Chapter 7

Majority Voting Genetic
Programming Classifier

7.1 Introduction

In the previous chapter, we have applied genetic programming to analyze microar-
ray gene expression data and found that it suffers from over-fitting. The potential
challenge for genetic programming is that it has to search two large spaces of
functions and genes simultaneously to find an optimal solution. In most cases, the
evolved single rules or sets of rules produce very poor test accuracies. To overcome
this limitation of genetic programming, we propose a majority voting technique
for the prediction of the class of a test sample. We call this method majority
voting genetic programming classifier (MVGPC). The motivation behind this is
that a group of rules can be more accurate than the best member of the group
(Kuncheva and Whitaker, 2003). In its typical implementation, we evolve multiple
rules in different GP runs, apply them one by one to a test sample and count their
votes in favor of a particular class. Then the sample is assigned to the class that
gets the highest number of votes in favor of it. However, the success of majority
voting depends on the number of rules in a voting group. Here we investigate the
number of rules in a majority voting group that produces the best results.

In this chapter, we apply MVGPC to four microarray data sets, including two
multi-category data sets, to demonstrate the effectiveness of our proposed method.
We perform different kinds of experiments on the data sets and analyze the evolved

rules.
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Figure 7.1: Steps in classification of gene expression data with MVGPC

7.2 Class prediction through majority voting

In this section, we describe our majority voting genetic programming classifier in
detailed. The steps required for classification of gene expression data are shown
in Fig. 7.1.

7.2.1 Majority voting technique

Overfitting is a major concern in classification of gene expression data using ma-
chine learning techniques. Since the number of available training samples is very
small compared to huge number of genes and the number of samples per class is
not evenly distributed, a single rule or a single set of rules produces very poor test
accuracy. Due to the smaller number of training samples, most machine learning
techniques use leave-one-out-cross-validation (LOOCV) technique (Kohavi, 1995)
to calculate the training accuracy. In LOOCV, one sample from the training set
is excluded, and the rest of the training samples is used to build the classifier.

Then, the classifier is used to predict the class of the left out one, and this is
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repeated for each sample in the training set. The LOOCYV estimate of accuracy
is the overall number of correct classifications, divided by the number of samples
in the training set. Thereafter, the final classifier is built using all the training
samples, and the classes of the test samples are predicted one by one using that
classifier. Note here that the data corresponding to the selected genes remain the
same during learning of the classifier using the LOOCV technique. Conversely,
in genetic programming, different rules may evolve in different iterations of the
LOOCV technique, and therefore we cannot calculate the LOOCV accuracy of a
particular rule. Instead, in most cases, the training accuracy of a rule is calculated
by executing it on the whole training data in one pass. However, the single rules
or sets of rules evolved in this way produce very poor test accuracy.

Instead of a single rule or set of rules, we can produce multiple rules in multiple
GP runs and employ them to predict the labels of the test samples through ma-
jority voting. This majority voting technique is described here through examples.
Suppose we want to predict the binary labels (A or B) of test samples through
the votes of v single rules. For this task, we run GP v times to get v best rules.
If the output of the S-expression of a rule is positive on a test sample Y, the vote
in favor of class A is increased by one; otherwise, the vote in favor of class B is
increased by one. Then the label of Y is predicted to be the class that has the
higher number of votes.

However, for multi-category samples, the majority voting technique is applied
in a different way. If there are ¢ types of samples in the microarray data set, we
penerate a total of v * ¢ rules in v * ¢ GP runs—v rules for each type of samples.
During evolution of a rule for class i, we consider all the samples of type ¢ as
positive samples, and the remaining samples as negative samples. Thus, each rule
acts as a binary classifier. If the output of the S-expression of a rule for class i has
positive output on a test sample Y, the positive vote in favor of class 7 is increased
by one; otherwise, the negative vote against class i is increased by one. Then the

class of the test sample Y is predicted as follows:

Class(Y) = max{ry,r2,....7c} (7.2.1)
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where r; is the ratio of positive and negative votes for class ¢. If the number of
negative votes of class i is zero, r; is set to v. The test sample gets the label of
the the class that has the highest ratio of positive and negative votes. If two or
more ratios are the same, the class is determined by randomly picking one class
from the classes corresponding to the ratios. If all ratios are zero, the test sample
is treated as misclassified. Let us give an example (see Table 7.1). Suppose that
there are four classes (A, B, C, D) of samples in a microarray data set, and the
number of rules per voting group (v) is 5. If the number of positive and negative
votes for the classes are {0, 3, 4, 4} and {5, 2, 1, 1}, respectively, the predicted

label of the test sample will be either C or D (should be randomly chosen).

7.2.2 Dependency of MVGPC on the performance of

single rules

The performance of MVGPC is very dependent on the performance of single rules.
When all the rules in the ensemble of MVGPC is very poor, MVGPC too performs
poorly. Here we derive the probability that MVGPC is no better than single rules
for binary classification.

Suppose that the number of samples in the test subset is m and the number
of rules per voting group in MVGPC is v (v is an odd number). Let p be the
probability that a single rule makes a false prediction. (For simplicity, we have
assumed the false prediction rate by each rule is same).

For binary classification using majority voting, a test sample is misclassified if
more than |§] rules make false predictions. Therefore, the probability of a test
sample being misclassified by majority voting is

v
e= Y LCp(1l-p"". (7.2.2)
=[%]
If p < 0.5, the probability of misclassification by majority voting will be less than
p , i.e., majority voting will be better than a single rule.
For m test samples, the expected number of false predictions by a single rule

will be [mp]. So, the probability that MVGPC will make false predictions equal



Table 7.1: Votes of different rules in the example of MVGPC

Category S-expression of rule Output: S(Y) | +votes | -vote
St=X IX o~ XX . -56 V
SA=X ot X = X2 VX -40 v
A ShmX X =X o -100 )
Sit= Xl (VX 5= X g9) -89 v
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Figure 7.2: Probability that MVGPC will be worse than a single rule

to [mp] or more, i.e., the probability that MVGPC is not better than a single rule
is m
P(Total Errors > [mp]) = mCie? (1 —e)™™ (7.2.3)
j=[mp]
For a particular v and m, there is a cut off value for p upto which MVGPC will be
better than single rules, i.e., P(Total Errors > [mp]) will be zero. As we increase
v, MVGPC performs better for a larger cut off value of p but that value is less
than 0.5. Therefore, when p < 0.5, the test accuracy of MVGPC with sufficient
number of diverse rules in the voting group will be better than that of a single
rule.
In Fig. 7.2, we have shown the graphical plots of the probability under m = 51
and different values of v. As we increase v, the cut off value for p increases.

Interestingly, the performance of MVGPC with 27 and 51 rules per voting group

are almost identical.
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7.2.3 Optimal number of rules for MVGPC

The success of majority voting depends on the number of members in a voting
group (ensemble size). Ensemble containing very smaller number of genetic pro-
gramming rules may be not strong enough to predict cancer classes with higher
accuracy; similarly, ensemble containing many rules may not be an optimal choice
because some rules may be redundant and may either not contribute to higher
accuracy or affect negatively. From the empirical studies, we have found that
for a data set containing smaller number of training samples, the best results are
obtained when the number of members in a voting group is equal to the number
of training samples. However, for a data set containing many training samples,
generation of all the rules may not be feasible; smaller number of rules may be

sufficient. Our hypothesis about optimal number of rules is as follows:
1. Binary classification:
e If the number of training samples is smaller:

Number of rules in the ensemble=Number of training samples.
(7.2.4)

e If the number of training samples is higher:

» o [ [N/2] If [N/2] is odd,;
Number of rules in the ensemble= { (N/2] +1 If [N/2] is even

(7.2.5)
where N is the number of training samples.
2. Multi-class classification:
e If the number of training samples is smaller:
Number of rules per class=Number of training samples.  (7.2.6)

In this case, total number of rules in the ensemble is ¢N where ¢ and

N are the number of classes and the number of training samples.
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o If the number of training samples is higher, the total number of rules in
the ensemble should be approximately equal to the number of training
samples.

‘ N/c] If [N/c] is odd;
Number of rules per class= K ‘ . ' 2.
pet [N/c] +1 If [N/c] is even (7.2.7)

where N and ¢ are as above.

7.2.4 Majority voting with LOOCYV rules

We have already said that we cannot calculate the LOOCV accuracy of a particular
rule. However, MVGPC can be applied for the prediction of the label of a test
sample using the rules of LOOCV in the following way:

e Generate N(=number of training samples) rules in N GP runs.

e In each run 7, leave sample 4 for validation and use the remaining (N — 1)
samples as training data. If the evolved best rule can correctly classify the

left out one, add this best rule to the voting group.

e Apply majority voting on the test data using the members of the voting

group.

Note here that the number of members in a voting group may be smaller than N.

