Chapter 4

Improving the performance of
SVMs for constructing
hypothetical protein-protein
interaction maps

4.1 Introduction

A computational method for predicting a comprehensive set of protein-protein
interactions, for making a protein-protein interaction map, from sequence in-
formation can help biologists reduce the time, cost, and human resources re-
quired for filtering and specifying the protein pairs that need to be exam-
ined. The input dataset in this kind of computational prediction comprises
all possible pairs of proteins in an organism, most of which are presumably
non-interacting. Many of the methods developed after 2000 for predicting
protein-protein interactions are based on supervised machine learning tech-
niques, such as random decision forests [14] and Support Vector Machines
(SVMs) [5, 10, 22, 48], and perform well when the input dataset contains the
same number of interacting and non-interacting pairs of proteins. When the
input dataset contains far more non-interacting pairs than interacting pairs,
however, these methods yield a large number of false positives [48]. The ob-
jective of this chapter is to evaluate and improve the performance of a method
based on supervised machine learning when it is used to construct a yeast
protein-protein interaction map and a human protein-protein interaction map.

Most of the previous studies using methods based on supervised machine
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learning to predict protein-protein interactions have used training datasets
containing approximately the same numbers of interacting and non-interacting
pairs of proteins. Such a training dataset is inadequate, however, because in an
actual cell the number of non-interacting pairs (negatives) is much larger than
that of interacting pairs (positives), and a classifier trained on a dataset with a
small fraction of non-interacting pairs will yield many false positives. Using our
previously developed SVMs to predict protein-protein interactions, we show in
Subsection 4.4.1 and 4.4.2 that an SVM trained on data containing the same
number of positives and negatives does not perform as well as one trained on
data conta,inihg more negatives than positives. We then report in Subsection
4.4.3 that an approach using multiple SVMs can predict more of the likely
interactions in a test dataset created by randomly pairing proteins than a single
SVM can. Finally in Subsection 4.4.4 we demonstrate that our method can
also be used to extract likely interactions from high-throughput interactions,

which is another important problem in obtaining reliable interaction maps.

4.2 Methods
4.2.1 SVM-based prediction

As in Chapter 3, we train SVMs using the information on domains and amino
acid compositions of proteins. Briefly, let d = (d;,d, ..., d,) be the domain
vector assembled for a single protein. The element d; is 1 if the protein has
the domain 7 and is 0 otherwise. The dimension of the vector depends on
the number n of distinct domains in all the proteins used for training. Let
f = (N(a1), N(az),...,N(ax))/L be the amino-acid-composition vector as-
sembled for the same protein. The elements N(a;) - N(ag) denote the num-
bers of each of the standard proteinogenic amino acids and L represents the
length of the protein (i.e., the total number of amino acids in the protein). We

then assemble a feature vector for the protein by using
p=d® uf, (4.1)

where @ denotes vector concatenation and w denotes the weight of the amino-

acid-composition information relative to the domain information. The feature
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vector for the pair of proteins 1 and 2 can then be written as

X = p1 D p2, (4.2)

where p; and p, are the corresponding feature vectors calculated using Eq.
(4.1).

Given a training dataset that includes both interacting and non-interacting
pairs of proteins, SVMs look for a decision boundary that maximizes the
margin between the two sets of data points. Because SVMs can perforin bi-
nary classifications in potentially higher-dimensional spaces by using the kernel
method, we used the Gaussian radial basis function (RBF) kernel defined by

K(x,y) = exp <M), (4.3)

o2

where x and y are feature vectors calculated using Eq. (4.1) and o is a pa-
rameter. As described in Chapter 3, the advantage of using this kernel for our
problem is that it eliminates the need to assume domain independence: the
effect of multiple domains in a protein on a protein-protein interaction can be
captured using the Gaussian RBF kernel. The weight w and parameter o were
empirically determined as w = 10 and o = 5. In a test phase an SVM calcu-
lates a score, which is the distance in the feature space from the data point
to the nearest point on the decision boundary. When the default threshold is
0, a pair of proteins assigned a positive score is predicted to interact and a
pair assigned a negative score is predicted not to interact. The threshold can
be adjusted so that an SVM yields fewer false positives; this corresponds to a
parallel shift of the decision boundary. In this chapter, we trained and tested
our SVMs in an intra-organism manner: the datasets for training and testing

contained information about proteins from the same species.

