From the experimental results, we found that the best accuracy by the gene
subsets selected by RPMBGA was superior to the accuracy of the gene subsets
selected by SNR. It is very natural that the probability of finding a good gene
subset from a collection of many possible solutions is higher than the probability
of finding that one from a limited number of solutions. This suggests that evolu-
tionary computation like RPMBGA can be used as an alternative to widely used

SNR for the identification of the highly discriminative genes from microarray data.



Chapter 6

Classification and Gene Selection
by Genetic Programming

6.1 Introduction

When the objective of a research is to extract possible bio-markers by mining
the gene expression data, we can employ the random probabilistic model building
genetic algorithm (RPMBGA) with a suitable classifier like support vector machine
(SVM) or k-nearest neighbor (kNN) classifier. However, we have found in the
previous chapter that the selected genes as well as the classification accuracy
are very much dependent on the choice of the classifier. For some data sets,
SVM with RPMBGA produces better accuracy while for some other data sets,
kNN with RPMBGA may be a good choice. Finding of an optimal ensemble of
gene selection algorithms and classifiers is difficult. Instead of two methods, we
can consider one method for two tasks— classification of gene expression data
and selection of informative genes. In this context, genetic programming (Koza,
1992; Banzhaf et al., 1998), an evolutionary computation method, is a well-suited
candidate method. In its typical implementation, a set of classification rules is
produced in multiple runs using the training data, and then the best fitted rule(s)
is (are) used as the predicted model that is evaluated using the test data. In
addition, the set of rules is analyzed to get the more frequently selected genes that
are conjectured to be the possible bio-markers of the cancer under study.

The advantages of genetic programming are as follows:

e The transparent algebraic rules of genetic programming provide an insight
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into the quantitative relationships among the genes in classification of sam-

ples.

e Genetic programming acts as a classifier as well as a gene selection algorithm.
During evolution of classification rules, GP automatically selects some genes
from a pool of several thousand genes; this is advantageous because in most
other classification methods, we need two systems: a gene selection method
and a classifier, and the optimal tuning of all the parameters of these two

algorithms is sometimes difficult.

6.2 Genetic programming

Genetic programming (Koza, 1992) is an extension of the genetic algorithm (GA)
in which the genetic population consists of computer programs. The basic differ-
ence between genetic algorithm and genetic programming is the representation of
an individual in the genetic population. In GA, an individual is usually a fixed-
length string of symbols whereas in GP, an individual is a variable length tree
composed of functions and variables. Thereby, the crossover and the mutation
operators are applied in different ways. In genc expressions based classification,
the individuals in a GP population are S-expressions of classification rules con-
sisting of functions and variables corresponding to the genes of a microarray data
set. Let the S-expression of a rule be represented by It.,,., and its output on each
sample is a real-valued number. In the typical implementation of a binary genetic
programming classifier, the class of a sample Y is predicted as follows:

‘A if Regpe(Y) > 0;

Class(Y) = {
That is, the rule for the problem is:
IF Respr(Y) > 0 THEN ‘A’ ELSE ‘B’

An example of R, is as follows:

(2% X2474 — X1265/X1223)
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where X2474, X1265 and X1223 correspond to the expression levels of genes at
indexes 2474, 1265 and 1223, respectively in a data set. Genetic programiing
breeds a population of individuals to solve the problem of classification by execut-

ing the following steps:

1. Generate initial population of random compositions of functions and termi-

nal sets (genes).

2. Execute each individual in the population on the training samples and assign

it a fitness.
3. While termination criteria is not met, do the following sub steps:

(a) Create new offspring by repeatedly applying the following three op-
erations to the parents that are selected from the population with a

probability based on fitness:

i. Reproduction: copy a selected parent to the new population with-
out any modification.

ii. Crossover: create two offspring for the new population by geneti-
cally recombining randomly chosen parts of the two selected par-
ents.

iii. Mutation: create an offspring for the new population by randomly

mutating a part of the selected parent.

(b) Execute each offspring in the new population on the training samples

and assign it a fitness.

There are many parameters like the population size, maximum depth of a
rule, crossover depth, crossover probability (p.), reproduction probability (the
probability that a selected parent will be copied to the new population without any
genetic operation) (p,), mutation probability (pm), etc. associated with genetic
programming. Detailed descriptions on genetic programming can be found in

(Koza, 1992; Banzhaf et al., 1998).



