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Abstract

The knowledge on physical protein-protein interactions provides us with many
clues for the understanding of living organisms as integrated systems. However,
the protein-protein interactions identified so far cover only a small fraction of
the total number of interactions occurring in vive, and it is suggested that
the low coverage sometimes lead to misunderstanding of the biological sys-
tems. To facilitate researchers to detect true protein-protein interactions and
frame hypotheses efficiently, this thesis proposes a computational method for
predicting protein-protein interactions in yeasts, mice, and humans.

Many previous methods used the information on protein domains and had
better performances than traditional methods based on comparative analyses
of genomic sequences. These methods have, however, two major defects that
limit their performances and applicabilities: the assumption of domain inde-
pendence and the difficulty in integrating other protein features. We propose
a method based on Support Vector Machines (SVMs) that can address both
of the two problems. ,

We first examined the performance of our method in predicting yeast
protein-protein interactions. As a result, the highest F-measure of 0.788 was
obtained by combining the features “domains,” “amino acid compositions,”
and “subcellular localizations,” which was more accurate than the predictions
reported previously. We then found that our method could predict 58.6% of
likely interactions in a dataset produced by yeast two-hybrid systems, and
that newly predicted interactions tended to share similar functions between
two proteins. The next challenging problem on which few previous works have
focused is to predict -interactions between mammalian proteins. Our SVMs
trained on human protein pairs achieved an F-measure of 0.776 in predicting
interactions in humans and an F-measure of 0.765 in predicting interactions
in mice, indicating that our method can be applied to predicting interactions
between mammalian proteins.

The performance must be further improved for constructing a hypothetical
protein-protein interaction map computationally, because even a good clas-
sifier yields a huge number of false positives if the input data is all pairs of

proteins in a given organism. Thinking that the negatives used in previous



studies cannot adequately represent all the negatives that need to be taken
into account, we developed a method based on multiple SVMs for construct-
ing ‘hypothetical interaction maps of yeasts and humans. We found that the
performance improved as we increased the number of SVMs and that, if more
than one CPU is available, an approach using multiple SVMs was useful not
only for improving the performance of classifiers but also for reducing the time
required for training them. This multiple-SVM-based approach can also be
applied to assessing the reliability of a dataset generated by high-throughput
systems such as yeast two-hybrid.

One can predict interactions between proteins of interest by using our Web-
based service. The server, which we call PIPS, provides a way of applying
our multiple-SVM-based method to predicting physical protein-protein inter-
actions in yeast, mice, and hﬁmans. The predicted protein-protein interactions
and resulting maps will serve as an important resource for inferring and iden-
tifying protein functions, functional modules, or even the mechanism of gene

evolution.
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Chapter 1
Introduction

One of the major issues in the postgenomic era is to uncover the whole phys-
ical protein-protein interactions in an organism. The information on protein-
protein interactions provides us with many clues for the systematic under-
standing of biological systems. For example, the accumulation of interaction
data has enabled us to infer the functions of uncharacterized proteins systemat-
ically from the known functions of their interaction partners [21, 29, 43, 63, 73].
Other important biological knowledge can also be extracted from the protein-
protein interaction data. The existence of the scale-free property in a protein-
protein interaction network suggests that whereas most proteins interact with
few partners, some proteins interact with many partners [24, 36, 44, 45]. These
highly connected proteins, called hubs, play a central role in mediating inter-
actions among less connected proteins and are three times more likely to be
essential [36]. Other researches showed that the motifs or modules in an inter-
action network could be a useful unit for the understanding of the complicated
interaction network. The fully connected motifs (cliques consisted of less than
or equal to five nodes) tend to be evolutionary conserved and are likely to be
protein complexes [79]. The modules obtained after the complete removal of
the hub proteins that are differently expressed from their interaction partners
well correspond to the functional units in biological system [27]. Protein-
protein interaction data have also been used for inferring the mechanism of
gene evolution [51] and for revealing the variety and constancy of interaction
networks among organisms [64].

It is important to remember, however, that the protein-protein interactions

identified so far cover only a small fraction of the total number of interactions



occurring in vivo [3, 74, 75], and are considered to be contaminated by false
positives [74]. Low coverage of interactions leads to misunderstanding of the
biological systems. For example, recent research suggested that the true topol-
ogy of protein-protein interaction networks cannot be determined unless the
coverage is increased through further experimentation [28]. Obviously, false
positives in a dataset also lead to erroneous conclusions.

Biological experiments for the identification of comprehensive protein-protein
interactions are costly, labor-intensive, and time-consuming. Genome sequenc-
ing projects have revealed the complete DNA sequences of 426 organisms and
the draft assembly of 357 organisms, and 502 projects are still in progress
[78]. Unfortunately, it seems impossible to set up experiments for elucidating
the complete sets of protein-protein interactions from all the possible pairs of
proteins in these organisms unless we launch extremely large-scale projects or
devise far more efficient and accurate experimental systems. An alternative
approach is to restrict experimental targets to more likely interactions based
on the information on the protein-protein interactions identified so far and on
the proteins themselves. Computational prediction is a prospective approach
for facilitating this laborious task. Technically, the problem of predicting in-
teractions between two proteins can be considered as a problem of classifying
the given protein pairs into two classes, interacting or non-interacting class,
according to the given protein features. The score provided by the classifier
is useful to assign a reliability measure to the prediction and help biologists
design experimental programs. Computational prediction method can also be
used for filtering likely interactions from a set of data containing a significant
number of false-positives. The filtering problem is intrinsically the same as
the classification problem described above. A representative example for such
a dataset is the protein-protein interactions identified by high-throughput ex-
periments such as yeast two-hybrid systems [24, 34, 35, 45, 62, 70]. Since
yeast two-hybrid systems are known to yield many false positives [74], most
of the previous reports often adopted scoring schemes for excluding suspi-
cious interactions and performing convincing analyses on the obtained data.
A high-performance computational prediction method facilitates this filtering
process by automatically calculating a score for each protein pair. Another

example of a dataset containing many false positives is the protein-protein



interactions automatically extracted from literature. A large amount of infor-
mation on protein-protein interactions has been accumulated in the form of
natural language texts, and computational techniques for retrieving the infor-
mation have attracted considerable interests in the information extraction field
[9]. Although the natural language processing techniques have been develop-
ing steadily, a certain number of false positives will always be present in the
extraction results. Thus, further filtering steps are required, for example, for
the automatic construction of reliable protein-protein interaction databases.

In this thesis, we propose a computational method for predicting protein-
protein interactions in yeasts, mice, and humans to help researchers and ex-
perimenters reduce the time, cost, and human resources required for filtering
and specifying the protein pairs that need to be examined. Our method can
be applied to both 1) predicting protein-protein interactions among an input
dataset created by randomly pairing the proteins of a target organism, and
2) predicting likely interactions among an input dataset containing a large
number of false positives. Our method can solve both of these tasks more
accurately than ever before within the same framework, but with different
thresholds.