4.2.2 Prediction using multiple SVMs

We think that a training dataset containing the same number of positives and
negatives causes a classifier trained on it to yield many false positives when
predicting interactions and thus that the false positive rate can be reduced by
increasing the number of negatives in the training dataset. To test this hy-

pothesis, we used training datasets containing more negatives than positives.
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The number of negatives in a training dataset has a practical limit, however,
because the training time increases significantly as we increase the number of
negatives used for training. We tackled this problem by using multiple SVMs,
each trained on a dataset containing a different set of negatives. Training
multiple SVMs on relatively small datasets is more convenient than training a
single SVM on a large dataset because it can be easily paralleled. The training
dataset for each SVM can be unbalanced to contain more negatives than pos-
itives. Each of the SVMs uses its own separating hyperplane to score a pair of
proteins. For the following reason the score we use for prediction is the lowest
one provided by any of the SVMs. Each SVM determines a linear decision
boundary in the feature space induced by a kernel function. If the negatives
used for training are insufficient and not representative for all negatives, the
positive space defined by the decision boundary will be excessively large, caus-
ing the SVM to yield many false positives for a large test dataset. Clearly, the
number of different decision boundaries increases as we increase the number
of SVMs, since we train each SVM on a dataset containing the same set of
positives but a different set of negatives. We want to make use of all these
boundaries to expand the negative space in the feature‘sp&cez to reduce false
positives. We do this by using the lowest score, which corresponds to choosing
the decision boundary that encloses the positive space most tightly with re-
spect to the test data point. The lowest score approach has a risk of yielding
many false negatives. We will discuss this point and alternative approaches in

later sections.

4.3 Datasets and measurements

4.3.1 Datasets

We used the same datasets as in Chapter 3 to examine the performances of
SVMs in constructing hypothetical protein-protein interaction maps of yeasts
and humans. For details on the datasets, see Subsection 3.3.1.

Z1&.3.2 Measurements

As in Chapter 3, sensitivity (Pr), false positive rate (F Prate), precision (Sn),

and F-measure (F') were defined by
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Sn = W}; | (4.4)
F Prate = TN L EP (4.5)
Pr = T“FT;%’ (4.6)
and 2 x Prx Sn
= "Prin 4.0

where TP, TN, FP, and FN represent the numbers of true positives, true
negatives, false positives, and false negatives. A receiver operating character-
istic (ROC) curve is a plot of the sensitivity against the false positive rate
obtained when varying the threshold for prediction. We emphasize that the
negative/positive ratio of the test dataset does not affect a ROC curve: ran-
dom classification always yields a straight line with gradient 1, regardless of
the negative/positive ratio of the test dataset.

Again, we also assessed the performance of our SVM-based approaches in
a practical application by examining our classifiers abilities to predict likely
interactions between protein pairs that are not known to interact. We assumed
that an interaction is likely if both proteins function in the same biological
processes. For this test we used a subset of GO terms that are reachable in four
hops from the root node of the biological-process category. We reannotated a
protein with these GO terms by tracing back the directed acyclic graph from
the GO terms originally assignéd to the protein. When encountering a GO
term that has many parents, we traced back along all the paths. We ignored
those GO terms originally assigned to a protein that are within three hops of
the root node. For simplicity the semantic difference between is a and part of
was ignored. After this reannotation process, a protein originally annotated
with the GO term glutamate biosynthesis was, for example, reannotated with
the terms cellular metabolism, biosynthesis, nitrogen compound metabolism,
and primary metabolism. We then assumed that two proteins function in the
same biological processes if at least one GO term matched between the two
proteins. When we applied this evaluation method to the protein pairs in
our training datasets, we found that 91.7% of the positives and 60.9% of the