6.2.1 Components of an S-expression in GP

Each S-expression in a population consists of randomly chosen functions and genes.
For simplicity, each gene in the expression is represented by an ‘X’ followed by
the index number of the gene in the data set. For example, X1314 represents
the gene at index# 1314 of a data set. As functions, arithmetic and/or logical
functions can used for evolution of classification rules. During the coding of genetic
programming, we have to choose an appropriate function set depending on the
targeted output. If we want Boolean outputs (either TRUE or FALSE), we can
consider a set of functions consisting of either arithmetic and logical functions like
{+, -, * /, sqr, sqrt, exp, and, or, not, >, >=, <, <=, =} or only Boolean
functions like {and, or, not, zor, >, >=, <, <=, =}. If our targeted output
is real, we consider only arithmetic functions like {+, -, ¥, /, sqr, sqrt, In, exp,

power, sin, cos, tan}.

6.2.2 Generation of initial population

Initial population of individuals (S-expressions) is generated by random valid com-
position of functions and terminals. For any position in an S-expression, the choice
of a function or a terminal is random with the restriction on the size and the se-

mantic of a rule. The pseudocode of creating a rule in‘grow mode’ is as follows:

GenerateRule(Tree t, Integer depth)

If (depth < 1) Then return,;

Elself (depth = 1) Then
t.value=Select TerminalRandomly(terminal_set);
t.left=null; t.right=null;
return,;

Else
node=SelectNodeRandomly(terminal_set+function_set);
If (node is a terminal) Then

t.value=node;
t.left=null; t.right=null;

return;



Elself (node is a unary function) Then
t.value=node;
t.right=null;
t.left=new Tree();
GenerateRule(t.left,depth-1);
Else
t.value=node;
t.right=new Tree();
t.left=new Tree();
GenerateRule(t.left,depth-1);
GenerateRule(t.right,depth-1);

An example of generating a tree of S-expression of maximum depth 5 from
the function and terminal sets of {+, —, %, /, sqr} and {X1, X2, X3} is shown in
Fig. 6.1. First the multiplication function “*’ is randomly chosen. Since ‘*’ is a
binary function, it needs two arguments. In the next steps, the terminal ‘X1’ is
chosen as its left argument and ‘+’ as the second argument. This continues until

all the functions in the tree get their arguments.

6.2.3 Evaluation of a rule

The success of an evolutionary computation method is very much dependent on

the fitness function used to measure the goodness of an individual. For a binary

classification problem, the accuracy can be used as the raw fitness measure of a

rule and the standardized fitness can be calculated as follows:
1

1+ (#TS — #CCTS)

where #T'S and #CCTS are respectively the number of training samples, and

fitness(rule) = (6.2.2)

the number of correctly classified training samples by that rule.
Matthews (1975) proposed correlation between the prediction and the observed
reality as the measure of raw fitness of a predicting program. For a binary classi-
fication problem, the correlation (C') is defined as follows:
NNy — Ngp Ny,

; , (6.2.3)
\/(Nm + an)(]\vrm -+ Nf,,)(Nt,, + an)(th + ;Nf;,)

C:
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Figure 6.1: An example of creation of an S-expression in GP

where Ny,, Ny, Ng, and Ny, are the number of true positives, true negatives,
false positives and false negatives, respectively. When the denominator of equation
(6.2.3) is 0, C'is set to 0. The standardized fitness of a rule is calculated as follows:

fitness(rule) = }—%g (6.2.4)

Since C ranges between -1.0 and +1.0, the standardized fitness ranges between 0.0
and +1.0, the higher values being the better and 1.0 being the best. In Fig. 6.2,
we have shown how the fitness of a genetic programming rule is calculated. The
graphical plots of two fitness functions are shown in Fig. 6.3. It appears that
fitness calculation using (6.2.4) will be preferable to that by using (6.2.2).

The ultimate objective of a GP is to find a rule that can classify all the samples
correctly and thus has fitness=1.0. During execution of the S-expression of a rule
on a sample, we take precautions so that the two functions ‘sqrt’ and ‘/’ do not
produce undefined results. In the case of undefined results, we treat them as
£ =1, and z = 0ifz <0. Note that after adjustment, \/th‘)5 #
(Vz)* # z. For example, if z = —3, then /(x)? = 3 while (y/z)? = 0. Similarly,
zx(x/y) # (zxx)/y; if y =0, then z * (z/y) = 2z while (z xz)/y = 1.