7.2.5 Difference between AdaBoost and MVGPC

Boosting is a general method for improving the accuracy of any given learning al-
gorithm (Schapire, 1999). The most widely known boosting algorithm is AdaBoost
(Freund and Schapire, 1997). AdaBoost calls a given weak or base classifier repeat-
edly in a series of rounds and maintains a distribution or set of weights over the
training set. Initially, all weights are set equally, but on each round, the weights
of incorrectly classified examples are increased so that the weak learner is forced
to focus on the hard examples in the training set. The final classifier is a weighted

majority vote of the weak classifiers. The AdaBoost algorithm is given below.
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Let x; = (xy, T2, . ... Tin) be the sample ¢ where z;;, is the gene expression
levels of gene £ in it and the label of this sample be y; € {0,1}. The training set S
is a collection of N labeled samples, i.e., S = {(x1,y1), (X2, ¥2), ..., (Xn,yn)}. Let
pf) represents the probability that the training sample ¢ is included in the training
set TR, at iteration t; note here that TR; C S. Let C be a genetic programming
classifier that returns a rule hy : x — {0, 1} using the samples TR; and T be the
maximum number of allowable iterations in AdaBoost. The steps in AdaBoost

are as follows:

1. Set t = 1.

Assign equal probability to each sample, i.e., péi) = 7{,« fori=1,2,...,N.

2. Pick N training samples with replacement using the probability distribution

p, to form T R;.
3. Apply C to the samples T'R(t) to get a rule hy : X — {0,1}.
4. Calculate error of hy: &, = }:i\;l Py = ha(x)].-
5. If e, > 0.5, backtrack to previous iteration (set t =1t — 1).
6. Calculate confidence level: o = 11In e,

7. Update probability distribution:

() rs( .
Py = p(‘)w;'( b if g = hu(x);
.,'. % - .
PR if g o ()

where Z, is a normalization factor so that Z:il pEiQI = 1.

8. t=t+1. If t < T, go to Step 2.

9. Predict the label of a sample x as follows:

1 fay >a;
hy(x) = { 0 otherwise

where a, = ZZ:I ahy(x) and o = 23;1 (1 = hy(x)).



95

1. Apply GP and get ht AdaBoost+GP
2. Calculate €t, ot
3. Update probability

Training & of weight
¢ GP rule Predict class
using weighted
Ensemble of GP rules majority voting

Ensemble of GP rules Predict class

using simple
ﬁ rule majority voting
Apply GP to
training data MVGPC

Figure 7.3: Class prediction by AdaBoost+GP and MVGPC

In our method, we treat all the training samples equally and evolve rules using
all the training samples in each GP run. That is, in each GP run, we are trying to
evolve a rule that will perfectly classify all the training samples whereas in each
run of AdaBoost, we trying to evolve a rule that will perfectly classify a subset
of training samples. That is why, we hypothesize that MVGPC would be a much
stronger classifier than AdaBoost. Since all rules of the majority voting are evolved
using all the training samples, their votes in prediction of the test labels are equally
weighted (a, = 1). The difference between MVGPC and AdaBoost+GP has been
shown by using Fig. 7.3.

7.3 Evaluation of MVGPC

To evaluate the performance of MVGPC, we used four microarray data sets; the
data sets include brain cancer (Nutt et al., 2003), prostate cancer (Singh ef al.,
2002), breast cancer (Hedenfalk et al., 2001), and lung carcinoma (Bhattachar-
jee et al., 2001) data sets. Unlike the fized split of data in all ezperiments in
Chaps. 5 and 6, the processed data set was randomly divided into two mutually
exclusive training and test subsets in each experiment of MVGPC. This is done to

show that MVGPC is not biased towards any fixed split of data.
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For larger data sets like the prostate cancer and the lung carcinoma data sets,
the ratio of training to test size was approximately 1:1. For smaller data sets
like the brain cancer and the breast cancer data sets, the ratio of training to
test size was approximately 2:1 as suggested by Dudoit et al. (2002). However,
during random split of a data set, precaution was taken so that the desired ratio
was maintained for each class of samples in the training and test subsets. If
precaution is not taken, samples of some classes may be absent in either training
or test subset, which in turns may cause larger over-fitting. The training and test
sizes of the brain cancer, prostate cancer, breast cancer and lung carcinoma data
sets were (34, 16), (51, 51), (16, 6), and (103, 100), respectively.

We used the same settings of different parameters as in Table 6.1 (Chap. 6)
except the maximum number of generations per run, and the fitness function. the
maximum number of generations per run was 50, while the fitness of a rule was
evaluated using equation (6.2.4). To describe a gene in texts, we have also used

the same notation as of previous chapter (Chap. 6).

7.3.1 Test accuracies on the data sets

We performed different types of experiments on the four microarray data sets using
different number of rules (v) per voting group. Each GP run in these experiments
used a different random seed to create the initial population, i.e., each run was
independent. Since the minimum number of members in a voting group should
be 3 to make a decision, we performed 20 experiments on each data set with
v = 3. Then for binary classification problems (brain cancer and prostate cancer
data sets), we performed experiments with v = 5, and for multi-class classification
problems (breast and lung carcinoma data sets), we performed experiments with
v = 3¢, where c is the number of classes in the data set. Finally, we performed ex-
periments on the brain cancer, prostate cancer, breast cancer and lung carcinoma
data sets with v=17, 27, 16, and 21, respectively as determined according to the
formulas in Subsection 7.2.3.

The experimental results on different data sets are presented in Figs. 7.4-7.7.
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In each figure, the majority voting accuracy is presented along with the average
accuracy of v single rules or sets of rules in the ensemble; the maximum and the
minimum accuracies obtained by those rules or sets of rules are indicated by the
corresponding error bars.

The summary of different experiments on the brain cancer data set with differ-
ent number of rules per voting group is presented in Fig. 7.4. From the figure, we
find that the majority voting accuracy is better than the corresponding average
accuracy in most cases. However, the best average test accuracy by MVGPC was
obtained with v = 17. In that case, out of 20 experiments, MVGPC obtained the
highest 87.50% test accuracy in only 5 experiments; in the remaining experiments,
it obtained either 81.25% or 75.0% test accuracy on the data set. However, nei-
ther MVGPC nor any single rule could classify all the test samples perfectly. Out
of 340 (=17%20) rules, though there were many perfect training rules that could
classify all the training samples correctly, only two of them could classify 15 out
of 16 test samples correctly.

Though the prostate cancer data set is a binary classification problem like the
brain cancer data set, the numbers of training and the test samples are greater
than those in the brain cancer data set; thus making it a more difficult binary clas-
sification problem than the brain cancer data set. On this data set, we performed
experiments with v=3, 5, and 27. Here the best test accuracies were obtained
when the number of rules in a voting group was equal 27. In that case, the high-
est test accuracy obtained by majority voting was 94.12%. Out of 540 (=27%20)
rules, we found 141 rules that individually could classify all the training samples
correctly; however, only one of these rules could classify 49 test samples out of 51
correctly.

The breast cancer data set contains three classes of samples (BRAC1, BRAC2
and sporadic) and is the smallest among the data sets considered in this paper with
only six test samples. On this data set, we performed three sets of 20 experiments
with v=3, 9, and 16. The results are shown in Fig. 7.6. In all cases, the majority
voting accuracy is much better than the average accuracy of the v sets of 3 rules.

The best test accuracies were obtained when the number of rules per class was
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Figure 7.4: Test accuracies on brain cancer data under different conditions. For
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imum accuracies are plotted on the graphs using error bars
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equal to the number of training samples, i.e., the number of rules per ensemble was
48 (=3*16). Out of 20 experiments, we got 100% test accuracy in 5 cases and in
the remaining cases, the test accuracy was 83.33%, 66.66% or 50%. Interestingly,
either or both of the two sporadic samples in the test subset were misclassified in
the 15 experiments where majority voting test accuracy was below 100%. However,
as individual sets of rules, we did not find any set of rules that could classify all
the test samples 100% accurately.

The lung carcinoma data set contains five classes of samples, and has 103
training samples and 100 test samples making it a more difficult problem than
the other three data sets. Since the minimum number of members in a voting
group should be 3, we performed experiments with v = 3. Then we performed
experiments with v = 15, which is the equal to the product of the number of types
of samples in the data set and the minimum number of required voting members.
Finally, we performed experiments with v = 21; in this case, the total number of
voting rules per experiment is 105 (=21*5), which is approximately equal to the
number of training samples in the data set. In Fig. 7.7, we have presented the
experimental results on lung carcinoma data. In each experiment, the majority
voting accuracy was much better than the average accuracy; it was even better
than the maximum accuracy of v sets of rules. Of the three types of experiments,
the best average test accuracies were obtained with v = 21. In this case, the
average, the maximum and the minimum test accuracies of majority voting were

95.50%, 99.0% and 94.0%, respectively.