This thesis consists of four major chapters. In Chapter 2, we briefly de-
scribe the related methods for predicting protein-protein interactions and then
discuss their problems. Chapter 3 describes our basic method for predicting
protein-protein interactions in yeasts, mice, and humans. Section 3.2 shows
how we address the problems of the previous methods by using Support Vector
Machines (SVMs) and kernel methods, and Section 3.3 shows the datasets and
measurements used in our study. In Section 3.4, we evaluate the performance
of our SVM-based method using cross-validation analyses and show that our
method outperforms the previous methods. In the same section we also show
that our method can be used to filter the reliable interactions from yeast two-
hybrid interactions. Predicting the interactions between all the possible pairs
of proteins in a given organism (making a protein-protein interaction map) is
a crucial subject in bioinformatics. The input dataset in this kind of computa-
tional prediction comprises all possible pairs of proteins in an organism, most of
which are presumably non-interacting. Most of the previous methods based on

supervised machine learning, including our method described in Chapter 3, are



estimated to yield a huge number of false positives for such an input dataset.
In Chapter 4, we therefore propose a multiple-SVM-based method that can im-
prove the performance in constructing hypothetical protein-protein interaction
maps of yeasts and humans. Taking our SVM-based method as an example,
we first show that the previous methods based on supervised machine learning
yield a huge number of false positives when an input dataset contains far more
non-interacting pairs of proteins than interacting pairs of proteins. Then we
show that, especially on an input dataset containing a huge number of more
non-interacting pairs of proteins, an approach using multiple SVMs achieves
better performance than a single SVM does. This multiple-SVM-based method
can also be applied to assessing the reliability of high-throughput interactions.
Chapter 5 describes a Web-based service that provides a way of applying our
method to predicting interactions between proteins of interest. Finally, Chap-

ter 6 summarizes the key findings described in Chaper 3 through Chapter 5.



Chapter 2

Related works

2.1 Approaches using genomic sequences

A large amount of knowledge on genomic sequences enabled us to predict
protein-protein interactions based on comparative analyses of the geﬁomic in-
formation. In 1998, Dandekar et al. showed that the physical protein inter-
actions can be predicted by analyzing the conservation of gene order [18]. An
important discovery of this leading research is that one can systematically pre-
dict protein interactions without knowing nor predicting the protein structures
and functions. In a subsequent year, Pellegrini et al. showed that the phylo-
genetic profile that encoded the presence or absence of genes in the genomes
of several organisms can be used for assigning functions to proteins [58]. This
approach is based on the assumption that proteins that function together in
a cellular systém tend to be preserved or eliminated simultaneously during
evolution. Later, this approach was developed to predict protein-protein in-
teractions by Date et al. [19]. Two proteins that are fused into one protein in a
different organism are likely to interact with each other. In 1999, Enright et al.
searched for these gene fusion events using the genomic sequences of three or-
ganisms, and found 64 fusion events involving 215 proteins [23]. Likewise, the
fusion event can be considered in the domain level. Marcotte et al. detected
6809 putative protein-protein interactions in Escherichia coli and 45,502 in
yeast by searching domain fusion events [47].

The main advantage of the methods described above is that they require
only the information on genes in DNA sequences or on domains in protein

sequences, and no other information, including protein-protein interactions, is



needed. On the other hand, a general drawback of these methods is that they
yield many false positives and false negatives [71]. Huynen et al compared
the performances of the methods based on gene order, phylogenetic profile,
and gene fusion events by applying them to the prediction of protein-protein
interactions in Mycoplasma genetalium and found that the gene coverages were
37%, 11% and 6%, respectively [32]. The percentages of true positives were
reported as 30%, 23% and 56%, respectively for the methods based on gene
order, phylogenetic profile, and gene fusion events. Because of this low per-
formance, a great deal of research interest has been shifted toward methods
using other biological information, namely, the information on protein-protein

interactions, which have been accumulated in recent years.

2.2 Approaches using interaction data

Most of the methods developed after 2000 used protein-protein interaction
data directly. A representative method uses homology search programs such
as BLAST [2]. This approach was originally introduced by Walhout et al. in
2000 [76] and later developed by Yu et al. in 2004 [81]. This method predicts
an interaction between two query proteins if the homologs of these proteins
are known to interact in some organisms. This method naturally assumes
that interactions between proteins are conserved through evolution and the
relationship is called “interologs” [76]. The reliability score of the prediction
is usually calculated from the E-values of the BLAST program [81]. In the
later section we will compare the performance of this method with that of our
method.

Many of the conserved domains interact with each other physically and
many methods based on this fact have been proposed. In 2001, Sprinzak et al.
first demonstrated that over-represented sequence signatures (domains) can
be used for predicting protein-protein interactions [66]. For domain ¢ and j,
they computed the log-odds ratio by log, Fi;/F;Fj, where Fj; is the observed
frequency of domain pair 4j in a set of interacting protein pairs, and F; and
F; are the frequencies of domain ¢ and j in the proteome of the organism,
respectively. The log-odds ratio is positive if domain pair ¢j is over-represented

in a set of interacting protein pairs. The log-odds ratio is calculated for every



domain pair ¢j and a protein pair that assigned a log-odds ratio exceeding
a certain threshold is predicted to interact. This method could predict 94%
of known interaétiens in yeast. The number of false positives is not reported
in the paper. In a subsequent year, Kim et al. independently proposed a
scoring system based on a similar idea [40]. Ng et al. introduced additional
multipliers or weights such as the number of domains in a protein and the
number of distinct experiments that identified the interaction to the method
proposed by Sprinzak et al. [55]. In 2003, Gomez et al. developed the method
of Sprinzak et al. in a different manner [25]. They assumed the domain pairs
overrepresented in a set of non-interacting pairs of proteins as repulsion pairs,
and reported that the resulting “attraction-repulsion” model outperformed the
method of Sprinzak et al.

Although the domain-based methods described above have demonstrated
that domain is highly informative for predicting protein-protein interactions,
they have three drawbacks. First, these methods cannot distinguish a protein
from other proteins that have the same domains. This implies that if protein
P, and P, P, # P,, contain the same domains, then these methods predict
the same interaction partners for P; and P,. Additional information is there-
fore required to distinguish P; from P,. Second, these methods assume that
domains are mutually independent. Suppose that, for example, protein P, has
domain D4 and protein P, has domains Dg and D¢. If domain pair DDy
is overrepresented in a given training data set, these methods predict that P
interact with P, whether P, has D¢ or not. However, it is apparent from an
analysis of protein complexes in Protein Data Bank [8] that multiple domains
take part in a physical interaction. Thus the removal of this assumption is ex-
pected to improve the prediction performance. Finally, it is difficult to modify
these domain-based scoring methods so that they use biological information
other than domains.

Currently, some pattern classification techniques have been applied to the
prediction of protein-protein interactions. In 2001, Bock and Gough first ap-
plied a machine learning technique, SVM, to the prediction of protein-protein
interactions in yeasts [10]. Their method used physicochemical properties of
amino acids, i.e., charge, hydrophobicity, and surface tension, and showed good

performance in separating interacting pairs of proteins with natural sequences
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from non-interacting pairs of proteins with artificially shuffled sequences. How-
ever, the performance of their method should be improved to classify the pairs
of natural proteins [46]. In a subsequent year, Deng et al. proposed a method
using the Expectation Maximization algorithm [21]. Although this method
was devised mainly for inferring domain-domain interactions, but it can be
used to predict protein-protein interactions. The probabilities that two do-
mains interact with each other are updated by maximizing the likelihood of
observing the given protein-protein interaction data. Although this method is

of theoretical interest, the performance needs to be improved for practical use.



Chapter 3

Prediction of protein-protein
interactions using SVMs

3.1 Introduction

Because protein-protein interactions are key determinants of protein function,
we cannot understand the cellular machinery without identifying these interac-
tions. Although more than 16,000 protein-protein interactions in yeasts have
been already identified, the total number of interactions is estimated to be
much higher [3, 69, 74]. In addition, the vast majority of the interaction data
have been provided by high-throughput technologies such as yeast two-hybrid
systems, which are known to yield many false positiveé. Since in vivo exper-
iments elucidating protein-protein interactions are still time-consuming and
labor-intensive, methods for accurately predicting protein-protein interactions
in silico are required to be developed.