&

follows:
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Figure 6.2: Fitness evaluation of a GP rule (R6)
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Fitness

- Training data of

GP population Training data selected genes
Rule | S-cxpression m st [s2 |s3 |sa S [ [:2 |ss [sa
Rl | X4*0+X10/SORTIXS) X1 094 | 0.67 | 0.0 | 091 ‘:o X6 009 | 044 | 0.08 | 023
R2 | XI+X6-X9/SOR(X1) x2 078 | 051 [ 098 | 004 X7 068 | 047 | 007 | D46
R3 | X10°SQRTIX-XTYX4 X3 002 | 031 [ 047|007 X9 043 | 076 | 049 | 002
R4 | SQR(X3-XS)"(X9/X5) X4 0.14 | 071 | 094 | 010
RS | X3*X9+X10-SQRT(XS) X5 08% | 039 | 092 | 001 ﬂ
R6 | SQRT{X6-X9VSQR(XT) [ > [ xo 009 | 044 | 008 | 023
R7 | (XI/X6YSQRT(X10+X4) X7 | ass | 047 | 007 | 046 Execute R6 on
RE | XS-X3+SQRTISQRTIXIN X8 037 | 058 | 048 | 048 samples S1, 52, 83,
R9 | XT*X9-X10°X3+X3*X8 X9 053 | 076 | 049 | 022 54 and count number
RI0 | X3"X4'SQRT(X1-XS) X10 | 009 | 041 | 06s | 087 of TP, TN, FP, FN

4

Figure 6.2: Fitness evaluation of a GP rule (R6)

Calculate fitness '

+ Correlation ¥ Normal method
method
1 ¥ 5 2 i i e
| ! ! : . et AT
] 5 : & B 88
08 = . % - ~ - ‘;.- e i_‘.* ...... :. ....... ;,. .._.;
L4 ‘ i | ;:

0.6 " ......................... > 9 J T. -7 :

1 : : ' ; ; ; i :
051 e R g b
P R W v v i ’!. WA S

; 5 i ; ' : | v
0:3 e e SR et . ’ 2ot BT TR AL R R SN I
: ; ‘ ! : i v
02 4= .' ’ ....................................... = IR e 0 PR A TREIEEs e ok gy
I . v
s * . : 5 v W
0‘1 eouyto il ..,;._.._. L .‘...'....'..."._ s At il Fa -
v ¥ : PRI SRRy U SR D e Ty : ) :
0 ¢ S SR W AR by A 4 + : SRR DERES L=y
0 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of correct predictions

~ Figure 6.3: Graphical plots of two fitness functions

73




6.2.4 Offspring generation through crossover and muta-
tion

Since the population size is usually very large for the task of classification of
gene expression data, the greedy-over selection method (Koza, 1992) is applied to
select two parents (individuals) for branch-type crossover. Then two offspring are
generated by exchanging randomly chosen parts of the selected parents. Usually,
a subtree of the first parent is chosen randomly. Then in the second parent, a
subtree is randomly chosen with the restriction that when it is exchanged with
the chosen subtree of the first parent, their exchanges will generate two valid trees
of proper depth. Let us give an example of generating two offspring through
crossover. Suppose two trees of two selected parents in preorder traversal format
are (+ X1 (* X3 X2)) and (/ (+ X1 X3) (- X2 X1)), and the maximum allowable
depth of a tree is 3. Suppose the selected part in the first parent is the terminal
node X3, and that in the second parent is the subtree containing (+ X1 X3).
After exchanging these two parts, we get two offspring as (+ X1 (* (+ X1 X3)
X2)) and (/ X3 (- X2 X1)). The first offspring has depth 4 (see Fig. 6.4), which
is not allowed. Therefore, this crossover will not be actually executed. Instead, if
the crossover point in the first parent is the terminal node X1, this crossover will
produce two valid offspring: (+ (+ X1 X3) (* X3 X2)) and (/ X1 (- X2 X1)).
For mutation, we have used point mutation (Banzhaf et al., 1998). In it, a
node from the tree of the selected parent is randomly chosen. If the node is a
function, it is replaced with another function of the same type; if it is a terminal,
it is replaced with another terminal. After the mutation operation, the depth of
the tree remains the same; however, after the crossover operation, the depths of

the trees may change.