negatives in the yeast dataset function in the same biological processes, that
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81.8% of the positives and 49.1% of the negatives in the human dataset function
in the same biological processes, and that in each dataset the difference between
the percentages of positives and negatives that function in the same biological
processes was significant (a = 0.001). The protein pairs for this test were
obtained by randomly pairing the proteins 100,000 times. We then removed
all pairs that were in the training dataset and all pairs that consisted of proteins
that cannot be reannotated with the subset of GO terms. A total of 70,420
pairs of yeast proteins and 37,575 pairs of human proteins were used for this

teét.

4.4 Results

4.4.1 Cross-validation analyses on yeast protein pairs

We first used 10-fold cross-validation analyses to evaluate the performance
of a single SVM in predicting protein-protein interactions in yeast. Fig. 4.1
shows ROC curves for four single-SVM-based classifiers trained on datasets
containing different numbers of negatives (N/P = 1.0, N/P = 2.0, N/P ==
3.0, and N/P = 4.0, where N/P denotes the negative/positive ratio). We
focused on the false positive rates below 0.01 for the following reason. If
there are 30,000 interactions between 6000 yeast proteins [74], there must be
6000 x 6001/2 - 30,000 = 17,973, 000 non-interacting pairs of proteins. Thus
there are 600 times as many negatives as positives, or only 0.17% of all pairs
are interacting. Then even a good classifier with a false positive rate of 0.01
would yield no less than 17,973,000 x 0.01 = 179,730 false positives if the
input 'data was all pairs of proteins. It is therefore important to consider very
low false positive rates when assessing the performance of classifiers used for
constructing an interaction map.

As shown in Fig. 4.1, the SVM trained on the dataset with the highest
N/P performed best. The training time, however, increased almost linearly
with the N/P ratios of the training datasets: on a computer with 600MHz
CPU, the training times on the N/P = 1.0, 2.0, 3.0, and 4.0 datasets were
respectively 0.4, 2.1, 3.9, and 7.6 hours. For this reason we did not use a
dataset containing more than four times as many negatives as positives when

we trained our SVMs.
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Figure 4.1. ROC curves for single-SVM-based classifiers applied to yeast-protein

datasets. N/P denotes the negative/positive ratio of the dataset used for training
the SVM. The black line shows the expected result of random prediction.
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Figure 4.2. ROC curves for various lowest-score classifiers applied to yeast-protein
datasets. The black line shows the expected result of random prediction. :

We next examined the performance of the lowest-score approach when the
number of SVMs (trained on N/P = 4.0 datasets) used for classification was
varied between one and nine. As shown in Fig. 4.2, performance improved as
we increased the number of SVMs. The small difference between the approach
using seven SVMs and that using nine SVMs suggests that nine is the practical
limit of the number of our SVMs used in the lowest-score approach.

In the above comparison, the total number of negatives used in a training
procedure varied according to the number of SVMs used for classification. For
example, we used 2430 x 4 = 9720 negatives to train one SVM and used
2430 x 4 x 9 = 87480 negatives to train nine SVMs. Because training an
SVM on a dataset containing more than four times as many negatives as
positives requires a lot of time, we cdmpared the performance of a single SVM
trained on the N/P = 4.0 dataset with the performance obtained using the
lowest score provided by four SVMs that were each trained on the N/P = 1.0
dataset. Comparing the open and filled triangles in Fig. 4.2, we see that if
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the total number of negatives used in the training procedure is the same, the
performance of the lowest-score approach is not necessarily better than that of
the single SVM. The training times for an SVM, however, show that the lowest-
score approach is far more practical than the single-SVM-based approach if
more than one CPU is available. While on a computer with a 600MHz CPU it
takes 7.6 hours to train a single SVM on an N/P = 4.0 dataset, on a computer
with two 600MHz CPUs it would take less than an hour to train four SVMs
on N/P = 1.0 datasets. It follows that the lowest-score approach using nine
SVMs each trained on an N/P = 4.0 dataset would be far more practical than
a single SVM trained on an N/P = 36.0 dataset.