In this chapter, we propose a computational method for predicting protein-
protein interactions in yeasts, mice, and humans. The presented method uses
Support Vector Machines (SVMs) to integrate different types of protein in-
formation such as protein domains, amino acid compositions, and subcellular
localizations. Historically the term “interaction” has been used to indicate
several relationships: one-to-one and direct relationships such as physical con-
tact between two molecules, one-to-many and indirect relationships such as
regulation of a gene expression by other gene products, and many-to-many
and partially indirect relationships such as protein complexes and functional

associations. Here we consider only physical contacts between two proteins.



Section 3.2 describes our method for predicting protein-protein interactions
that can address the problems described in Chapter 2. Subsection 3.2.1 is a
brief review of SVMs and kernel methods. The reasons why we selected SVMs
as a classifier are also discussed in this subsection. Each protein pair must be
expressed in term of a feature vector to be classified into the interacting or non-
interacting class. Subsection 3.2.2 gives the way to construct the feature vector
from the information on each protein. The protein features and data sources
used are shown in Subsection 3.2.3 and 3.3.1, respectively. The performance of
our SVM-based method was compared to those of two other methods: random
prediction and homology-based prediction. Subsection 3.2.4 describes these
prediction methods. The measurements used for assessing the performance are
shown in Subsection 3.3.2. The prediction results and related discussion are
shown in Section 3.4. We first give the results and discussion on the interactions
between yeast proteins in Subsection 3.4.1, since most of the important parts
of our classifiers were developed using the data of this organism. Finally,
Subsection 3.4.2 describes the applicability of our method to the prediction of

interactions between human proteins and between mouse proteins.

3.2 Methods
3.2.1 Support Vector Machines and kernel methods

Several types of information on proteins have been made available from public
databases. We decided to take advantage of this information to develop a
method that predicts protein-protein interactions more accurately than other
methods do. Pattern classification techniques are suitable for our problem
because the task of predicting protein-protein interactions can be regarded as
a classification of protein pairs into the interacting or non-interacting class. We
discuss the applicability of Support Vector Machines (SVMs) to our problems
through testing several protein features.

Support Vector Machine (SVM) is a learning system originally developed
by Vapnik et al [72] for solving binary classification and regression tasks.
We decided to use the SVM algorithm for the following two reasons. One
is that SVMs have shown their high predictive performances in many fields

including bioinformatics (10, 15]. The other is that the learning theory is well
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developed and we can easily test several SVM implementations. Since the
theories have been explained in many papers [12, 54, 72], here we provide only -
a brief description of SVMs and kernel methods.

We first consider a linear function f : X C R® — R to solve binary
classification problems. Suppose we have a set of labeled training examples
{x,uiti=1,...,,x; e R y; € {1, 1}. The linear function can be written

as
f(x)=w-x+b, (3.1)

where (w,b) € R™ x R are the parameters that control the function. The input
vector x is assigned to the positive class if f(x) > 0, and to the negative class if
otherwise. The linear function forms, therefore, a separating hyperplane that
separates positive examples from negative examples. In the linearly separable

case, all training examples satisfy the following condition:
vi(xi-wH+b)>1 Vi (3.2)

Define the margin of a separating hyperplane as 2/||w||, which is equal to the
distance between examples x; and x,, where w-x; 4+b = 1 and w-xy b = —1.
The SVM algorithm looks for the separating hyperplane that maximizes the
margin by minimizing

N T 4
min o |jwi| (3.3)

subject to constraints (3.2). We then form the Lagrangian by introducing

positive Lagrange multiplies a;,7 = 1,...,[, which becomes
. ! !
f ol 2 o . s P :
L(w,b,a) = é'”W” ; a;yi(x; - w+ b) + ; Q. (3.4)
At the optimal point, we have
oL oL .
= d - = 3.5
5 0 an pou 0 (3.5)

and these can be translated into

1 l
Zaiyi =0 and w= Zaiyix,i. (36)
i=1 i=1

11



Substituting them into (3.4), we have a dual quadratic optimization problem:

i
Z 1
max oy — =
a .t 9
t==1

subject to constraints

1
QOG- X, (3~7)
1

int

oy > O, Vi
[4
Zaiyi = 0.

After solving the optimization problem, all points for which @; > 0 holds are

(3.8)

called support vectors. All other points have a; =0 .
In the linearly non-separable case, the optimal separating hyperplane can
be found by introducing positive slack variables &,i = 1,...,] and user-

adjustable parameter C, and then minimizing

l
.1 9 ,
min  olw||"+C ;xl & (3.9)
subject to constraint

y,(xi - W+ b) Z 1- cf,' f«; 2 0, Vi. (310)

This leads to the dual quadratic problem
! 1
max ; R EL; QOGYYiXi * X (3.11)
subject to constraints

0< o; < O, Vi
3.12
Z&'z:yi = 0. (3.12)

In many actual problems, the linear function discussed above shows poor
performance. However, the SVM algorithm can be slightly modified so that
they perform still linear classification but in a different, potentially much higher
dimensional space. Consider the mapping ®, where

d:R*" > H

x — ®(x). (3.13)

12



Then the SVM works with the examples {®(x;), v}, ¢ =1,...,0, % € {~1,1},
®(x;) € H. Note that the algorithm requires only inner product of two vectors.
Thus if we can find a kernel function such that K(x;,x;) = ®(x;) - ®(x;), we
need not know what the ® is. We can then modify (3.11) as

1 l
1
max Za‘ ~3 Z 05y, K (x4, X;5). (3.14)
i=1 ij=1
All the discussion above still holds if we replace x;-x; by K (x;, x;) everywhere
in the algorithm. Several kernels have been proposed so far [12, 54]. We used
the Gaussian radial basis function (Gaussian RBF) kernel defined by
2

K(x,y) = exp (“JL;?—U*), (3.15)
because our preliminary tests showed that this kernel outperformed the lin-
ear, sigmoidal, and polynomial kernel. For the implementation of the SVM

algorithm, we used SVMTorch developed by Collobert and Bengio [16].

3.2.2 Representation of feature vector

In this subsection, we describe our procedure to construct the feature vector
that addresses the problems described in Subsection 2.2.

Let d = (dy,da,...,d,)T be the domain vector assembled for a single pro-
tein. The element d; is 1 if the protein has the domain ¢ and is 0 otherwise.
The order of domain is arbitrary as long as we keep it through training and
testing. The dimension of the vector depends on the number n of distinct
domains in all the proteins used for training. Let f;,f;,..., fi; be the vectors
assembled for the same protein, where f; is assembled using the ith type of
protein feature (See Subsection 3.2.3 for the protein features tested). We then

construct a feature vector for the protein by using
p=d@®wfi®- - ®wyfy, (3.16)

where w; denotes the weight on the ith feature with respect to the domain
information and @ denotes vector concatenation. Next, we define the feature

vector for the pair of proteins 1 and 2 by
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where p; and p, are the corresponding feature vectors calculated using Eq.
(3.16).