6.2.5 Evolution of rules for multiclass classification

By a single rule, we can classify data into two groups. For multiclass data, we need

to develop multiple rules for classification. There are two widely used techniques
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Figure 6.4: An example of crossover in genetic programming

for classification of multi-type data: one-vs-one and one-vs-rest methods.

In one-vs-one method, if there are ¢ classes in the data, ¢(c — 1)/2 rules are
developed. Each rule;; is evolved using the training data from two classes (i, 7),
and the class of a test sample is predicted by ‘winner-takes-all’ voting strategy. If
the rule says that the test sample is in class i, the vote for the ith class is increased
by one, else the vote for jth class is increased by one. Then the test sample is
predicted to be in the class that has the highest votes.

In one-vs-rest strategy, only ¢ rules are developed by ¢ GP runs—one rule
for each class. During evolution of a rule i, the samples of class i are treated
as positive; other samples as negative. In this casé, the measures: true positive
(TP), true negative (TN), false positive (FP) and false negative (FN) for the fitness
calculation using equation (6.2.4) of rule i are determined as follows:

IF (O(Y) > 0) AND (CLASS(Y)=i) THEN TP;
IF (O(Y) < 0) AND (CLASS(Y)# i) THEN TN;

IF (O(Y) > 0) AND (CLASS(Y)# i) THEN FP;
IF (O(Y) < 0) AND (CLASS(Y)=i) THEN FN;
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Figure 6.5: One-vs-rest approach for evolution of rules for multi-class classification

where O(Y) is the output of the S-expression of rule 7 on a test sample Y. Af-
terwards, the rules are applied to the training and test samples to get generalized
accuracy on them. If a GP is trained well, only one rule will fit a sample. If more
than one rule fits a sample, the class is predicted depending on the outputs of the
rules. If the outputs of the rules are real values, the class of a sample is predicted
to be the class that has the highest value of its rule. If two or more rules have
the same value or outputs are boolean values, the sample gets the label of the
class that has the highest number of samples in the training data. The intuition
behind this is that the class having maximum number of training samples should
always get priority. If none of the rules fits a sample, the sample is treated as mis-
classified (an error). An example of one-vs-rest approach for evolution of genetic

programming rules for classification of multi-category samples is given in Fig. 6.5.

6.3 Related works with genetic programming

In the past, genetic programming has been used for classification of real and arti-
ficial data containing smaller number of attributes (Muni et al., 2004; Tan et al.,
2002; Chien et al., 2002; Falco et al., 2002). Recently, it has been applied to
analysis of microarray data sets containing huge number of genes (Moore et al.,
2002; Hong and Cho, 2004; Driscoll et al., 2003; Langdon and Buxton, 2004). In
(Hong and Cho, 2004), the authors have applied GP on the lymphoma data set
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(Alizadeh et al., 2000) after selecting some predictive genes with signal-to-noise
ratio. In (Langdon and Buxton, 2004), the authors have used GP to select some
predictive genes from central nervous system embryonal tumors data (Pomeroy
et al., 2002) using leave-one-out-cross-validation (LOOCYV) technique on all the
available 60 samples. In (Driscoll et al., 2003), the authors have applied genetic
programming to evolve multiple classification rules to classify multi-type samples
of small round blue-cell tumors (SRBCTs) (Khan et al., 2001); they have used
weighted average of false positive and false negative misclassifications as the mea-
sure of goodness of a set of rules, the truth table method to combine multiple rules

into a single classification rule.

6.4 Evaluation of genetic programming classifier

We applied genetic programming to the classification of four microarray data sets
of binary- and multi-type tumors. The data sets include brain cancer (Nutt et al.,
2003), prostate cancer (Singh et al., 2002), small round blue-cell tumors (SRBCTs)
(Khan et al., 2001), and lung carcinoma (Bhattacharjee et al., 2001) data. The
numbers of training and test samples of brain cancer, prostate cancer, SRBCTSs,
and lung carcinoma are (21, 29), (51, 51), (63,25) and (103,100), respectively. This
split of each data set was fixed during the experiments. The settings of different
GP parameters are shown in Table 6.1.