Focusing on the SVMs trained on the N/P = 1.0 datasets, we see little
difference in performance between the single SVM (Fig. 4.1, open squares)
and the lowest-score approach using four SVMs (Fig. 4.2, closed triangles)
even though the total number of negatives used in the training procedures
was different. This may be because an improperly low score assigned by a
weak SVM leads to a failure to find a true interaction, thus decreasing the
sensitivity. This implies that the decrease in sensitivity can be compensated
for by the large decrease in the false positive rate if the performance of each
SVM used in the lowest-score approach is sufficiently high. As shown later in
Figs. 4.4 and 4.5, this implication is supported by the results obtained when
predicting interactions between human proteins: the performance of each SVM
was relatively high and thus the lowest-score approach using four SVMs each
trained on the N/P = 1.0 dataset performed far better than the single SVM
trained on the N/P = 1.0 dataset and performed nearly as well as the single
SVM trained on the N/P = 4.0 dataset.

The negative/positive ratio of a test dataset affects the precision defined
in Eq. (4.6). Consider the following cases, for example. If test data are all
true positives, even a random classifier has a precision of 1.0. The precision
evaluated in most of the previous works was that of classifiers tested on datasets
containing the same number of positives and negatives, in which case a random
classifier would have a precision of 0.5. Practical probiefns are far more difficult
because most of the proteins in a cell do not interact with each other. Given
the negative/positive ratio N/P of a test dataset, we can estimate the precision
in several situations as follows. We first define N/ P = (TN+FP)/(T'P+FN).
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From Eq. (4.4), we have TP = Sn x (TP + FN). We can thus rewrite Eq.
(4.6) as

TP

" TP+ FP

_ Snx(TP+FN)

"~ Snx (TP+FN)+FP
Sn

= ' 4.8
Sn+ rpirw (48)

Sn

= TNLEDP P
Sn+ FriN X TNIFP

B Sn
- Sn+ N/P x FPrate’

Pr

The sensitivity and false positive rate defined in Egs. (4.4) and (4.5) are not
affected by the N/P of a test dataset, and hereinafter we use Eq. (4.8) instead
of Eq. (4.6) to estimate the precision obtained when testing datasets with
different N/P ratios.

We first focused on the approach using nine SVMs trained on data con-
taining four times as many negatives as positives and plotted the sensitivity-
precision curves obtained when simulating the testing of datasets with various
N/P ratios (Fig. 4.3). The plot indicated by circles should reflect the perfor-
mance in constructing an interaction map for yeast proteins because we have
estimated above that a yeast cell has 600 times as many pairs of non-interacting
protein pairs as it does interacting pairs. The performance measures obtained
using two different approaches at the thresholds giving the highest F-measures
are listed in Table 4.1. When the test data contained the same number of
positives and negatives, the performance measures differed little between the
two approaches. When the test data contained 600 times as many negatives
as positives, however, multiple SVMs trained on unbalanced data performed
much better than a single SVM trained on balanced data.
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Figure 4.3. Es‘camated performance obtamed with yeasb—protem test datasets ad-
_ justed to have various negative/positive ratios. Shown are the estimated results
of the lowest-score approach using nine SVMs, each trained on data containing
four times as many negatives as positives. The precision was calculated using Eq.
(4.8).

Table 4.1. Performance obtained at optimum thresholds with single-SVM and
multiple-SVM approaches applied to yeast-protein datasets. -

N/P of test data B Approach Threshold  Precision Sensstmty F-measure
1.0 N/P=1.0, one SVM 0.0 0.811 0.861 0.835
1.0 N/P=4.0, nine SVMs  -1.2 0.831 0.835 0.833
600.0 N/P=1.0, one SVM 1.9 0.114 0.095 0.104
600.0 N/P=4.0, nine SVMs 0.6 0.187 0.263 0.219

The precision was calculated using Eq. (4.8), and we chose the thresholds that maxi-

mized the F-measures under the specified N/P conditions.