When used with SVMs and the Gaussian RBF kernel, the feature vector
defined in Eq. (3.17) can address the problems of the previous domain-based
methods discussed in Subsection 2.2. The use of the protein features such as
amino acid compositions makes it possible to distinguish between the proteins
with the same domains. Thus our method can predict different interaction
partners for proteins P; and Py even if they have the same domains. The
use of the Gaussian RBF kernel defined in Eq. (3.15) avoids the assumption
that domains are independent; our method can model the situation where
more than two domains mediate a protein-protein interaction. Our method
can predict interaction partners of a given protein more accurately than the
previous domain-based methods can, because the feature vector representation

permits the integration of several kinds of biological information.

3.2.3 Protein features

Our method predicts protein-protein interactions mainly based on domain in-
formation. The domain information was retrieved from the Pfam database [4]
using HMMER. [30]. We found 1560 domain types in yeast proteins and 2350
domain types in human proteins. We further integrated several kinds of bio-
logical information to improve the prediction performance. The four protein
features tested are shown below.

The amino acid composition is known to have correlations with several
biological features such as function, subcellular localization, and secondary
structure fold type [56]. This feature was previously used for predicting subcel-
lular localizations of proteins [13, 15]. We formed the amino-acid-composition

vector by using

£, = %(N(a,}), N(as), ... N{as)), (3.18)

where the elements N(a;)-N(as) denote the numbers of each of the standard
proteinogenic amino acids and L represents the length of the protein (i. e.,
the total number of amino acids in the protein). The dimension of the vector
is 20. ‘
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The sequential amino acid usage can be defined analogously, but this fea-

ture contains some information on the sequential order of residues in a protein:

fs = z—-l:-l-(N(alal), N(aras), .., N(azam)), (3.19)

where a;a; is a pair of ith and jth amino acid types in that order. The count
N(a;a;) is the number of times a; and a; appeared adjacently in the protein
sequence. The dimension of this vector is 400.

The two amino acid indices, hydrophobicity and surface tension of amino
acid solutions, were used in the previous work [10]. The use of these indices
were motivated by the postulation that these hydrophobic properties of amino
acid have an effect on the protein folding, hence on the interactions between
proteins. These indices were obtained from the database called AAindex [39].
The dimensions of hydrophobicity and surface tension in the sequential order
vary with protein length. We thus fixed the dimension of the vector to m
by using a linear interpolation technique. We always used these two protein

features simultaneously in the form
fHT = (hl:h23--‘;h'mytht?s"*stM)v (320)

where h; and ¢; denote the interpolated values of hydrophobicity and surface
tension, respectively. Preliminary we tested several values of m ranging from
50 to 400, and found that m = 100 worked best for our problem.

The addition of localization information is expected to improve the predic-
tion accuracy, since a physical protein-protein interaction requires the contact
between two proteins in a certain cellular location. Huh et al. showed that
most interactions usually occur in the same cellar compartment, although there

are many exceptions [31]. The localization vector can be expressed as
fL = (lli l21 sy lTn)’ (321)

where [; is 1 if the protein is known to localize in organelle i, and 0 otherwise.
The information on protein localization was obtained from the MIPS database
[50], which classifies proteins into more detailed localization categories than
other databases do. We used the detailed localization information as far as

possible, and the dimension of the vector is m = 52.
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3.2.4 Other methods for comparison

" Random prediction

In Section 3.4, we will examine to what extent Ouf method performs better than
a random classifier does. To this end, we estimated the measurement values
for a random classifier by considering the nature of random classification; each
protein pair is classified into the interacting class or into the non-interacting
class randomly. Note, however, that in practical application an input dataset
is expected to be skewed in the sense that most of the protein pairs in the
set are no-interacting, and the performance of the random classifier depends
on its prefemnce for pasmve or negative result. We therefore calculated the
measurement values for the random classifier by assuming that it predicts the
same number of interactions as the SVM does.

Homology-based prediction -

Because of its simplicity and convenience, homology-based method has been
widely used for predicting protein-protein interactions [11, 76, 81]. The basic
assumption is that interactions are preserved during evolution. Given a test
protein pair, this method first searches for a set of homologs for each protein,
and then produces a Cartesian product of the two sets. The test pair is pre-
dicted to interact if at least one pair in the Cartesian product is known to
interact in some organisms. More formally, let PQ be a test protein pair, and
et S = {P, Py, ... ,Pﬂ}'an& T = {@1,Q,...,Qn} be the sets of homologs
for protein P and @, respectively. Then the pair PQ is predicted to interact
~if at least one pair in the set {P1Q1, PiQa, ..., Pa@mn} is known to interact
in some organism. We used BLASTP [2] for searching homologs and tested
several E-values ranging from 1 x €10 to 10 as a cutoff threshold. Each pair
in the Cartesian product was scored by

score(P,, Q) = max (B(R), (@), (32

where E(F;) and E(Q);) represent the BLASTP E-value of protems P and P;
and of proteins Q and Q;, respectively. If more than one pair in the Cartesxan
product was matched with known interactions, we used the hlg;hest score for
the test pair. We tested the performance of this homology-based method using
the same protein pairs as for the SVMs.
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3.3 Datasets and measurements

3.3.1 Datasets

Yeast protein-protein interactions

Physical protein-protein interactions in S. cerevisiae were obtained from the
DIP [80] and MIPS [50] databases. Among them, we removed interactions
identified by only one high-throughput project because of their low reliabilities.
We defined the high-throughput method as ones used to reporﬁmére than 100
interactions in a single article, following the definition of the paper [20]. This
procedure yielded 4178 interactions, of which 58. 2% (2430 mteractxons) have
~ Pfam domains in both proteins.

Along with these interactions, we need negative data to train SVMs. We
gengérated the negative data by compiling all possible protein pairs that were
not recognized as positive in the above databases (including high-throughput
results). All protein pairs that were part of a complex were removed from
the negative set, since those pairs have the possibility of interacting physi-
cally with each other. This filtering yielded 20,202,318 negative candidates, of
which 34.4% (6,941,526 pairs) have Pfam domains in both proteins. Although
this dataset is only hypothetically negative, the probability of its containing
interacting pairs is quite small. For example, the number of interactions in §.
cerevisiae was previously estimated as 30,000 [74], which roughly corresponds
to 0.17% of the total number of protein pairs (18,003,000 interactions), as-
suming that the number of proteins in S. cerevisiae is 6,000 and that each
interaction has no direction. Thus, only about two in 1000 protein pairs in our
yeast negative dataset actually interact. 4

‘The number of positive protein pairs is quite small compared to thaﬁ of po-
tentially negative pairs. Excessive potentially negative examples in the training
set lead to yield many false negatives, and insufficient negative examples yield
many false positives and lead to the fluctuation in the predictive performance.

. We tried some datasets changing positive/negative ratios, and finally we ran-
domly sampled negative exam?l% until there was four times as much negative
data as there was positive data. Accardingly, 2430kkpasi’cive pairs and 9720
potentially negative pairs were used for the validation. Note that the size of
dataset was further decreased when additional information such as subcellular
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localization was used.

Human and mouse protein-protein interactions

A set of manually curated human protein-protein interactions was obtained
from HPRD [59]. After the exclusion of the high-throughput interactions as
before, the dataset included 6676 physical protein-protein interactions of which
87.1% (5812 interactions) have Pfam domains in both proteins. We obtained
286 mouse protein-protein interactions from DIP, of which 80.1% (229 interac-
tions) have Pfam domains in both proteins. Because the mouse protein-protein
interaction dataset is small, we used it only for testing the applicability of the
SVMs trained on pairs of human proteins to the prediction of interactions
between mouse proteins.

The negative datasets were generated by randomly pairing the proteins reg-
istered in the RefSeq database [61] and removing the known interactions from
them. As is the case for the prediction of yeast protein-protein interactions,
four times as many negative pairs as positive pairs were used for training and

testing.