7.3.2 More frequently occurring genes

We analyzed the classification rules that produced the best results stated before
to get the more frequently selected genes. In Table 7.2, we summarize those genes.
In the table, the official symbol (if any) and the name of a gene are given in the
format symbol: name under the column ‘Gene description’.

Out of 4434 genes, 2355 genes were included at least once in the 340 rules

of brain cancer data. Of these, the gene 40422_at (IGFBP2) [GenBank:X16302]
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Figure 7.7: Test accuracies on lung carcinoma data under different conditions.
For each experiment, in addition to the average accuracy, the maximum and the

minimum accuracies are plotted on the graphs using error bars
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Table 7.2: More frequently selected genes of the data sets

Data Set Id/Feature#  Accession# Gene description Freq.
40422 _at X16302 IGFBP2: insulin-like growth factor
binding protein 2, 36kDa 33
40840_at M80254 PPIF: peptidylprolyl isomerase I 26
Brain 36618_g_at X77956 ID1: inhibitor of DNA binding 1 25
cancer 41859.at NM_005715 UST: uronyl-2-sulfotransferase 25
34531 .at AF007139 Homo sapiens clone 23898
unknown mRNA, partial eds 23
41726.at 735307 ECE1: endothelin converting enzyme 1 14
41468 at M30894 Human T-cell receptor Ti rearranged
gamma-chain mRNA V-J-C
region, complete cds 126
Prostate 40282 s_at M84526 CFD: complement factor D (adipsin) 107
cancer 37639.at X07732 HPN: hepsin (transmembrane protease,
serine 1) 85
37366.at AL049969 Homo sapiens mRNA; ¢cDNA
DKFZp564A072 51
32598 at D83018 NELL2: NEL-like 2 (chicken) 49
X336 NM.005749 TOBI1: transducer of ERBB2, 1 18
Breast X1482 NM_001885 CRYAB: crystallin, alpha B 17
cancer X860 NM.002658 PLAU: plasminogen activator, urokinase 15
X809 NM_001826 CKS1B: CDC28 protein kinase
regulatory subunit 113 14
X1479 NM._053056 CCND1: c¢yclin D1 o 13
613_at NM_000424 KRT5: keratin 5(epidermolysis bullosa,
simplex Dowling-Meara/Kobner/
Weber-Cockayne types) 142
33904 .at NM_001306 CLDN3: claudin 3 124
Lung 31791.at NM_003722 TP73L: tumor protein p73-like 119
carcinoma  1802.s_at NM.001005862 ERBB2: neurcblastoma/glioblastoma
derived oncogene homolog 97
35276.at NM.001305 CLDN4: claudin 4 89
39990 _at NM_002202 ISL1: ISL1 transcription factor, LIM
/homeodomain, (islet-1) 76
37741 at NM_006907 PYCRI1: pyrroline-5-carboxylate

reductase 1 73
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was included the highest 33 times and is known to have been associated with
glioma progression in part by enhancing MMP-2 gene transcription and in turn
tumor cell invasion (Wang et al., 2003). Among the other more frequently selected
genes that are presented in the table, 41726.at (ECEL) [GenBank:Z35307] has a
role in limiting Abeta accumulation in the mouse brain (Eckman et al., 2003).
The relationships of other frequently occurring genes with brain cancer are yet
unknown.

In the case of prostate cancer data, 3096 genes out of 5966 were selected at
least once in the 540 classification rules. Of the five more frequently selected genes,
37639.at (HPN) [GenBank:X07732] is known to have roles in prostate cancer pro-
gression. HPN is functionally linked to hepatocyte growth factor/MET pathway,
which may contribute to prostate cancer progression (Kirchhofer et al., 2005).

In the 960 rules of breast cancer data, 3038 genes out of 3226 were selected
at least once. Some of these more frequently selected genes are shown in the
table. The genes X1482 (CRYAB) [GenBank:NM_001885], X860 (PLAU) [Gen-
Bank:NM_002658], X809 (CKS1B) [GenBank:NM_001826] and X1479 (CCND1)
[GenBank:NM_053056] are of biological interest because they are known to be
associated with breast cancer.

Among the more frequently occurring genes of lung carcinoma data, 31791_at
(TP73L) [GenBank:NM_003722] and 1802_s.at (ERBB2) [GenBank:NM_001005862]
are known to have some roles in lung cancer. TP73L is consistently expressed in
the squamous cell carcinoma in the lung, but non-consistently expressed in a sub-
set of adenocarcinomas and large cell carcinomas (Au et al., 2004); overexpression
of ERBB2 is associated with recurrent non-small cell lung cancer (Onn et al.,
2004).

However, very few of these more frequently selected genes are included in the
best single rules (or sets of rules) that individually produce the best test accuracies.
There may be two reasons for this phenomenon. First, the acquired classification
accuracies by these genes are reduced by the negative effects of irrelevant genes.
Second, the genes involved in the best rules or sets of rules are correlated and

associated with the cancer through their joint interactions; however, as single



genes they are not differentially expressed in normal and/or different types of
tumor samples. We need further studies in this regard to come to a concrete

conclusion.

7.3.3 Effects of scaling of the values on the classification

accuracy

We investigated the effects of the scaling on the classification accuracy by applying
MVGPC on the brain cancer and the prostate cancer data that are scaled by
taking base-10 logarithm on the values. (We avoided performing experiments on
the breast cancer and the lung carcinoma data because the breast cancer data
are already normalized while the lung carcinoma data set contains many 0s.)
In Figs. 7.8 and 7.9, we present the test accuracies on the brain cancer and the
prostate cancer data. Here also the majority voting accuracy in most cases is better
than the average accuracy of the rules in a voting group. Therefore, MVGPC will
produce higher test accuracies than single rules in most cases; it may not matter
whether the data are normalized or not. However, we did not find any statistically
significant differences (at 5% level of non-parametric, two tailed t-test) between

the average accuracies of MVGPC on scaled and non-scaled data.

7.3.4 Speed of convergence and computational time of

MVGPC

For a given population size, the speed of convergence to the optimum fitness in a
run depends on a number of factors including the training size and the complexity
of the data. For two binary classification problems of same training size and
same number of positive and negative samples, GP may progress to the optimum
fitness at different speeds; on the contrary, for two different training sizes, GP may
converge to the optimum in the same average number of generations. However, on

a given data set, it is expected that the average number of generations required
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Figure 7.8: Test accuracies on the brain cancer data that are normalized in base-10
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by GP to reach the optimum fitness will increase with the increasing training
size. For example, the average numbers of generations required by GP to produce
PTRs on prostate cancer data were 25.45 and 29.90 for training sizes of 51 and
68, respectively. During evolution of rules for multiclass classification, the speed
of convergence may follow not only the training size but also the complexity of
the positive samples in relative to other samples in the training subset in a run.
On lung carcinoma data, GP took on the average 30.87, 9.68, 3.35, 2.42, and 5.61
generations to produce a perfect training rule for AD, SQ, SCLC, COID and NL,
respectively. Interestingly, the average number of generations required by GP to
produce a PTR for COID class is smaller than that required by GP to produce
a PTR for SCLC class though the number of samples of COID class is higher
than that of SCLC class. This suggests that the COID samples are relatively
easy to separate from samples of other classes whereas samples of other classes
are not easily separable from one another. In Fig 7.10, we have illustrated this
by plotting the gene expression values of two typical genes 38032.at (X2744) and
39601 _at (X2289) across different samples of the lung carcinoma data set. Though
it is a typical case, we found many other linear GP rules containing two or three
genes that could perfect classify all the COID samples, which indicates that these
samples are easy to classify.

However, due to huge number of genes and different complexities of training
data, GP may not reach the optimal fitness in every run of an experiment. In the
worst case, the number of fitness evaluations per experiment will be P x G xv x ¢
where P is the population size, G is the maximum number of generations per
run, v is the number of rules per class, and ¢ is the number of rules needed for
classification of the data (for binary classification, ¢ = 1). MVGPC was encoded
in Java Programming Language and executed on machines each having Athlon 64
X2 4400+ processor, 2GB of RAM and running Scientific Linux OS. The average
computation time (CPU time) for an experiment on the brain cancer (v = 17),
prostate cancer (v = 27), breast cancer (v = 16), and lung carcinoma (v = 21)
data sets were 15411.48, 43282.62, 995.80, and 84663.96 seconds, respectively. As

expected, the execution time of each experiment was according to the complexity
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Figure 7.10: Plot of gene expressions of 38032_at (X2744) and 39601_at (X2289)
across different samples of lung carcinoma

of the data set; MVGPC took the longest time to produce the 105 rules in an
ensemble of lung carcinoma whereas it took the shortest time to produce the 48
rules in an ensemble of breast cancer.

However, if the dimensionality of the problem is reduced by applying a suitable
technique before applying MVGPC, the computation time may be reduced dras-
tically. In our future works, we want to investigate the performance of MVGPC

on the data of the more frequently selected genes.