Table 4.2. Performance obtained at optimum thresholds with single-SVM and
multiple-SVM approaches applied to human-protein datasets.

N/P of test data Approach Threshold _Precision _Sensitivity F-measure
1.0 ~ N/P=1.0, one SVM 0.0 0.832 0859 0845
1.0 N/P=4.0, nine SVMs  -1.1 0.859 0852 0855
600.0 N/P=1.0, one SVM 19 0072 0119 0089
600.0 N/P=40, nine SVMs 0.7 0291 0300  0.296

The precision was calculated using Eq. (4.8), and we chose the thresholds that maxi-
mized the F-measures under the specified N/P conditions.

4.4.2 Cross-validation analyses on human protein pairs |

The applicability of our method to the prediction of interactions between hu-
man proteins must be validated because the much larger number of human -
proteins makes the prediction of interactions far more difficult than it is with
yeast proteins. The performance measures listed in Table 4.2 and the ROC
and sensitivity-precision curves shown in Figs. 4.4, 4.5, and 4.6 are the human-
protein results corresponding to the yeast-protein results listed in Table 4.1 and
shown in Figs. 4.1, 4.2, and 4.3. The corresponding training times on the N/P
= 1.0, 2.0, 3.0, and 4.0 datasets were respectively 16.5, 28.4, 58.5, and 64.2
hours. ; A
Unexpectedly, the performance of SVMs trained on the human protein
pairs was slightly better than that of SVMs trained on the yeast protein pairs
(cf. Figs. 4.1 and 4.4). Three additional factors are important to consider.
First, the training datasets for the human proteins were no more than 2.4 times
larger than the training datasets for yeast proteins. Second, domains are not
as diverse as proteins are: the human genome encodes at least four times as
many proteins as the yeast genome does [61], but the number of domain types
found in the human protein sequences is no more than 1.6 times g’réat'er than
that found in the yeast protein sequences (see Subsection 4.3.1). Finally, the
~ interaction predictions of our SVMs are based mainly on domain information.
From these considerations and the pfediction results we can hypothesize that
over the course of evolution the number of domain combinations that medi-
ate protein-protein interactions has not increased as much as one might have
expected from the increased number of all possible pairs of proteins. The
verification of this hypothesis is, however, beyond the scope of this paper. -
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Figure 4.4. ROC curves for single-SVM-based classifiers applied to human-protein

datasets. N/P denotes the negative/positive ratio of the dataset used for training
the SVM. The black line shows the expected result of random prediction.
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4.4.3 Predicting unknown interactions

The cross-validation analyses described in the previous sections are standard
ways of estimating the actual error rate of a classifier. It is known, however,
that certain negative samples lead to the overestimation of the predictive per-
formance in cross-validation analysis [6]. In this section, we evaluate how likely
the interactions predicted by our method are in terms of GO annotations. For
this test we used randomly created pairs of proteins as a test dataset (see Sec-
tion 4.2) that we think has the same negative/positive ratio of protein pairs
that an actual cell does.

To examine whether SVM scores can be used as a measurement of the
reliability of predictions, we first explored the relation between SVM scores
of protein pairs and the fractions of likely interactions between those pairs.
For yeast protein pairs (Fig. 4.7) as well as human protein pairs (Fig. 4.8),
only the lowest-score classifier using nine SVMs, each trained on the N/P =
4.0 dataset (closed triangles), consistently assigned higher scores to pairs of
proteins that are more likely to interact. We next plotted the fractions of
likely interactions in the predicted interactions (Figs. 4.9 and 4.10). The pairs
of proteins predicted to interact by the classifier using nine SVMs trained on
the N/P = 4.0 dataset (closed triangles) were more likely to interact than
the pairs predicted to interact by other approaches. From these results we
conclude that the lowest-score classifier using nine SVMs each trained on the
N/P = 4.0 dataset can predict likely interactions between pairs of proteins
created randomly.