3.3.2 Measurements

We used the following measurements to evaluate the performances of our

SVMs. Precision (Pr) and sensitivity (Sn) were respectively defined by

TP
Pr= G5 7P (3.23)

and TP
S = FETFN’ (3.24)

where TP, FP,FN denote the number of true positives, false positives, and
false negatives, respectively. It is known, however, that there is a trade off
between these two measurements. We will therefore show the F-measure (F)

defined by 9% Prx &
T n

Pr+Sn '
which is the harmonic mean of the precision and sensitivity. False positive rate
(F Prate) was defined by

(3.25)

FP

FPrate = m,

(3.26)
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where TN denotes the number of true negatives. The output score computed
by SVMs corresponds to the distance of a test data point from the separating
hyperplane in the feature space. This makes it possible to draw a receiver
operating characteristic (ROC) curve, i.e. a plot of the sensitivity against
the false positive rate obtained as the decision threshold is varied. In many
cases, we also show an ROC score along with an ROC curve. An ROC score
is calculated as the normalized area under the ROC curve. Perfect classifier
has an ROC score of 1.0, while random classifier has a score of 0.5.

3.4 Results and discussion

3.4.1 Predicting yeast protein-protein interactions

Feature selection

The feature selection was performed using the yeast data for the following three
reasons. First, yeast is one of the simplest ‘model organisms whose protein-
protein interactions and other biological characteristics have been extensively
studied. The expected number of genes of this unicellular eukaryote is less
than 6000. Second, although more than 16,000 protein-protein interactions
in yeasts have been identified so far [80], the total number of interactions is
estimated to be much higher (3, 74]. Thus, it is significant to predict the rest of
interactions for the understanding of the interactome of the organism. Finally,
the public databases such as DIP and MIPS store a large number of yeast
protein-protein interactions identified by small-scale experiments as well as
the ones identified by high-throughput experiments. The distinction between
small-scale and high-throughput interactions is important because they have
different reliabilities [74]. We used the former interactions as a reliable dataset
on which we trained the SVMs and performed feature selection, and the latter
as a test dataset on which we examined the filtering performance of the SVMs.

The results of the 10-fold cross validations are summarized in Table 3.1.
The numbers of data and the measurement values were averaged over 10-fold
cross validation tests, and the numbers in parentheses indicate the expected
values of random prediction. As is the case with previous domain-based meth-
ods, the test sets might contain the protein pairs that have sequence similarity

with those in the training sets. When only domain information was consid-
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Table 3.1. Summary of 10-fold cross validations on yeast-protein datasets.

Feature Number of data Dimension Precision Sensitivity F-measure
(Train/Test) (Random) (Random) (Random)
D 10935/1215 3120 0.730 (0.200) 0.706 (0.193) 0.718 (0.197)
DA 10935/1215 3160 0.760 (0.200) 0.766 (0.202) 0.763 (0.201)
DS 10935/1215 3920 0.788 (0.200) 0.705 (0.179) 0.744 (0.189)
DHT 10935/1215 3520 0.758 (0.200) 0.759 (0.201) 0.758 (0.200)
DL 8780/976 3224 0.782 (0.200) 0.772 (0.198) 0.777 (0.199)
DAL 8780/976 3264 0.795 (0.200) 0.782 (0.197) 0.788 (0.198)

Several combinations of protein features are tested here: domains (D), domains and
amino acid compositions (DA), domains and sequential amino acid usages (DS).
domains, hydrophobicities, and surface tensions (DHT), domains and localizations
(DL), and domains, amino acid compositions, and localizations (DAL). Since we
used four times as many negatives as positives for training and testing, the expected
results of random classification were shown in parentheses.

ered (D), the precision and sensitivity were respectively 0.730 and 0.706, and
the F-measure was 0.718, 3.6 times better than random prediction. This high
predictive performance indicates that the difference between interacting and
non-interacting protein pairs can be well accounted for the combination of
functional domains in the feature space. The additional protein features fur-
ther increased the prediction accuracy. Adding the information on amino acid
compositions (DA) increased the precision, sensitivity and F-measure by 0.030,
0.060 and 0.045, respectively, indicating that the information on amino acid
composition is complementary to that of domain composition. The informa-
tion on localizations (DL) was, as expected, shown to be effective, increasing
the F-measure by 0.0590 even though the size of the data set had to be de-
creased. The highest F-measure, 0.788, was achieved by using both of these
two additional protein features (DAL). The improvements due to the consid-
eration of sequential amino acid usages (DS) and hydrophobicities plus surface
tensions (DHT) were smaller than the improvements due to the consideration
of amino acid composition or localization despite their large amount of infor-
mation. One of the possible reasons is that the number of training data for
these features is insufficient.

The ROC curves for the protein features that increased the F-measure
by more than 4.0 percentage points are shown in Figure 3.1. For 0.200 <

F Prate < 0.500 region, the effects of additional protein features were obvious.
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Figure 3.1. ROC curves for different protein features obtained with yeast-protein
datasets. Protein features shown here are: domains (D), domains and amino acid
compositions (DA), domains and localizations (DL), and domains, amino acid
compositions, and localizations (DAL).

For instance, the sensitivity of D at F Prate = 0.100 was about 0.769, while
those of DA, DL, and DAL were respectively about 0.825, 0.838, 0.859.

The calculated ROC scores of D and DAL were respectively 0.91, 0.94. The
DA and DL had the same score, 0.93. Although the F-measure and the ROC
score were highest for DAL, the amount of training and testing data for DAL
had to be decreased. Since DL and DA had the same ROC score, DA was used
in the following tests.

Yeast two-hybrid data assessment

The yeast two-hybrid system is one of the most pawérfui techniques to study
protein-protein interactions n vivo. As it is a genetic method that requires only
the manipulation of DNA, it can be used to reveal the large set of protein-

protein interactions that are of interest. Two big projects used the high-
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thmugh;mi; method and revealed the huge protein network in a yeast cell
[34, 35, 70]. It has also been used to infer the protein interaction map of
vaccinia virus [49], Caenorhabditis elegans [45], Drosophila melanogaster [24],
and humans [62]. Although the yeast two-hybrid methods are very sensitive
and thus can detect transient and/or unstable physical interactions, they are
known to yield many false positives. Hence, interactions détected by this
method should be considered as hypotheses [57, 60, 75].