7.3.5 Comparative test accuracies of different methods

The subsection 7.3.1 shows how MVGPC can be used to improve the test accu-
racies on the four data sets. In this subsection, we present the comparative test
accuracies on those data sets using different computational methods.

MVGPC is very much related with AdaBoost technique. To investigate whether
MVGPC is competitive with AdaBoost or not, we performed experiments with Ad-
aBoost using genetic programming as a weak classifier (denoted as AdaBoost+GP).
For binary classification, simple AdaBoost was implemented while for multi-class

classification, AdaBoost.M1 (Freund and Schapire, 1997) was implemented. For
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Table 7.3: Comparative test accuracies on the data sets

Method/Data set Brain Prostate Breast ~ Lung
MVGPC 80.31+£5.08  90.5942.07 79.17+16.11 95.5041.54
AdaBoost+GP 71.88+12.74 84.314£6.36 63.33£17.61 92.254 2.47
PTR/PSTR 67.90+10.86 79.21+6.67 32.24+18.23 75.554+5.66
kKNN+RPMBGA 67.50+10.26 84.41+£4.99 60.0£15.67  89.35+3.34
SVM+GA 56.25+0.0 51.37+£1.97 65.0+£23.51  76.801.51

Table 7.4: p-values in statistical tests of significance (MVGPC vs other method)
Method/Data set Brain Prostate DBreast Lung
AdaBoost+GP  6.08E-03 3.90E-05 2.80E-03 1.13E-05

PTR/PSTR 2.98E-12 2.21E-36 6.22E-36 06.54E-17
kKNN+RPMBGA 1.72E-06 1.01E-07 2.92E-04 6.31E-11
SVM+GA 7.71E-13 6.16E-15 2.06E-02 9.04E-14

each experiment using AdaBoost, the numbers of iterations for the brain cancer,
prostate cancer, breast cancer and lung carcinoma data sets were 17, 27, 16 and
21, respectively, which are the numbers of rules per voting group that obtained

the best average test accuracies using MVGPC above.

Definition 1 (Perfect training rule). For a binary classification problem, we
define a perfect training rule (PTR) as the classification rule of genetic program-
ming that can perfectly classify all the training samples in the data set and thus
has a fitness of 1.0. For a multiclass data set containing ¢ classes of samples, a
collection of ¢ PTRs—one PTR for each class of sample is defined as a perfect set

of training rules (PSTR).

Next, we analyzed the test accuracies obtained by the perfect training rules
(or the perfect set of training rules) of the genetic programming classifier. The
numbers of PTRs/PSTRs among the majority voting rules that produced the best
average test accuracies on the brain cancer, prostate cancer, breast cancer, and

lung carcinoma data were 192, 141, 320, and 31, respectively.
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To support the claim that MVGPC is superior to other techniques, we per-
formed additional experiments using the kNN classifier with RPMBGA (Chap. 5)
(denoted as kNN+RPMBGA), and SVM with GA (denoted as SVM+GA). To eval-
uate a gene subset of GA/RPMBGA, the classifier (SVM or kNN) was applied to
the data of the selected genes in an individual. We chose the SVM and the kNN
classifier because these methods are widely used by the bioinformatics community
for prediction of cancer class using gene expression data. We chose RPMBGA
and GA as gene selection algorithms because they are evolutionary computation
methods like GP and are intensively used in selection of informative genes. There-
fore, the comparison of MVGPC with these two techniques (kNN+RPMBGA and
SVM+GA) on the data sets is convincing.

For RPMBGA and GA, each individual was encoded as a binary string of 0’s
and 1’s, and the population size, offspring size, crossover and mutation probabil-
ities (for GA), maximum number of generations, and maximum number of runs
(=experiments in MVGPC) were the same as of MVGPC. For GA, we used uni-
form crossover to create offspring as the number of bits in an individual is huge.
Though initial population of both methods were randomly generated, we restricted
the the maximum number of genes selected in each individual of GA to 100 (=the
maximum number of nodes in a tree of rule of MVGPC) because without this
restriction, the fitness of GA did not improve over initial generation. The fitness
of a gene subset was evaluated using the same method used in Chap. 5. For kNN
with RPMBGA, we performed different experiments on the four data sets using
3, 5, and 7 nearest neighbor members in the kNN classifier. In terms of average
training and test accuracies, the best results were obtained on the brain cancer,
prostate cancer, breast cancer, and lung carcinoma data with & = 3, 3, 5, and
3, respectively. For SVM with GA, we used LIBSVM (Chang and Lin, 2001)
implementation of SVM with C=32, and v = 0.0078125.

In Table 7.3, the comparative test accuracies obtained by applying different
methods on the four data sets are summarized. The average test accuracies of

MVGPC on the data sets are better than those of other methods presented in



the table. To test whether the difference in average values are statistically signifi-
cant or not, we performed non-parametric t-tests (one tailed, two-sample unequal
variance) on the values using Microsoft Excel. The p-values returned by the ttest
function of Microsoft Excel are shown in Table 7.4. As the p-values are very
small, the average test accuracies of MVGPC are significantly higher (at 5% level

of non-parametric t-test) than those of other methods.

7.3.6 Overfitting on the data sets

Though MVGPC is much better than other methods presented in this chapter,
overfitting had occurred and 100% test accuracy had not been obtained on the data
sets except on the breast cancer data. The biggest overfitting can be observed on
the breast cancer and the brain cancer data set, which are very typical microarray
data sets. The test set of the brain data set contains non-classic gliomas raising
the possibility that the test data are diverged from the training data. Even using
all the data of brain cancer as the training data, we did not find any GP rule that
could classify all the samples 100% accurately, which shows the difficulty of the
classification of this data set. For breast cancer, the number of training samples is
very small, specially the number of sporadic samples in the training subset—four
training samples for two test samples. We found in our experiments that either
or both of the two sporadic test samples were misclassified in the 15 cases where
majority voting test accuracy was below 100%. However, by performing some
experiments with 5:1 ratio of training to test size of sporadic samples (training
size=17), we found the average majority voting test accuracy much improved. In
the case of the prostate cancer and the lung carcinoma data, the numbers of test
and training samples were almost equal. There is a high possibility that increasing

the number of training samples may result in higher test accuracy.
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7.4 Discussion

In a microarray data set, the number of genes is huge compared to the number
of training samples and many of these genes are redundant. These redundant
genes sometimes affect negatively the classification accuracy acquired by other
relevant genes; sometimes they have no effect on the acquired accuracy. Moreover,
the numbers of training samples of different categories are not evenly distributed;
some classes have more samples than some other classes. In most cases, it has been
observed that a perfect training rule having more supportive training data causes
less overfitting than a perfect training rule having smaller number of training
samples. It sometimes may happen that the training accuracy of a classifier is
100% but its accuracy on test data is 0%. In our experiments, we observed this
phenomenon on the breast cancer data.

Usually, the perfect training rules evolved by using a machine learning approach
are applied to predict the labels of test samples. In our comparative results, we
have shown that these single PTRs/PSTRs produce very poor test accuracies;
whereas, using an ensemble technique like MVGPC, these poor classification rules
produce much better test accuracies. Though AdaBoost is widely used as an
ensemble technique to improve the prediction rate of a weak classifier, we have
found that MVGPC may outperform AdaBoost in classification of gene expression
data.

However, the success of majority voting depends on the number of rules per
voting group and on the rate of false prediction (on test samples) by single rules. If
either the number of rules per voting group in majority voting is very small or the
rate of false prediction by all single rules is greater than or equal to 0.5, MVGPC
will be no better than single rules or sets of rules. Since the maximum number
of nodes in a GP tree is restricted to very small compared to the huge number of
genes in a data set, there is a high possibility that all the evolved GP rules in the
ensemble of MVGPC are different from one another. Therefore, when the number
of rules in the ensemble of MVGPC is sufficiently large, the probability of false

prediction rate of all the rules being 0.5 or more will be very low.
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Assuming that most of the rules in the majority voting have false prediction
rate below 0.5, the optimal number of rules should be determined based on the
training data. From our experiments, we have noticed that for a data set like breast
cancer containing smaller number of training samples, the best test accuracies may
be obtained when the number of members per voting group is equal to the number
of training samples. However, for a data set containing many training samples,
generation of all the rules may not be feasible; smaller number of rules may be
sufficient. For a larger data set like lung carcinoma, our hypothesis is that the total
number of rules should be approximately equal to the number of training samples.
For other data sets, the number of samples per voting group of MVGPC may be
determined using equations in Subsection 7.2.3. We need further experiments to

verify this hypothesis.