4.4.4 Predicting likely interactions among high-throughput
interactions

High-throughput experimental systems for detecting binary protein-protein in-
teractions, such as the yeast two-hybrid system, are known to yield many false
positives. Predicting likely interactions among high-throughput interactions
is therefore another important problem that needs to be solved if we are to
obtain reliable interaction maps. Examining the applicability of our method to
this problem, we used four independent test datasets: two sets of interactions

between yeast proteins that were reported by Uetz et al. [70] and Ito et al.
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60



| AN/P=4.0, nine SVMs

i
|
0.80 A i A N/P=4.0, one SVM
@ A | WN/P=1.0, four SVMs
S 0.75 | aN/P=1.0, one SVM
{% Ak t DA
% 0.70 I A
~ A AA_ A A
T 065 wm A, A,
= oo
- B oo s " LI
2 0.60 - o o o
S
8 0.55
L.
0.50 -
0.45 e ,

0 200 400 600 800 1000 1200

Number of predicted interactions
Figure 4.10. A comparison of the predictive abilities of different approaches ap-
plied to human protein pairs. Note that although here, as in Fig. 4.9, we show

the results for the 1200 highest-scoring pairs of proteins, far less than 1200 of the
37,575 random pairs of proteins used in this test are expected to actually interact.
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Table 4.3. Performance of our approach evaluated on high-throughput interac-
tions between yeast proteins.

Test data Condition Number of data Number of predicted Fraction
interactions
Uetz et al. High-throughput 167 (269) 46 (138) 0.275 (0.513
Protein Array 103 (151) 55 (103) 0.534 (0.682
Ito et al.  Non-core 1240 (1295) 340 (428) 0.274 (0.331
Core 255 (377) 112 (227) 0.439 (0.602

The performance of the lowest-core classifier using nine SVMs, each trained on
unbalanced data, was evaluated on the high-throughput interactions reported by
Uetz et al. [70] and Ito et al. [35]. Assuming that input datasets contained
roughly the same number of positives and negatives, we set the threshold at a
SVM score of -1.2 according to the results listed in Table 4.1. The protein-
protein interactions used for training SVMs were removed from test datasets. The
results on test datasets including these interactions are shown in parentheses for
reference. The numbers of interactions used for this test were fewer than the
number of interactions originally reported because our method requires a protein
to have at least one known domain. Note that the two datasets reported by Uetz
et al., "High-throughput" and “Protein Array,” are not mutually exclusive. After
removing the interactions used for training SVMs, however, we found only one
interaction that was detected by both approaches.

[35] and two sets of interactions between human proteins that were reported
by Rual et al. [62] and the Genome Network Project (GNP) administered
by the Ministry of Education, Culture, Sports, Science and Technology of
Japan (http://genomenetwork.nig.ac.jp/index_e.html). For this test we used a
lowest-score classifier using nine SVMs, each trained on an N/P = 4.0 dataset
and calculated the fraction of predicted interactions in each high-throughput
dataset (Tables. 4.3 and 4.4). ‘

Uetz et al. developed two different yeast two-hybrid systems, a high-
throughput screen based on an activation-domain library (High-throughput) -
and a protein array screen (Protein Array). A comparison with a compilation
of literature-cited interactions indicated that the interactions identified by the
latter approach were more reliable (Table. 2 in ref. [70]). Our prediction re-
sults are consistent with this: the fraction of predicted interactions was higher
in the latter dataset (Table 4.3). Ito et al. designated their core dataset on the
basis of IST hits, which was considered to be more reliable than the non-core

dataset (Core and Non-core) [35]. We confirmed that the core data was more
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Table 4.4. Performance of our approach evaluated on high-throughput interac-
tions between human proteins.