The method of the present study can be used to assess the reliability of
yeast two-hybrid interactions since we excluded most of these error-prone in-
teractions from our training data. For this test, interactions reported in the
paper (34, 35, 70] were compiled, and those for which both proteins have at
least one Pfam domain were extracted. After removing the redundancy from
this dataset, we obtained 1979 yeast two-hybrid interactions as assessment
targets. '

The accuracy of the present method was tested by using as a reliable ref-
erence DIP-CORE data, which contains interactions determined Sy at least
one small-scale experiment or by at least two high-throughput experiments,
and by a homology-based ,predictien’ method [20]. As the DIP-CORE data
is partially overlapped by yeast two-hybrid data, the result of prediction was
evaluated by the sensitivity of this overlapping 'da,t'aset, which was defined as
the percentage of correct predictions of the DIP-CORE data divided by the
total number of the DIP-CORE data in the yeast two-hybrid dataset. Since
the number of overlapped interactions between these two datasets was small,

" we used the SVMs trained in the 10-fold cross validation test described above,
and performed predictions 10 times after removing the interactions used as
training data from the prediction targets. |

The averaged numbers of predicted interactions are shown in Figure 3.2.
The x? test showed that there was a significant relationship between the pre-
dicted interactions and the DIP-CORE interactions (o = 0.001). The calcu-
lated sensitivity, 0.585, was 2.3 times higher than that of random prediction.
These results indicate that the present method can detect high-quality interac-
tions among yeast two-hybrid data. On the other hand, the value of sensitivity
itself seemed low when compared with the results of cross validation (see Table
3.1). One possible reason for this is that the properties of protein interactions
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Figure 3.2. Summary of yeast two-hybrid data assessment. The test dataset used
here includes the yeast two-hybrid interactions reported by Uetz et al. and Ito et al.
Among 1979 yeast two-hybrid interactions, 496 interactions (25.1%) were predicted
to be likely (shaded circle). Three hundred and seventy-one interactions were found
in both the yeast two-hybrid and DIP-CORE dataset, of which 217 interactions
(58.5%) were predicted to be likely. Note that the numbers of interactions used for
this test were fewer than the numbers of interactions originally repc;rted because
our methad requires a protein to have at least one domain,

seem to differ between the yeast two«hybrxd data a;nd the trammg/ t%mng data

“used for the cross validation. For exampie, when focusing on the mterax;twns
between smgle domain proteins, the proportion of the testing protein pairs
containing the single-domain protein pairs that also appeared in the training
set was 20.3% on average, whereas this proportion in the ye&@t two-hybrid
test was only 11.6%. The dxffsrence between these proportions is szgmﬁcant
(@ = 0.001).

In Table 3. 2, we ﬂkustrate the iractmns of the predicted mteractzons in
different datasets The yeast twe«hybrld interactions reported by Uetz et al.
were more hkeiy to be predicted than that reported by Ito et al. were. Neariy
half of the interactions identified by both progects were predzcted ‘indicating
that these interactions are more likely to be true interactions.

One hundred and seventy-four pairs of proteins out of the 1979 yeast two-
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Table 3.2. Fractions of predicted yeast two-hybrid interactions.

Data sets : Total Predicted Fraction
Reported only by Uetz et al. 330 112 0.339
Reported only by Ito et al. 1566 344 0.220
Overlapped 83 40 0.482

Total | 1979 496 0.251

hybrid interactions are known to form the same protein complexes. Of which,
167 pairs (96.0%) were predicted to be likely by the SVM. Likewise, 10 pairs of
proteins out of the 1979 yeas‘t two-hybrid interactions are known to be synthetic
lethal, and all of them were predicted to be likely. Although the co-membership
of the same protein complexes;and the synthetic lethal interactions do not
necessarily imply the physical interactions between two proteins, thése results
suggest that our method can predict more likely yeast two-hybrid interactions.

In summary, the present method can detect high-quality interactions in the
yeast two-hybrid data, but the number of these interactions may be underes-
timated because yeast two-hybrid data contains many domain-domain pairs
that do not appear in the training dataset. |

Predicting unknown interactions

We next predicted the putative interactions in a dataset created by randomly
pairing the yeast proteins. Since some of the pairs were used as “negative”
data in the training dataset, we répeated the training and teSting procedure
three times with varyir;g the “negative” sets, and the pairs that were predicted
in all trials were extracted as reliable data.

The biolégical relevance of the predicted interactions was evaluated by
comparing the depth 4 GO annotations in the “biological piocess” hierarchy.
Here the depths 0 and 1 were respectively defined as “Gene.Ontology” and
“biological process”. According to this definition, the depth 4 annotations
are “carbohydrate metabolism,” “alcohol meta.bolism,” “oxidative phosphory-
lation,” “response to oxidative stress,” etc. In this test, protein pairs were
discarded when at least one of the proteins was not annotated or was assigned
a GO annotation with higher than depth 4. When the protein was assigned a
GO annotation with lower than depth 4, the upper GO annotation with depth

4 was re-assigned. The semantic difference between “Is-a” and “Part-of” was
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ignored since the main objective here is to calculate the proportion of pre-
dicted interactions having any biological relevance and to compare them with
that of “negative” pairs. When at least one protein of the pair had multiple
GO annotations re-assigned, all combinations of them were compared. When
this evaluation method was used, the rate of interacting pairs (those that were
used as positive in the training data set) sharing the same depth 4 GO anno-
tation was 92.7%, while that of the unknown pairs (those that were used as
negative in the training data set) was 56.0%, and the difference was significant
(o = 0.001). | L
The relationship between the SVM score and the proportion of protein
pairs sharing the same GO annotation is shown in Figure 3.3. At each SVM
score, the proportion of predicted interactions sharing the GO annotation was
far higher than that of negative pairs in the training dataset, and this differ-
ence increased as the decision threshold became higher. Homo-dimers tend
to have high scores, and always share the GO annotation. For this reason,
homo-dimers were excluded from the p'ryedi‘cted' interactions and the propor-
tions were recalculated, but the exclusion made little difference. This evalu-
ation is limited, since sharing the same GO annotations does not necessarily
imply physical interaction between two proteins, and vice versa. The strong
relationship between the proportion and the SVM score indicates, however,
the present method can detect more likely interactions among theankn@wn
protein pairs. The number of predicted interactions is also shown in Figure
3.3 on a logarithmic scale. The number of interactions which had the scores
of more than 0, 0.5, 1.0, 1.5, and 2.0 were respectively 173876, 101217, 24250,
3703, 503 and 59. Several rough estimations of the total number of interactions
in yeasts have been made without definite evidences (3, 69, 74], and they range
from 8000 to 30000. Compared with these numbers, those predicted by the
present method seems to indicate over-prediction of interactions in some cases.
One possible reason for this is that the present method cannot distinguish very
similar proteinskin paralog pathways, such as serine/threonine protein kinases.
For instance, FUS3 and HOG1, which are involved in the pheromone-induced
‘signal pathway and in the maintenance of water homeostasis, respectively, are
paralog serine/threonine kinases. It is known that the STE7 serine/threonine
kinase phosphorylates the FUS3 in the pheromone-induced signal pathway,
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Figure 3.3. Fractions of protein pairs sharing the same GO annotations. The

fraction of the predicted interactions sharing the same GO annotations is plotted

" against the SVM-score threshold used for the prediction (solid line with closed
circles). The number of interactions predicted at a given threshold (solid line
with open triangles) is shown on the right-hand axis on a logarithmic scale. For
reference, the fractions of the positive and negative examples in the training dataset

" sharing the same GO annotations are shown as horizontal dashed line and solid
line, respectively. ’

and this leads to the erroneous prediction of interaction between STE7 and
HOG1. These paralog pathway cases can be addressed in some extent by using
the phylogenetic tree of interaction proteins [41]. To filter the inevitable errors
that occur when théptesent method is applied, it needs to be combined with
another screening method. Nevertheless, it can help biologists gain insights by
identifying the interactions that are likely to occur in the cellular process.
The top 20 predicted interactions are listed in Table 3.3. Of these, three
interactions were confirmed by references (YPD of Incyte, http://www.incyte.
com/control/home) and PRIME [42]. In addition, many of them seem to have
functional relationships even if they do not have the same GO annotation. For
example, CMD1 is a calmo&uiin, a Caicium—bihding protein, and is involved in
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many processes including cell polarization, nuclear division, and chromosome
maintenance. NSP1, on the other hand, is localized in nuclear membranes and
nuclear pores and is involved in nucleocytoplasmic transport. Its depletion
experiment also suggests the role of NSP1 in nuclear division process [53].
There is a logical interaction between CMD1 and NSP1 in nuclear division
process.