7.5 Summary

In this chapter, we introduce the majority voting technique for the prediction of
the class of a test sample by the rules of the genetic programming. By performing
experiments on four public cancer data sets including two multi-category data sets,
we have found that in almost all cases, the accuracy obtained with majority voting
is better than the average accuracy of single rules or sets of rules. Individually
those rules or sets of rules classify the test samples very poorly but as a group of
rules, they classify the samples very accurately.

To support our claim that MVGPC is competitive with other methods, we
did additional experiments with the state of the art methods in the classification
literature and found that the test accuracies obtained by MVGPC are superior
to those by other methods. We have also found that scaling does not affect the
higher accuracy of the MVGPC negatively. These evidences strongly suggest that
our proposed method is an appropriate method for the prediction of the labels of
test samples. Moreover, some of the more frequently occurred genes in the evolved
rules of MVGPC are the potential biomarkers of the types of cancers considered

in this chapter.



Chapter 8

Evaluation of MVGPC on
Non-Microarray Data

In the previous chapter, we have found that MVGPC obtains better test accu-
racy than other methods on microarray gene expression data, where the number
of genes is huge compared to the number of training samples. Moreover, we
performed MVGPC experiments with arithmetic functions. In this chapter, we
perform experiments on non-microarray data containing larger number of samples
compared to smaller number of attributes. We performed experiments on these
data sets with arithmetic and/or logical functions. The objective of this chapter is
to show whether MVGPC obtains competitive accuracy on non-microarray data

or not.

8.1 Non-microarray data sets

We downloaded two data sets: Wisconsin breast cancer and Monk’s problem data
from UCI machine learning (ML) repository (Newman et al., 1998) at http://

www.ics.uci.edu/~mlearn/MLRepository.html.

8.1.1 Wisconsin breast cancer data

Wisconsin diagnostic breast cancer data set is a collection of 569 samples described
by 30 numeric features. It is a binary classification problem (benign or malignant),

and contains 357 begin and 212 malignant samples.
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8.1.2 Monk’s problem

The Monk’s problem is a very simple binary classification problem consisting of
artificial data of 6 attributes. There are three Monk’s problem; we have used
Monk-1 and Monk-3 for our experiments. The Monk-1 problem consists of 124
training samples and 432 independent test samples. The target concept for this
problem is
IF ((X1=X2) OR (X5=1)) THEN 1 ELSE 0.

The Monk-3 problem has 122 training samples and 432 test samples. 5% noises
are added to the class labels of the training data; the six mislabeled samples in the
training subset are data.5, data_61, data_203, data_213, data-214, and data-391.

The target concept is

IF ((X5 =3 AND X4 = 1) OR (X5 /= 4 and X2 /= 3)) THEN 1 ELSE 0.

8.2 Results

We performed experiments on the two data sets with the settings of different
parameters as shown in Table 8.1. As functions, we considered two sets depending

on the types of attributes:
e Wisconsin breast cancer data:

— arithmetic functions: { +,-,*, /, SQR, SQRT} or
— arithmetic and logical functions: { +,-,*, /, SQR, SQRT, AND, OR,
NOT, =, <>, >, <, >=, <=};

e Monk’s problem:

— logical functions: {AND, OR, NOT, =, <>, >, <, >=, <=} or

— arithmetic and logical functions: { +,-.*, /, SQR, SQRT, AND, OR,
NOT, =, <>, >, <, >=, <=}.



Table 8.1: Values of different GP parameters

Parameter Value
Population size 4000
Max generations 50
Runs 20
Reproduction rate 0.1
Crossover rate 0.9
Mutation rate 0.1
Max nodes in a GP tree 100

Table 8.2: Accuracies of MVGPC and single rules on Wisconsin breast cancer data

Function Ensem- MVGPC Single rules

type ble size | Training Test Training Test

Arithmetic | 11 97.47+0.84 | 94.4941.36 | 96.3941.24 | 92.9641.89

and logical | 31 97.6340.83 | 95.04+1.13 | 96.26-+1.28 | 93.42+1.68

Arithmetic | 11 97.684+0.75 | 94.84+1.04 | 96.694:0.97 | 93.604+1.51
31 97.7240.72 | 95.37+0.95 | 96.58+0.97 | 93.74+1.66

On Wisconsin breast cancer data, we performed experiments with ensemble
size 11 and 31. Since this data set is not divided into training and test subsets,
we constructed those subsets by randomly splitting the data into 1:1 ratio in each
experiment. The training subset contained 179 benign and 106 malignant samples.
The accuracies obtained by MVGPC and single rules are shown in Table 8.2. All
the accuracies obtained with MVGPC are significantly better (at 5% level of t-
test) than those obtained with single rules. However, the accuracies obtained with
either ensemble size and function set did not change significantly from one other.
The most important six features of this data set are X8, X288, X10, X27, X7 and
X14.

For Monk’s problem, we performed experiments with ensemble size 3 and
11. On Monk-1 problem, both MVGPC and single rules got 100% training and
100%test accuracy in every run with either set of the functions and with either
size of ensemble. The most important features of this data set found by MVGPC

are X1, X2 and X5, which are consistent with the features in the target concept.
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Table 8.3: Accuracies of MVGPC and single rules on Monk-3 problem

Function Ensem- MVGPC Single rules

type ble size | Training Test Training Test

Arithmetic | 3 93.524 0.37 | 97.164+0.26 | 93.844+0.87 | 96.7241.66

and logical | 11 93.444+ 0.0 | 97.2240.0 | 94.024+0.85 97.1141.44

Logical 3 193.444 0.0 | 97.2240.0 | 93.46+0.11 | 97.194:0.24
11 93.4440.0 97.2240.0 | 93.4440.0 | 97.2240.0

On Monk-3 problem with six mislabeled classes, the performance of MVGPC
and single rules are shown in Table 8.3. In the experiments, slightly better ac-
curacies were obtained with the set of arithmetic and logical functions than with
the set of logical functions. Using the set of arithmetic and logical functions, only
25 rules out of 220 (=11*20) could classify all the test samples correctly, and 116
training samples correctly labeled. Two rules that classified 119 and 118 training
samples could classify respectively 406 and 410 test samples out of 432 correctly.
That is to say these two rules are not perfect classifiers. In summary, the overall
accuracies of MVGPC are not significantly different from the accuracies of single
GP rules. The most important features in the rules evolved by using the set of
logical functions are X2 and X5 while those in the rules evolved by using the set

of arithmetic and logical functions are X2, X4, and X5.

8.3 Summary

In this chapter, we have shown the comparative accuracies of MVGPC and single
rules on non-microarray data. The test accuracies of MVGPC and single rules
were the same on Monk-1 problem. However, on noisy data like Monk-3 prob-
lem, the test accuracies of single rules were slightly better because some rules of
the ensemble of MVGPC could obtain 100% training and test accuracies but the
number of such rules was very small compared to the ensemble size. However, on
Wisconsin breast cancer data, the accuracies of MVGPC were significantly better
than those of single rules. Therefore, MVGPC will perform better than single

rules in most cases on non-artificial data.



Chapter 9

Conclusions and Future Works

9.1 Conclusions

In this dissertation, we have focused on extraction of informative genes from mi-
croarray data and design of a reliable classifier for classification of patient samples
with a view to developing a gene expression based cancer diagnosis and treatment
system. Though different gene selection methods and classifiers have been pro-
posed in the literature (Chaps. 3 and 4), their successes are very limited due to
huge number of genes compared to smaller number of training samples and many
redundant and irrelevant genes. To this end, we have proposed two methods:
random probabilistic model building genetic algorithm (RPMBGA) (Chap. 5) and
magjority voting genetic programming classifier (MVGPC) (Chap. 7). Both meth-
ods obtain very higher accuracies on independent test data compared to other
methods but RPMBGA needs a classifier whereas MVGPC itself acts a classifier
and a gene selection method and is better than RPMBGA. The summary of these

two methods is given below.

9.1.1 Random probabilistic model building genetic

algorithm

RPMBGA, a variant of genetic algorithm, is a gene selection method. The main
characteristics of RPMBGA are that it is faster than traditional gene selection
method like genetic algorithm, has no crossover or mutation, and obtains compact

gene subsets and higher classification accuracies compared to other competitive
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techniques.

Starting from the initial population with many genes selected in each individ-
ual, RPMBGA successively reduces many irrelevant genes and finally terminates
with a population having very small number of genes selected in each individual.
It generates subsets of more than one gene a time and preserves the interactions
among the genes. These are advantageous over rank-based methods that selects
one gene at a time based on single genes’ capability of data separation because we
have found evidence that the genes of a subset that produces the best classification
accuracy using a classifier do not produce higher classification accuracy individ-
ually. Moreover, neither single genes nor gene subsets containing very higher
number of genes classify patient samples perfectly. In subsets with very higher
number of genes, the irrelevant genes act negatively on the classification accuracy
obtained by other informative genes.

However, RPMBGA suffers from the problem that the selected genes or the
acquired classification accuracy is dependent on the classifier employed to calculate

the fitness of gene subsets.