To compare the classification accuracy of genetic programming with the clas-
sification accuracy of evolutionary and non-evolutionary methods, we applied
the kNN (k=11) classifier to the data sets after selecting some discriminative
genes with signal-to-noise ratio and with RPMBGA (Chap. 5). For brain and
prostate cancers data, we performed 20 experiments with the kNN classifier us-
ing 5,10,15,...,100 genes selected by signal-to-noise ratio (SNR). Similarly, for
SRBCTSs and lung carcinoma data, we performed 20 experiments with the kNN
classifier using 10,20, 30,...,200 genes selected by SNR. We use the notation
‘kNN+SNR’ and ‘kNN+RPMBGA’ to denote the application of the kNN clas-
sifier on the expression values of the genes selected by SNR and by RPMBGA,
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Table 6.1: Typical GP parameter settings

Parameter Setting
Population size 4000
Maximum number of nodes in a GP tree | 100

Function set

Maximum initial depth

Initial population generation method
Fitness evaluation

Selection method for crossover

Maximum number of generations per run
Maximum crossover depth

Reproduction probability

Crossover probability

Mutation probability

{+,-, % /. SQR, SQRT}
6
Ramped half-and-half
Eq. (6.2.2)

Greedy-over (Koza, 1992)
100

7

0.1

0.9

0.1

fitness=1.0 or maximum
number of generations
Elitism (elite size=1)

Termination criteria

Regeneration type

respectively.

For each data set and each type of experiment, we have investigated the bio-
logical significance of all the genes sclected by the respective method in 20 runs
(sets of runs). Some of the genes that are potential biomarkers of the cancers
being studied here or more frequently occur in tumorigenesis are described in this
chapter. During description of biological significance of a gene, we have used the
format ‘Geneld (GeneName) [Accession]” where Geneld is the feature# or index
(if feature# is not available) of the gene in the data set, GeneName is the official
name of the gene and Accession is the GenBank reference for the gene. However,

if a gene is referred somewhere before, we have used only the real name of that

gene.

6.4.1 Results

We performed experiments on the data divided into training and test samples.

During the learning phase of genetic programming, only the training samples were
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Table 6.2: Training accuracies on the four microarray data sets

Data Set Genetic Programming  kNN+RPMBGA kNN+-SNR.
Best  Average Best  Average Best  Average
Brain cancer 100.0 100 £ 0f 100.0 100040 100.0  91.67 & 2.62
Prostate cancer  100.0  95.69 + 2.17 98.04 96.08 + 1.56 92.16 90.69 + 1.25
SRBCTs 100.0 100.0 + ot 100.0 99.21 £ 0.81 98.41 97.70 4 1.21

Lung carcinoma 99.03 96.26 + 2.96't  92.23  90.73 + 0.86 90.29 86.12 + 4.39

Table 6.3: Test accuracies on the four microarray data sets

Data Set Genetic Programming ~ kNN+RPMBGA kNN+SNR

Best  Average Best = Average Best  Average

Brain cancer 79.31 66.90 + 7.201%  75.86 59.14 £ 9.51 48.28 48.45 + 0.77
Prostate cancer 88.24 82.75+5.03  88.24 88.63+ 1.871 90.20 88.82 4+ 0.92¢
SRBCTs 100.0 80.40 +8.20"" 80.0 72.0+5.19  76.0 74.40 +4.57
Lung carcinoma 87.0  80.95+4.29 920 89.60 +3.03' 94.0 92.0 4 2.75¢

used, and the test samples were totally isolated from the training samples. We
also performed experiments using the kNN classifier after selection of genes using
signal-to-noise ratio and using RPMBGA as described before.

In tables 6.2 and 6.3, the training and test accuracies of different algorithms on
four microarray data sets are summarized; in table 6.4, the descriptions of some
of the more frequently occurring genes in the best 20 rules (sets of rules) of 20
independent runs (for SRBCT's and lung carcinoma, 80 and 100 runs, respectively)
are presented. Since the test set is a blind set during learning of a classifier, we
define the best test accuracy as the highest accuracy on the test data correspond-
ing to the highest training accuracy. For example, if two gene subsets or rules
both produce 100% accuracy on training data but get 87 and 90% accuracy, re-
spectively, on test data, the best training and test accuracies would be 100 and
90%, respectively. The significantly higher average accuracy (at 5% level of t-test)
of GP and kNN+RPMBGA is indicated by a superscript ‘1’ while that of GP and
kNN+SNR is indicated by a superscript ‘1’ in the tables.