All predicted interactions between yeast proteins are avmlable from http://
ch.k. u»t;okyo ac.jp/ “dohkan/.

Comparison with other methods

We first compared the performance of the SVM trained using the informa-
tion on domains énd amino acid compositions with that of a homology-based
method. Figure 3.4 shows the ROC curves for both methods. Except for
FPrate < 0.020 region, our SVM cléarly autperforymed the homology-based
method. For instance, the sensitivity of the SVM at F Prate = 0.150 was 0.850,
while that of the homology-based method was 0.638. This result indicates that
our method is especially useful for a first screening of likely interactions from
numerous protein pairs. To investigate to what extent our SVMs can predict
protein-protein interactions that cannot be predicted by the homology-based
method, we removed all the interactions predicted by the homology-based
method from the test datasets used in the previous 10-fold cross validation
and recalculated an averaged F-measure on the datasets. This test was per-
formed repeatedly using different E-value thresholds for the homology-based
method. As shown in Fig. 3.5, our SVM achieved far better results than ran-
dom prediction. This implies that, as shown in Fig. 3.4, although there is
little difference in sensitivity at very low false-positive-rate region, our SVM
can predict protein-protein interactions that cannot be predicted by the ho-
mology methods. ' ' .

Several other methods for pzedzetmg yeast pmtemupmtem interactions have
been proposed (see Section 2) . Bock and Gough used SVMs and physicochemi-
cal properties of amino acid residues such as hydmphebicity and surface tension
[10]. We evaluated the contribution of these features to the prediction by re-
traihing our SVMs without using the domain information a:}d then testing. As
a result, the precision, sensitivity, and F-measure were respectively decreased
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MOML® ' GO:0006270  DNA replication initiation
GO:0006367  regulation of transcription from Pol 1I promoter
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GO:0006897  endocytosis
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GO:0007120  axial budding

) GO:0007121 © _ polsr buddin
FIE GO:0000282  bud site selection )
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. (O:0006468  protein amino acid phosphorylation
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GO:0007266 - RBho protein signel transduction
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S@GO:0000910 cytokinesis
GO:0006468  protein amino acid’ phosphorylation
GO:0007118  apical bud growth
GO:0007266 Rho protein signal transduction’

nuclear m. splicing, via spliceosome

SMD3 GQ 0000398 nucleas mRNA sp)icigg, via spliceosome
DI GO0006611 3 ependent p T catabolsm
GO:0006908  nonselective vesicle fusmu
GO:0006915 . apoptosis
GO:0007049  cell cycle
GO:0015031  protein transport

GO:0030433  ER iated p taboli
RETS GO:0008511  ubiquitin-dependent protein catabolism
TMRSIT GO0006628 hondrial translocation
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ChCas G 0006611 ubiquitin-dependent protein catabolism

GO:0006906 - nonselective vesicle fusion
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GO:0006409 tRNA»nucleus export
GO:000660 1 import
GO 7 NLSw aring sul 1 import
GO:0006608  snRNP protein-nucleus import
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smx2! GO:0000398 - “nuclear mRNA splicing, via _spli "
RVS167 GO:0006897  endocytosis
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NUP145 GO:0006388  tRNA splicing
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GO:0006407  rRNA-nuclens export
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GO:0006409  tRNA-nucleus export
GO:0006606 protein-nncleus Import
GO:0006607  MLS-bearing substrate-nucleus import
GO:0008608 snRNP protein-nucleus import
GO:0006609 m?&ﬁkobimimg {hnRMNP) protein-nucleus import
GO00066810 1al prot: 1 import
GO:0006611 preteiu -nucleus export
GO:0006999  nuclear pore organization snd bi is )
} 1000647, “terminal protein amino ae Bcotylation
GO:0019048°  virus-host interaction
MAKS1 GO:0006474 - . N-terminal protein arino acid acetylation
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000611 ublquitin-dependsnt protein catabolism
GO:0006906 - Tective v e fi
GO:0008915  apoptosis
GO:0007049  cell cycle
GO:0015031  protein transport
G0:0030433 ER- tein catabol
RFC1 GO:0006272  leading strand e!ongation
GO:0006281 DNA repsir
GO: 0006298 _ mismatch repair

* Conﬁrmed by PRIME {42}
¥ Confirmed by YPD (http://www.incyte.com/control /home)
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Figure 3.4. ROC curves for SVM and homology-based method applied to yeast-
protein datasets. As before, we trained the SVM using the information on domains
and amino acid compositions of proteins.
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to 0.713, 0.649, and 0.679 in a 10-fold cross validation test (cf. Table 3.1).
This result implieé’ that only the use of these physicochemical properties is not
sufficient to predict interactions accurately, and domain information is quite
informative.

Our method is novel in that it can take the effect of multiple domains
in account. The maximum-likelihood estimation-based method proposed by
Deng et al. assumed the domain independence [21] and achieved a sensitiv-
ity of 0.797 and a precision of 0.390. The attraction-repulsion model pro-
posed by Gomez et al. chose the most probable domain-domain interaction to
score a protein pair and achieved an ROC score of about 0.82 [25] (our result:
ROC score = 0.94 with features DAL). These methods did not model the case
where more than two domains mediate a protein-protein interaction, and de-
ciding which domain-domain interaction is the key determinant of the protein-
protein interaction is problematic. Han et al. recently introduced the ideas of
domain combination and domain combination pairs and achieved a sensitivity
of 0.86 and a specificity of 0.56 [26] (our results: sensitivity = 0.78 and speci-
ficity = 0.95 with features DAL). Although this method considers the effects of
multiple domains, protein-protein interactions are not always determined by
only domain compositions. In this context, our method is advantageous in that
the effects of multiple domains and other protein features can be considered by
combining them into a feature vector. Although the evaluation of the method
itself is quite difficult due to the fact that the performance of machine learning
is largely influenced by validation datasets, our method yielded relatively high

prediction accuracies compared to those reported previously.



3.4.2 Predicting mammalian protein-protein interactions

Predicting human protein-protein interactions

Predicting mammalian protein-protein interactions is a challenging problem
on which few previous works focused, and is far more difficult than predicting
yeast protein-protein interactions because the number of mammalian proteins
and of all the possible paii's of them are much larger than those of yeast pro-
teins. In this subsection, we assess the applicability of our method to predicting
human protein-protein interactions based on cross-validation. Because subcel-
lular localizations of many human proteins are still unknown, we trained SVMs
using the information on only domains and amino acid compositions.

We list the averaged results of 10-fold cross validations in Table 3.4. Here
we tested two sets of domain information: a set of all domains observed in the
human proteins (Dy) and a set of all domains observed in yeast proteins (Dy),
each with and without amino acid compdsitions (DyA and Dy A, respectively).
The motivation of using the domains observed in yeast proteins is to reduce
the dimension size of the feature vector and to compare the performance of the
SVMs with that of the SVMs trained on the yeast protein pairs. The results
listed in Table 3.4 indicates that the information on amino acid compositions
is effective for predicting human protein-protein interactions as well. A com-
parison of Dy and Dy and of DyA and DyA indicates that the SVMs trained
using domains observed in human proteins outperform the SVMs trained using
domains within yeast proteins. The highest F-measure, 0.776, was achieved
by using the feature DyA and was close to the result of the SVM trained on
the yeast protein pairs using the information on domains and amino acid com-
positions (F-measure: 0.769, see Table 3.1). The SVM trained on the human
protein-protein interactions using the feature Dy had worse results than the
SVM trained on the yeast protein-protein interactions using the feature D,
~although the number of protein pairs used for the training and testing was
greater in the former and the dimensions of the feature vectors were the same
between these SVMs (see Table 3.1). Since the former SVM did not use the
information on domains that were in the human proteins but not in the yeast
proteins, this result implies that emergence of new domains in a protein may

alter the protein’s interaction partners.
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Table 3.4. Summary of 10-fold cross validations on human-protein datasets.