9.1.2 Majority voting genetic programming classifier

MVGPC, based on genetic programming (GP) and majority voting technique,
improves the classification accuracies of GP and is more reliable than RPMBGA.
Though GP has advantages over other evolutionary computation methods that it
acts as a classifier and a gene selection method and produces transparent classi-
fication rules, which provide an insight into the quantitative relationships among
the genes in classification of samples, it produces very poor test accuracies when
the accuracy of a rule is calculated by executing it on the training data in one pass.
The ways the optimum ensemble size be determined, the label of a test sample
be predicted using the ensemble, and the potential biomarkers be extracted from

microarray data are our main contributions in MVGPC.
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Accuracy improvement

MVGPC uses an ensemble of different genetic programming rules and appears to
be a reliable and robust method for prediction of the label of a test sample. In
its typical implementation, we evolve multiple rules in different GP runs, apply
them one by one to a test sample and count their votes in favor of a particular
class. Then the sample is assigned to the class that gets the highest number of
votes in favor of it. Our assumption behind MVGPC is that single rules that are
evolved using genetic programming are not strong enough to predict the labels of
samples and a team of rules can make decision with enough confidence. Though
AdaBoost is widely used as an ensemble technique to improve the prediction rate
of a weak classifier, we have found that MVGPC may outperform AdaBoost+GP
in classification of gene expression data. The probable reason may be that the
rule or set of rules evolved with GP in each iteration of AdaBoost may not use all
the training samples whereas the rules of MVGPC use all training samples and
are stronger than those of AdaBoost+GP.

However, the success of majority voting depends on the number of rules per
voting group and on the rate of false prediction (on test samples) by single rules.
If either the number of rules per voting group in majority voting is very small
or the rate of false prediction by all single rules is greater than or equal to 0.5,
MVGPC will be no better than single rules or sets of rules. By restricting the
maximum number of nodes in a GP tree to be very small, diversity among the
rules can be preserved, and with sufficient number of diverse rules, MVGPC will
perform better than single rules. However determination of optimal ensemble size
from training data is not straight forward. Our hypothesis is that for smaller
data sets, the ensemble size should be equal to the number of training samples;
for larger binary data sets, the ensemble size should be the half of the training
size while for larger multiclass data sets, the total number of rules per ensemble
should be approximately equal to the number of training samples. To this end,
equations in Subsection 7.2.3 (Chap. 7) may be employed to determine the near

optimal ensemble size.



Biomarkers identification

For identification of potential biomarkers, we propose that classifier be first de-
vised, which will obtain higher classification accuracy, and then the evolved rules
be analyzed to determine the most frequently occurring genes, i.e. first classifica-
tion, then gene selection. To get a more stable frequency distribution of selected
genes, MVGPC should be repeated on the microarray data for several times. Our
proposal is based on the observation that some genes are frequently always selected
whatever gene selection algorithms and classifiers are used. These more frequently
selected genes may be either potential biomarkers of cancers or junk genes that
are highly correlated with distinction of different training and test samples but
have no biological significance.

In the experiments performed according to the proposal, we have found that
some of the more frequently selected genes in the rules of MVGPC are biologically
significant and related with the types of cancer being studied in this dissertation
while the relationships of some other more frequently selected genes with the

cancers are yet unknown.

9.2 Future works

Though our reported models of gene selection and classifications have classified
clinically ambiguous tumors with higher accuracy, it is not 100% perfect. Indeed,
more training and test samples, and clinical trials are needed to determine how
best the molecular-based diagnosis will fit the standard patient care. Besides,

there are some unresolved technical issues that are discussed in this section.

9.2.1 Classification of unbalanced data

Many real-world data including biological and financial data are very unbalanced.
In unbalanced data, one class has much larger number of samples than other

classes. By applying traditional classifiers, one may obtain very high classification
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accuracies on unbalanced data but those accuracies are heavily biased by the ma-
jority class, and the sensitivity or the specificity will be very unbalanced. There-
fore, simple accuracy is a useless index of performance measurement of a classifier
for unbalanced data. To get meaningful results, the sensitivity and specificity
information must be incorporated into the fitness function of a GP rule. The cor-
relation based fitness function (6.2.4) defined in Chap. 6 is one that incorporates
this information. Other functions that take into account sensitivity and specificity

information are defined below.

F-measure:
2 % recall * precision
F — measure = — (9.2.1)
recall + precision

where ‘
Ny
th + an ’

with Ny, Ny, and Ny, being the numbers of true positives, false negatives, and

recall = precision =
false positives, respectively. In binary classification, recall and precision are anal-

ogous to sensitivity, and positive predictive value, respectively.

Area under ROC curve(AURC): Hanley and Meneil (1982) have shown that
nonparametric Wilcoxon statistics can be used to measure the area under ROC

(receiver operating characteristic) curve in a rating method. That is,

1
AURC = é—(sensitivét'g + speci ficity) (9.2.2)
where
Afrt 'y Ntn
sensitivity = w«*f@;-—; specificity = —————
Nt’p'*”}vn Ntrz+pr

with with Ny, Ngn, Ny, and Ny, being the numbers of true positives, false nega-
tives, true negatives and false positives, respectively. Note here that AURC is the

arithmetic mean of sensitivity and specificity.

Geometric mean of sensitivity and specificity:

G — mean = +/(sensitivity 4 speci ficity). (9.2.3)
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Biased fitness: Biased fitness function incorporates sensitivity and specificity
information but assigns higher weight to either sensitivity or specificity. One such

fitness function is as follows:
. 1 o . 1 L
B — fitness = isenszthty * speci ficity + é—serzszi'zruzfy. (9.2.4)

The first term balances sensitivity and specificity equally while the second term
biases the fitness towards sensitivity.

It is suggested that the performance of MVGPC be verified on the unbalanced
data by utilizing these fitness functions during evolution of GP rules for the en-

semble of MVGPC.

9.2.2 Use of logical functions instead of arithmetic

functions

In MVGPC, the output of a rule is a floating-point number and the slice point
for determination of class membership is zero. There are some limitations of this
method. For example, suppose that a microarray data set contain two types of
samples: A and B. If the output of two rules: Ry and Ry on a sample Y is 0.1 and
100.0, Y is predicted to be of type A in both cases; however, the confidence level
of Ry is much higher than that of R;. Instead of real-valued functions, we can
consider logical functions to evolve genetic programming rules. In lieu of values,
the logical relationships among the genes would be biologically more interesting
because the prediction models may sometimes be affected by the scaling of gene
expression values. It is recommended that logical functions be used to determine

the relationships among the potential biomarkers.

9.2.3 Determination of ensemble size dynamically

In Chap. 7, we have shown that increasing the ensemble size increases the test
accuracy but generation of large number of rules may not be feasible. Morecover,

determination of ensemble size based on a single training set is difficult. It would



be better if we can determine the ensemble size dynamically. In this context, the
available training samples should be divided into internal training and validation
subsets, and the optimal number of rules in the ensemble should be determined

based on the performance of an ensemble on the validation set.

9.2.4 MVGPC on the data of more frequently selected

genes

In MVGPC, though we get better test accuracy through the ensemble of different
rules, we are concerned about the number of genes involved in an ensemble. More-
over, in Sec. 7.3.4, we have shown that the execution time of a typical MVGPC
experiment on a larger, multiclass microarray data set is very longer compared to
other methods. It is suggested that performance of the ensemble of rules contain-
ing only the more frequently selected genes (see Fig. 9.1) be investigated because
there is a possibility that this ensemble may produce better test accuracy. Here
MVGPC will be applied in two stages. In the first stage, MVGPC will be used as a
preprocessor to identify more frequently occurring genes while in the second stage,
it will be applied to build more strong predictive model using only the selected

genes in previous stage.

9.2.5 Comparison of MVGPC with other ensemble

methods

In this work, we have found that both MVGPC and AdaBoost+GP obtain the
same level of accuracies on training data but MVGPC obtains significantly better
accuracies than AdaBoost4+GP on test data. Besides AdaBoost, there are have
been proposed a number of ensemble techniques in literature for improving the
classification accuracy of weak classifiers. It is recommended that one compare

MVGPC with other ensemble techniques.



Geneslsa Samples

mplss ALL | AML ALL
G1 10 50 20
G2 90 45 M
G3 100 | 500 150
G4 45 10 60
G5 65 18 99
G8 88 67 77
G12600 75 78 56

Microarray gene expression data

Figure 9.1: MVGPC on the data of more frequently selected genes

9.2.6 Investigation of influences of different GP

parameters

Data of more frequently selected
genes by the rules of MVGPC

Genes/sa Samples

mples AL [AML ALL
G2 90 45 34
G4 45 10 60
G6 88 67 77
G101 a8 VA 45
G543 67 85 26
G900 87 99 65
Gp 77 63 120

Apply MVGPC again on this

reduced data set
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In Chap. 7, we have shown that the performance of MVGPC is very much de-

pendent on the false prediction rates by single rules of GP. And there are many

parameters like population size, offspring size, crossover and mutation rates, length

of an individual, etc. that influence the performance of each GP rule. It is ab-

solutely necessary to verify the performance of MVGPC by varying the values of

different GP parameters.