In terms of training and test accuracies, GP is superior to the other two
methods on brain cancer and SRBCTs data. On prostate cancer data, though

GP obtains significantly higher training accuracy than kNN+SNR, it obtains
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significantly lower test accuracy than the other two methods (kKNN+SNR and
kNN+RPMBGA). On prostate cancer data, GP only gets better training accuracy
than kKNN+SNR but it gets significantly lower test accuracy than other two meth-
ods. On lung carcinoma data, GP obtains significantly higher training accuracy
than other two methods but it gets significantly lower test accuracy than other two
methods. On lung carcinoma data, KNN+SNR underfits (training accuracy <test
accuracy) the training data. The summary of the different evolved best rules by
GP and the best gene subset selected by SNR or RPMBGA is given below.

For brain cancer data, we got 20 rules that are able to classify all the 21 training
samples correctly but they fail to classify the 29 test samples 100% accurately. The

best rule found by GP is as follows:

o IF (((245.at)?—+/32809_at*(38699_at — (35915_at —37308_at)?))=((245_at )2 —
(32275_at)? — /38398 at + 35275.at)) > 0 THEN ‘AOD’ ELSE ‘GB’.

This rule can classify all the samples except the six test samples: 35, 40,
41, 42, 46 and 47. The two genes 32275.at (SLPI) [NM_003064] and 38398_at
(MADD) [NM_003682] of this best rule have roles in cancer diseases. SLPI regu-
lates cancer development (Devoogdt et al., 2004) while MADD suppresses tumor
cell survival and enhances susceptibility to apoptosis and cancer therapy (Efi-
mova et al., 2004). The more frequently occurring genes in 20 rules are given
in Table 6.4. Among these genes, 226_.at (PRKARIA)[NM_002734] is a tumor-
suppressor gene for sporadic thyroid cancer (Sandrini et al., 2002), and 41753_at
(ACTN4) [NM.004924] promotes tumorigenicity and regulates cell motility of hu-
man lung carcinoma (Menez et al., 2004). However, the relationships of these
genes with brain cancer are yet unknown. Using kNN with signal-to-noise ratio,
we got the best 20-gene subset that can classify training and test samples, re-
spectively, 100 and 48.28% accurately. The kNN classifier with RPMBGA got
an 8-gene subset that produces the best 100 and 75.86% training and test ac-
curacies, respectively. Some of the more frequently occurring genes in the 20
best gene-subsets selected by RPMBGA with the kNN classifier in 20 runs are
33619.at (RPS13) [NM_001017], 32272_at (K-ALPHA-1) [NM_006082], 34091 s_at
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Table 6.4: Descriptions of the genes more frequently selected during training and
test accuracy estimation on the microarray data sets

Data set Accession# Gene description Freq
NM_015853 LOC51035: unknown protein LOC51035 3
NM_002734 PRKARIA: Human cAMP-dependent
protein kinase type I-alpha subunit 2
Brain NM_006703 NUDTS: nudix (nucleoside diphosphate
cancer linked moiety X)-typeé motif 3 2
NM_004924 ACTN4: actinin, alpha 4 2
NM_002086 GRB2: growth factor receptor-bound
protein 2 2
NM_006159 NELL2: NEL-like 2 (chicken) 9
NM_003039 SLC2A5: solute carrier family 2(facilitated
glucose/fructose transporter), member 5 8
Prostate NM_002899 RBP1: retinol binding protein 1, cellular 7
cancer NM_002825 PTN: pleiotrophin (heparin binding growth
factor 8, neurite growth-promoting factor 1) 6
NM_015101 GLT25D2: glycosyltransferase 25 domain
containing 2 6
NM_000894 LHB: luteinizing hormone beta polypeptide 5
NM.014350 TNFAIPS: tumor necrosis {actor, alpha-
induced protein 8 5
NM_001792 CDH2: cadherin 2, type 1, N-cadherin
{neuronal) 11
ESTs 10
SRBCTs  NM._002011 FGFRA4: fibroblast growth factor receptor 4 8
NM_006765 TUSC3:tumor suppressor candidate 3 8
NM_002402 MEST: mesoderm specific transcript
homolog (mouse) 7
NM.003463 PTP4A1: protein tyrosine phosphatase type
IVA, member 1 25
NM_001723 DST: dystonin i4
NM_003665 FCN3: ficolin (collagen/fibrinogen domain
containing) 3 (Hakata antigen) 13
Lung NM_001024847 TGFBR2: transforming growth factor,
carcinoma beta receptor II (70/80kDa) 11
NM_004787 SLIT2: slit homolog 2 (Drosophila) 11
NM_003617 RGS5: regulator of G-protein signalling 5 10
NM_003278 CLEC3DB: C-type lectin domain family 3,
member B 10
NM_001336 CTSZ: cathepsin Z 8