Feature Number of data Dimension Precision Sensitivity F-measure

, (Train/Test) (Random) (Random) (Random)
Dy 14328/1592 3120 0.765 (0.200) 0.624 (0.163) 0.687 (0.180)
DvA 14328/1592 3460 0.774 (0.200) 0.716 (0.185) 0.744 (0.192)
Dy 26154/2906 4700  0.798 (0.200) 0.681 (0.171) 0.734 (0.184)
DHA 26154 /2906 4740 0.797 (0.200) 0.757 (0.190) 0.776 (0.195)

We tested two sets of protein domains: a set of domains in yeast proteins (Dy) and
a set of domains in human proteins (Dy), each with and without the information of
amino acid compositions (A). As in Table 3.1, the numbers in parentheses indicates
the expected performances of random classification on the datasets containing four
times as many negatives as positives.

We compared the performance of SVM trained on human protein pairs
with that of SVM trained on yeast protein pairs using ROC curves (Fig.3.6).
The protein features used here were all domains observed in each of the or-
ganism’s proteins and amino acid compositions. As indicated, there was no
clear difference between the two curves. In fact, the ROC score, 0.93, was
the same for both SVMs. Together with the results listed in Table 3.4, this
result implies that our method can be applied to the prediction of interactions
between human proteins.

We next compared the performance of the SVM trained on human protein
pairs with that of a homology-based method in predicting human protein-
protein interactions. Figs. 3.7 and 3.8 are the human-protein results corre-
sponding to the yeast-protein results shown in Figs. 3.4 and 3.5. As expected
from the results on the yeast-protein datasets, the SVM trained on the human
protein pairs clearly outperformed the homology-based prediction.

To investigate to what extent the performance of SVM is influenced by the
number of training data, we randomly removed a certain proportion of protein
pairs from the yeast-protein and human-protein datasets and retrained SVMs
on those datasets. As shown in Fig. 3.9, the values of F-measure decreased
as we decreased the number of data used for training. From this figure, it
can be roughly estimated that if the number of protein-protein interactions is
doubled, corresponding value of F-measure will be close to 0.85.

Currently, few machine-learning-based methods have been proposed to pre-

dict protein-protein interactions in mammals. Recently, Martin et al. used a
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Figure 3.9. Re!atibnship between the fraction of training data used for training
SVM and corresponding F-measure. '
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protein feature similar to our sequential amino acid usage [48] with SVM and
predicted protein-protein interactions in yeasts and humans. The precision and
sensitivity were reported to be 0.715 and 0.632 in predicting interactions in
yeasts, and 0.722 and 0.662 in predicting interactions in humans (our method:
0.760 precision and 0.766 sensitivit;y in predicting interactions in yeasts and
0.797 precision and 0.757 sensitivity in predicting interactions in humans, us-
ing domains and amino acid compositions as protein features). Note that our
prediction problem was more difficult than their problem because whereas they
used the same number of positives and negatives for the training and testing,
we used four times as ma;ny negatives as positives. This rough comparison
implies that our method is sﬁxperior to ‘th‘eir method.

Cross-species prediction

Heretofore, we trained and tested our SVMs in an intra-organism manner: the
datasets for training and testing contained information about préteins from
the same species. However, this approach cannot be applied to the organ-
ism whose protein-protein interactions are rarely known or not available from
~ public databases. A solution for this problem is to predict protein-protein
interactions of a target organism l;ising SVM txa;ined on protein pairs of a dif-
ferent organism. In this subsection, we examine the performance of this cross-
species prediction using the following protein features: domains observed in
yeast proteins (Dy), domains observed in human proteins (Dy) and amino acid
compositions of proteins (A). | | SR

The performances of SVMs trained on yeast protein pairs in predicting
human protein-protein interactions were shown in Table 3.5. The values of
precision, sensitivity, and F-measure obtained using the protein feature Dy
were 0.494, 0';4};7, and 0.452, respectively, indicating that the set of yeast
protein-protein interactions does not contain enough information to predict
human prbtein’protein interactions. The perfcrmanée was further decreased
by addiﬁg the inforiﬁation on amino acid compositions. Together with the
fact that the test set contains only the pairs of human proteins retaining the
domains observed in yeast proteins, these prediction results imply that pro-
teins have changed their interaction partners during evolution. Conversely,
we predicted yeast protein-protein interactions using SVMs trained on human
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Table 3.5. Performance of SVM trained on yeast protein pairs in predicting human
protein-protein interactions.

Feature Number of data Dimension Precision Sensitivity F-measure

(Train/Test) (Random) (Random) (Random)
Dy 12150/15920 3120 0.494 (0.200) 0.417 (0.169) 0452 (0.183)
DA  12150/15920 3160  0.394 (0.200) 0.474 (0.240) 0.431 (0.218)

The protein features tested are domains within yeast proteins (Dy) and amino acid
compositions of proteins (A).

Table 3.6. Performance of SVM trained on human protein pairs in predicting
yeast protein-protein interactions.

Feature Number of data Dimension Precision Sensitivity F-measure
- (Train/Test) (Random) (Random) (Random)
Dy 15920/12150 3120 0573 (0.200) 0.284 (0.099) 0.380 (0.133)
DyA 15920/12150 3160  0.503 (0.200) 0.429 (0.170) 0.463 (0.184)

The protein features tested are domains within yeast proteins (Dy) and amino acid
compositions of proteins (A).

protein pairs and found that the performances of SVMs were far worse than
that of the same SVMs in predicting human protein-protein interactions (Table
3.6). Here the addition of informa,tibn on amino acid compositions increased
the performance of SVM. We have no hypothesis to explain this phenomenon.
We next predicted mouse protein-protein interactions using SVMs trained on
human protein pairs. As shown in Table 3.7, the performance of SVMs was
similar to that of the same SVMs in predicting human protein-protein interac-
tions. The highest F-measure of 0.765 was obtained using the protein features
Dy and A, indicating that the SVM trained on human protein pairs can be
applied to the prediction of mouse protein-protein interactions.

In summary, the performance of cross-species prediction depends on the
evolutionary distance between the source and target organism. Prediction of
protein-protein interactions in, for example, chimpanzee, rat, and guinea pig

may be possible by using the SVM trained on the human protein pairs.



Table 3.7. Performance of SVM trained on human protein pairs in predicting
mouse protein-protein interactions.

Feature Number of data Dimension Precision Sensitivity F-measure
(Train/Test) ) (Random) (Random) (Random)
Dy 15920/660 3120 - 0.733 (0.200) 0.500 (0.136) 0.595 (0.162)
DyA 15920/660 3160 0.742 (0.200) 0.720 (0.194) 0.731 (0.197)
Dy 26154/1145 4700 0.720 (0.200) 0.545 (0.152) 0.621 (0.172)
DuA 26154/1145 4740 0.807 (0.200) 0.727 (0.180) 0.765 (0.190)

The protein features tested are domains within yeast proteins (Dy), domains within
human proteins (Dy), and amino acid compositions of proteins (A).
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