Appendix A

EGPC: A Powerful Tool for Data

Classification and Important
Features Identification

The majority voting genetic programming classifier (MVGPC) has been imple-
mented in Java programming language and named as EGPC (ensemble of genetic
programming classifiers). The software can be downloaded from the IBA Labora-
tory homepage (http://www.iba.k.u~tokyo.ac.jp/english/EGPC.html). EGPC
is a very powerful, easy to use Java based tool for preprocessing and classification
of data and for identification of important features from data. The main features
of EGPC are that:

1. It improves the test accuracies of genetic programming rules;

2. Tt runs in command line interface (CLI) and graphical user interface (GUI)

modes;
3. It can be used for binary and multi-class classification;

4. Tt can handle microarray gene expression data as well as UCI machine learn-

ing (ML) databases (with no missing values) (Newman et al., 1998);

5. It can handle numeric, nominal and Boolean (converted to numbers) fea-

tures;
6. It can evolve rules with arithmetic and/or logical functions;

7. It can handle training subsets constructed by fixed or random split of data;

and
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8. It can handle training and validation data stored in two separate files pro-
vided that theyv have the same number of features and those features are in

same order.

Moreover, EGPC can be applied repeatedly on the data for a reduced set of
features and possibly for better test accuracies; in this case, EGPC acts as a

preprocessor of features.

A.1 Data format

EGPC can handle two formats of (tab, colon, semicolon, or space delimited) text
files: microarray and UCI ML data files. In microarray format, the first row
contains the labels of the samples and the other rows contain the gene expression
values of different genes in different samples. One file: BreastCancer.txt in the
examples is in this format.

In UCI ML format, the first column contains the labels of the samples and
the other columns contain the values of attributes in different samples/instances.
Two files: Monk.txt and WCBreast.txt in the examples are in this format.

In either form, the labels of samples must be numeric values starting from 0,
i.e. for binary classification, the labels of samples will be either 0 or 1 while for
multi-class classification, the labels will be from 0 to (¢ — 1) where ¢ is the number

of classes of samples in the data file.

A.2 Training and test subsets constructions

The training and the test data can be in one file or in two separate files. If the data
are in two separate files, the split of whole data is fixed. While the data are in one
file, the training and test subsets can be constructed randomly or by fixed split
of the data. In the case of random split, the information about training subset is
entered by combining the training sizes of different classes, delimited by colon (:),
into a single string. Let us give an example of this. Suppose a data set consists

of three classes of samples, and the number of samples of the classes is 8, 8, and
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6, respectively. If the training subset consists of 50% of the samples, the string
containing information about the training data would be 4:4:3. However, in the
case of the fixed split of the samples stored in one file, a file containing the indexes
of the training samples should be passed to the program. See BreastTrainIndex.txt
for an example of the fixed split of BreastCancer.txt data. Note that the index of

the first sample is 1.

A.3 Attributes/Genes

EGPC can handle numeric, nominal and Boolean attributes. If any attribute is in
nominal format, convert it to numeric format. For example, if the values of a nomi-
nal attribute is Sunny, Cloudy, Rainy, and Snowing, convert these values to 0, 1, 2,
and 3, respectively. The identifiers for these attributes are as follows: N: Numeric;
L: Nominal; and B: Boolean. If a range of the attributes are of same type, they
can be indicated by < start index >:< end index >. For example, if the first 30
attributes of a data set are numeric, indicate it by N1:30. For nominal attributes,
there is one extra parameter, the maximum value of the nominal attribute, which
follows the < end index > separated by colon. For example, L1:30:4. For multi-
type attributes, indicate each type and range by the above notations and separate
each other by colon. An example may be N1:30:L31:50:4:351:60.

Each feature in the data file is represented by an ‘X’ followed by the feature

number. For example, X1314 represents the feature 1314 of a data set.

A.4 Functions

EGPC can handle the following functions :{ +,-,*, /, SQR, SQRT, LN, EXP, SIN,
COS, AND, OR, NOT, =, <>, >, <, >=, <=}. If all the attributes are numeric,
one can use all the above functions, only arithmetic functions: {+,-,*, /, SQR,
SQRT, LN, EXP, SIN, COS}, or only logical and Boolean functions: {AND, OR,
NOT, =, <>,>, <,>=, <=}. Note here that since all the attributes are numeric,
only AND, OR, NOT can not be used. If all the attributes are either nominal or

Boolean, we recommend using logical and Boolean functions only. However, EGPC
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would be able to handle the combinations as nominal attributes are converted to
numeric values (by the user) before running the software.
Some functions are executed in protected mode to avoid undefined results—

underflow or overflow. These functions are treated as follows:

o SQRT(Y) =01 Y is negative;

o Y/Z =1if Zis 0

o EXP(Y) = EXP(Mazx(—10000, Min(Y,20)); Y is bounded between |[-
10000,20);

e LN(Y) = 0if Y = 0; otherwise LN(Y) = LN(|Y]) and Y is bounded
between [-1.0E+100, 1.0E+100];

e SIN(Y) and COS(Y): Y is bounded between [-10000, 10000].

A.5 Ensemble size

The number of single rules or sets of rules that participate in majority voting is
indicated here as ensemble size. The minimum ensemble size is 3. For binary

classification, we recommend an odd value for ensemble size.

A.6 Evolved rules (S-expressions)
The expression of a rule is called S-expression. The predicted class of a rule is
determined depending on the output of the rule:

¢ Boolean output (an S-expression consists of logical or logical+-arithmetic
functions):
— Binary classification: IF (S-expression) THEN 0 ELSE 1.
— Multi-class classification: IF (S-expression) THEN TargetClass ELSE

Other.

Real-valued output (an S-expression consists of arithmetic functions only):



131

— Binary classification: IF {S-expression>0) THEN 0 ELSE 1.

— Multi-class classification: IF (S-expression>0) THEN TargetClass ELSE
Other.

Therefore, the slice point for real-valued output is 0.

A.7 Default settings of some GP parameters
The default settings of some GP parameters in EGPC are as follows:

e Maximum number of nodes in a GP tree=100;

e Maximum initial depth=6;

e Initial population generation method: ramped half-and-half;

e Maximum crossover depth=7;

e Selection method for crossover: greedy-over;

e Reproduction probability=0.1;

o Crossover probability=0.9;

e Mutation probability=0.1;

e Termination criteria: fitness=1.0 or maximum number of generations has

passed; and

e Regeneration type: elitism (elite size=1).

A.8 Example files included with this software
bundle

Monk’s problem (Monk.txt): It has been downloaded from http://www.
ics.uci.edu/~mlearn/MLRepository.html. It is a binary classification prob-

lem, and consists of 6 nominal attributes (values: 1-4), and total 556 samples



divided into 124 training and 432 test samples. We have put the 432 independent
test samples into the file MonkValid.txt that are used as a validation file for the
problem. The data are in UCI ML format. It is a simple problem; the target
concept is: IF ((X1 = X2) OR (X5 = 1)) THEN 1 ELSE 0.

Wisconsin breast cancer data (WCBreast.txt): It has been downloaded
from http://www.ics.uci.edu/~mlearn/MLRepository.html. It consists of 30
numeric attributes, and a total of 569 samples. It is a binary classification problem.
To use as an example, we randomly split this data set into training and test subset

into 1:1 ratio.

Breast cancer data (BreastCancer.txt): It is a microarray data file consist-
ing of the gene expressions values of 3226 preprocessed genes across 22 samples. It
is a 3-class classification problem. The classes of the samples are BRAC1, BRAC2
or Sporadic. All the attributes are numeric. The training subset consists of the
fixed split of this data set, and the indexes of the training samples are stored in
BreastTrainIndex.txt. The numbers of training and test samples are 17 and 5,
respectively. The number of BRACI, BRAC2 and Sporadic samples in the train-
ing and test subsets are 6, 6, 5, and 2, 2, 1, respectively. The original data set is

available at http://research.nhgri.nih.gov/microarray/NEJM_Supplement/.

Brain cancer data (BrainPre.txt): It is a microarray data file consisting of
expressions values of 12625 genes across 50 samples. It is a binary classification
problem. This data file is provided as an example file for data preprocessing. The
original data file is available at http://wwu-genome.wi.mit.edu/cancer/pub/

glioma.