(VIM) [NM_003380] and 327_f_at (RPS20) [NM.001023|. The genes RPS13, VIM
and RPS20 are also included in the best gene-subset found by SNR with kNN.
However, none of these genes are known to be involved in brain cancer.

For prostate cancer data, we got only two rules that can classify all the 51
training samples accurately; however, they are not able to classify test samples
100% correctly. The best rule that can classify 45 test samples accurately is as

follows:

o IF (1662_r_at/((4%32242_at)/(37639.at — 34811 _at + 32252_at) + 32242 _at) —
2075_s_at + 37639_at — 35642_at — 34811_at + 32252_at — 2 % 32242_at) > 0
THEN ‘PT’ ELSE ‘NL".

This rule fails to correctly classify 6 prostate tumor test samples: 64, 68, 82, 84,
90, 95. Interestingly, this rule can classify all the normal samples correctly. Among
the genes in this best rule, the gene 37639_at (HPN) [NM_002151] is functionally
linked to hepatocyte growth factor/MET pathway and thus may contribute to
prostate cancer progression (Kirchhofer et al., 2005). Among the most frequently
occurring genes in the best 20 rules of 20 runs, 34820_at (PTN) [NM_002825] acts
as an important regulator of diverse biological activities in human prostate cancer
cells (Hatziapostolou et al., 2005), 33243_at (TNFAIP8) [NM_014350] is an onco-
genic factor in cancer cells (Kumar et al., 2004), and 697_f_at (LHB) [NM_000894]
is a weak risk factor for prostate cancer (Elkins et al., 2003). Using kNN with
signal-to-noise ratio, we got the best 15-gene subset that can classify training
and test samples, respectively, 92.16 and 90.20% accurately. The kNN classi-
fier with RPMBGA obtained an 8-gene subset that produces the best 98.04 and
88.28% training and test accuracies, respectively. Some of the more frequently
occurring genes in the 20 best gene-subsets selected by RPMBGA with the kNN
classifier in 20 runs are 38406f_at (a089h09.x1 Homo sapiens ¢cDNA) [A1207842],
36638_at (CTGF) [NM_001901], 769_s_at (ANXA2) [NM_001002857], 216_at (PT-
GDS) [NM_000954] and 31444 s_at (ANXA2P3) [NR.001446]. Out of these genes,
only ANXA2 has a mechanistic and regulatory role in prostate cancer progression

(Banerjee et al., 2003). However, this gene is not included in the best gene-subset
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selected by SNR with the kNN classifier.

SRBCTs data set contains four types of samples. In (Khan et al, 2001),
the authors used principal component analysis (PCA) (Jolliffe, 2002) and neural
networks for classification of the four types of samples and got 100% accuracy on
training and test data using a subset of 10 genes. Using genetic programming, we
also got a set of four rules that can classify all the samples 100% accurately. The

best set of four rules is as follows:
e IF (X1319 — X2050 — (X1640)%) > 0 THEN ‘EWS".
o IF ((X123)? - /(X269)) > 0 THEN ‘BL".
o IF ((X1311+4 X416)*(X2136+ X651) — (X262 + X842)%) > 0 THEN ‘NB’.
o IF (X1955 — X131 + X129 — (v X339/X1955)) > 0 THEN ‘RMS’.

Two genes X262 (BCL7B) [NM_001707] and X1955 (FGFR4) [NM_002011] of
these rules are associated with cancer. BCL7B encodes the BCL7A protein that is
known to be directly involved in a three-way gene translocation in a Burkitt lym-
phoma (BL) cell line (Entrez Gene, 2006). FGFR4 is one of the most frequently
selected genes by different methods and is overexpressed in gynecological tumor
samples, suggesting a role in breast and ovarian tumorigenesis (Jaakkola et al.,
1993). Due to its moderate to strong cytoplasmic immunostaining in all RMS
samples, it may be a possible bio-marker for RMS (Khan et al., 2001). Among the
other more frequently occurring genes, X715 (TUSC3) [NM_006765] is a tumor
suppressor gene and it is expressed in most nonlymphoid human tissues including
prostate, lung, liver, and colon (Entrez Gene, 2006); X1911 (MEST) [NM_002402]
encodes a member of the alpha/beta hydrolase fold family, and the loss of im-
printing of this gene is related to tumorigenesis and malignant transformation
(Nakanishi et al., 2004). Using kNN with signal-to-noise ratio, we got the best
30-gene subset that can classify training and test samples, respectively, 98.41 and
76% accurately. The kNN classifier with RPMBGA got a 71-gene subset that pro-
duces the best 100 and 80% training and test accuracies, respectively. The best

gene subsets selected by these two methods also contain the gene FGFR4. Some
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of the other more frequently occurring genes in 20 best gene-subsets selected by
RPMBGA with the kNN classifier in 20 runs are X545 (CD99) [NM_002414], X246
(CAV1) [NM_001753], X509 (IGF2) [NM_000612], and X153 (RCV1) [NM_002903].
Of these genes, CAV1 and RCV1 are of biological interest because CAV1 inhibits
breast cancer growth and metastasis (Sloan et al.,, 2004) while RCV1 may be
the antigen responsible for cancer-associated retinopathy (Ohguro and Nakazawa,
2002).

The lung carcinoma data contains five category of samples. For this data set,
we did not find any set of rules that can classify all the training and test samples
100% accurately. The best set of five rules can classify 102 training and 87 test
samples accurately (the training and test accuracies are 99.03 and 87%, respec-
tively). We refrain from providing the set of rules here because the rules for ‘AD’
and ‘SQ’ are very complex to understand the quantitative relationships among the
genes. Among the more frequently occurring genes in the best 20 sets of five rules,
843_at (PTP4A1) [NM_003463], 39634.at (SLIT2) [NM_004787|, and 32514_s_at
(CTSZ) [NM_001336] are related with cancer. PTP4A1 has a role in tumorigene-
sis because its overexpression in mammalian cells confers a transformed phenotype
(Entrez Gene, 2006); SLIT2 has tumor suppressor activity and is frequently in-
activated in lung and breast cancers (Dallol et al., 2002), and CTSZ is expressed
ubiquitously in cancer cell lines and primary tumors, and like other members of this
family may be involved in tumorigenesis (Entrez Gene, 2006). Using kNN with
signal-to-noise ratio, we got the best 130-gene subset that can classify training
and test samples, respectively, 90.29 and 94% accurately. The kNN classifier with
RPMBGA got a 9-gene subset that produces the best 92.23 and 92% training and
test accuracies, respectively. Some of the more frequently occurring genes selected
by kNN with RPMBGA in the best 20 subsets are 613_at (KRT5) [NM_000424],
36105.at (CEACAMS6) [NM_002483], 700s_at (MUC1) [NM_001018016], 31950_at
(PABPC1) [NM_002568], and 770.at (GPX3) [NM_002084]. Out of these genes,
MUCT1 allele is associated with susceptibility to lung adenocarcinoma and poor

prognosis (Mitsuta et al., 2005).
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6.5 Summary

In this chapter, we investigated the applicability of genetic programming for classi-
fication of binary- and multi-type tumor data. We performed different experiments
with GP, and with the widely used kNN classifier after selection of some genes with
signal-to-noise ratio and RPMBGA. We found that GP can evolve simple arith-
metic classification rules of gene expressions that can classify patients’ samples
with encouraging accuracy. In two cases, the results of GP are better than those
of other two methods. However, the potential challenge for genetic programming
is that it has to search two large spaces of functions and genes simultaneously
to find an optimal solution. Therefore, the proper choice of function set, genetic
operators, and the depth of a rule is very important in applying GP to classifica-
tion of microarray data because increasing the depth of a rule and the number of
functions may increase the complexity of the rules with little or no improvement

in classification accuracy.