A.9 Execution of the software

The EGPC software is implemented in Java programming language and available
as a jar (Java Archive) executable file. Three jar files: EGPCpre.jar, EGPC-
com.jar, and EGPCgui.jar are available with this software bundle. EGPCpre.jar is
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for preprocessing of microarray data in CLI mode; EGPCcom jar and EGPCgui.jar
are for data classification and important features' identification in CLI and GUI
modes, respectively. EGPCgui.jar has also interfaces for data preprocessing in
GUI mode.

Given an input file for preprocessing, EGPCpre.jar will create two output files
containing the preprocessed data and the cross reference indexes of the genes. If
the name of the output file is not provided, the preprocessed data will be in the file
“DataOut.txt”; the file containing cross reference indexes is “CrossRefldx.txt”.

EGPCcom.jar and EGPCgui.jar will create three files containing rules, accu-
racy and gene frequency information in the working directory (from where the
software is run). If the name of a data file is Example.txt, EGPC software will
create three files named as RulesExample.txt, AccuracyExample.txt, and Gene-

FreqExample.txt.
A.9.1 Execution of EGPCpre.jar in CLI mode
To run the program from command prompt, type:
java [-Xmx<heap size>] -jar EGPCpre.jar [arguments...]
Command line arguments and formats:

e -Xmx<heap size>: maximum heap size; some data sets may require higher

heap size. Example: -Xmx512m (m or M for mega byte).

e -f <input file>: input data file name (with path if not on the current working

directory); <input file> must be provided.

e -0 <output file>: output file name (with path if not on the current working

directory); default: DataOut.txt.

e -p <l:h:d:f>: preprocessing parameters; l=lower threshold, h-higher thresh-

old, d=difference, f=fold change.
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e -n <normalization info>: normalization info; for log normalization type G
with the base like G10 or Ge while for linear normalization type La:b where

a:b is the range.

e -h <header info>: header info; G: first colummn contains genes 1Ds; S: first

row contains samples IDs; GS or SG for both.

Example: java -jar EGPCpre.jar -f "DataFile/BrainPre.txt” -o BrainPro.txt
-p 20:16000:100:3 -n Ge -h GS

A.9.2 Execution of EGPCcom.jar in CLI mode:

To run the program from command prompt, type:
java [-Xmx<heapsize>] -jar MVGPCcom.jar [arguments...|
Command line arguments and formats:

e -Xmx<heap size>: maximum heap size; some data sets may require higher

heap size. Example: -Xmx512m (m or M for mega byte).
e -u: UCIML format; default (if it is omitted) is Microarray format.

e -d <data file>: data file name (with path if not on the current working

directory); <datafile> must be provided.

e -v <validation file>: validation file name (with path if not on the current
working directory); if it is not provided, the training information must be

provide under the ‘-t’ below.
e -s <sample size>: number of samples; must be provided.
e -a <attribute size>: number of attributes; must be provided.

e -A <attribute info>: attribute information; default is that all attributes are
numeric. See above ” Attributes/Genes" for details about attribute informa-

tion.



e -t <training info>: training subset information; the training information can
be either the filename (with path if not on the current working directory)
containing the indexes of the training samples or the training size of each

type of sample delimited by colon like 179:106.
e -c <classes>: number of classes; default is 2.
e -m <ensemble size>: ensemble size; default is 3.

e -I <functions>: functions to be used; functions are delimited by colon (:)
and the default functions are “+:-:/:*:sqr:sqrt”. Note here that the functions’

string must be within double quotation (“”).
e -p <population size>: population size; default is 1000.
e -g <max gen>: maximum number of generations; default is 50.

e -r <max run>: number of trials or repetition; default is 20.

A.9.3 Execution of example files from command prompt

e Monk problem:
java -jar MVGPCcom jar -u -d “DataFile/Monk.txt” -v “Datal'ile/MonkValid.txt”
-5 556 -a 6 -A L1:6:4 -F “>:<i=:1<>:>=:<="AND:OR:NOT” -m 3 -¢ 2 -r 3

e Wisconsin Breast cancer (WCBreast.txt):
java -jar MVGPCcom jar -u -d “DataFile/WCBreast.txt” -s 569 -t 179:106
-a 30 -A N1:30 -F “4:-*:/:SQRT:SQR:AND:OR:NOT > <:=1< > > =1 ="
-m3-c2-r3

e Breast cancer (BreastCancer.txt):
java -jar MVGPCcom.jar -d “DataFile/BreastCancer.txt” -s 22 -a 4434 -t
“DataFile/BreastTrainIndex.txt” -A N1:4434 -F “4:-:/*:SQRT:SQR” -m 3
-¢3-r3



A.9.4 Execution of EGPCgui.jar in GUI mode:

Go to the command prompt and type:
java [-Xmx<heapsize>] -jar MVGPCgui.jar

Snapshots of the software in GUI view are shown in Figs. A.1-A.4. In the GUI
view, the first page tells about the software. Preprocess Data is for preprocessing
of microarray gene expression data. The data filename and values of different
parameters are entered from Run EGPC page. While EGPC is being executed on
a data file, the number of correct predictions and the accuracies by single rules or
sets of rules as well as those by the EGPC can be viewed on View Accuracy page.
The more frequently selected genes are displayed in the page Feature Ranking.
Here also three output files for rules, accuracy and gene frequency are created.

The previously mentioned three examples can also be run in graphical user

interface mode.
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EGP(

a powerful toal for bioinformaticians!

EGPC (wv1.0) for Data Classification and Important Features Identification

| About EGPC | Preprocess Data | Run EGPC | View Accuracy | Feature Ranking |

Data file name: |DataFiIe!BramPre b

output file name: { | Defaun: DataOut.txt

[_] First column contains genes' IDs [_] First row contains samples' labels
__| Preprocess Data
threshold P IR Those genes are excluded
=8 that violate variation filters:
Max(g)-Min(g) > Difference and
Max(g)/Min(a) > Fold

[ | Mormalize Data

Il_Per(or- Preprocessing j l . juse;i - 7] [77 'E:ﬁ -

Status

Figure A.1: A screen shot of GUI of EGPC ( Preprocess Data page)
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EGPC: a powerful tool for bioinformaticians!

EGPC (v1.0) for Data Classification and Important Features Identification
| About EGPC | Preprocess Data " Run EGPC ] View Accuracy ] Feature Ranklng__[k
File Type: () Microarray ® UCI ML Data File Name: [M_Uak_‘_l_l_ - ]vl
Validation (independent test) File: DataFile /MonkYalid.txt
Samples:  [556 | Atributess (6 | Classes: 2 |
Attributes Type: [u B4 | (N=numeric, L=nominal, B=boolean)
Data Split Type: () Random @ Fixed  Training Size: ¢ TestSize. O
Number of different training samples: Ex:179:106:56
— [r— s
Population Size: 1000 Max Generation: |50 | #Trials (Run): |20
Functions: [;ND:OR:NOE::;:).("::.(: - JI Ensemble Size: 3 |
Current Rule:: Ceneration#. Best Fitness:
Current Trial#: S_emresgmn ‘_15
Best Rule: -
-
e |
— L B8 PR B
, Run EGPC | [ stop J I Reset _I | Exn ]

Figure A.2: A screen shot of GUI of EGPC (Run EGPC page)
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EGPC: a powerful tool for bioinformaticians!

EGPC (v1.0) for Data Classification and Important Features ldentification

| About EGPC | Preprocess Data | Run EGPC | View Accuracy | Feature Ranking |

Number of correct predictions and accuracies by SR/SSR and EGPC
Rule/Set | Training@® |  Test@® | Training(%) Test(%) |
1 122 432 10000 10000 [
2 124 1432 100.00 ~|100.00 E
3 124 432 100.00 “|toooo
EGPC 124 432 100.00 100.00
i BN Run=a  [== i
1 124 432 100.00 100,00
2 124 432 100.00 10000
3 124 432 10000 [10000
EGPC 124 432 10000 100.00
1 124 432 [100.00 100.00
2 a3z [tooo0  |10000
3 2 a2 110000 100.00
EGPC_ 124 432 10000 10000
e e [Runed | B endod L
1 124— 432 10000 10000  4¥)
EGPC: Training accuracy=100.001 0.00; Test accuracy= 100,00+ 0.00
SR/SSR: Training accuracy=99.1114.82; Test accuracy=99.17+4.53

Figure A.3: A screen shot of GUI of EGPC (View Accuracy page)



EGPC: a powerful tool for bicinformaticians!

EGPC (w1.0) for Data Classification and Important Features ldentification

" About EGPC | Preprocess Data | Run EGPC | View Accuracy | Feature Ranking |

Ranking of genes/features (more frequently selected)

I __Rank Aftribute/Gene Id

1 X5 - 65
2 . |83
I —— | e e
4 X6 I i -
5 o _i)(}i - 0 B
6 _ |xa4 ] 0

_ Frequency |

3|

Figure A.4: A screen shot of GUI of EGPC (Feature Ranking page)
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