Test data Condition Number of data Number of predicted Fraction
interactions
Rual et al. Y2H 1593 (1614) 655 (676) 0.411 (0.419)
LCI 3043 (3612) 2400 (2945) 0.789 (0.815)
GNP Y2H 167 (168) 106 (107)  0.635 (0.637)

The performance of the lowest-score classifier using nine SVMs, each
trained on unbalanced data, was evaluated on the high-throughput inter-
actions reported by Rual et al. [62] and the Genome Network Project
(http://genomenetwork.nig.ac.jp/index_e.html). Assuming that input datasets
contained roughly the same number of positives and negatives, we set the
threshold at a SVM score of -1.1 according to the results listed in Table 4.2.
The protein-protein interactions used for training SVMs were removed from test
datasets, and the results on test datasets including these interactions are shown
in parentheses. For the data reported by Rual et al., we found 61 interactions
that appeared in both the Y2H and LCl datasets after removing the interactions
used for training SVMs, 49 of which were predicted as positive by our approach
(fraction: 0.803).

likely to be predicted by our approach (Table 4.3). A high-throughput ex-
periment to detect protein-protein interactions in human has been performed
by Rual et al. The initial dataset contained two types of interactions: those
identified by their yeast two-hybrid screens (Y2H) and those extracted from
literature (LCI) [62]. We observed higher fraction of predicted interactions in
LCI than in Y2H (Table 4.4). This difference may be partially due to the ”in-
spection bias” in our training datasets. Meanwhile, 80.3% of the interactions
present in both Y2H and LCI datasets but not in our training dataset were
predicted by our method. Furthermore, our method predicted 63.5% of yeast
two-hybrid interactions identified by the GNP (Table 4.4). This implies that
Y2H dataset reported by Rual et al. indeed contained many false positives.
These results indicate that our approach can contribute to obtaining reliable
interaction maps by eliminating erroneous interactions from high-throughput
datasets, as well as by predicting interaction de novo. We list all predicted
interactions in these datasets in Tables A.1 to A 4.
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4.4.5 Examples of predicted human protein-protein in-
teractions

We have been predicting human protein-protein interactions using nine SVMs
trained on N/P=4.0 dataset. The predicted interactions can be used for several
purposes such as prediéting protein functions, functional modules, disease-
related proteins, and relationship between diseases. In this subsection, we
show an example that a plausible hypothesis on the mechanism of Alzheimer’s
disease (AD) can be proposed by mapping the predicted and known protein-
~ protein interactians onto a known causal pathway of AD.

We obtained the known causal pathway of AD from KEGG [38]. The path-
way was shown in Fig, 4.11. AD is a common age-related brain disorder that

' pfogresmvely destroys a person’s memory and intellect. The critical character-
istic of the brain in AD is the presence of amyloid plaques in the spaces be-
tween the nerve cells. ‘The protein basis of these amyloid plaques, A3 40/42, is
formed by cleaving amyloid precursor protein (APP) by (-secretase (BACEL)
and ~y-secretase, and this processing is believed to be regulated by presenilins
(PSEN1 and PSEN2) 7, 33, 52, 68, 77]. On the other hand, non-A compo-
nent of Alzheimer’s disease amyloid (NAC) is another important component
of amyloid plaques. NAC is an amino acid fragment generated from its precur-
sor protein, a-synuclein (SNCA), whose defects are also known to be involved
in the pathogenesis of Parkinson disease (PD) [65]. However, the regulation
mechanism of the processing has not yet been elucidated completely.

To make a hypothesis on which proteins regulate the processing of SNCA,
we mapped onto the pathway the protein-protein interactions obtained from
three different sources: currently predicted interactions by our method, inter-
actions derived from HPRD ([59], and interactions reported by Rual et al [62].

~ These interactions were shown in different colors in Fig. 4.11 according to the

data sources. -

We first observed that APP protein was predicted to interact directly with
PSEN1 protein, and this interaction was also found in the dataset reported by
Rual et al [62]. On the other hand, SNCA protein was predicted to interact
with its two close homologues, - and 7-synuclein (SNCB and SNCG). In
particular, SNCB is known to be abundantly expressed in neurofibrils in the
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brain in AD [17], and is believed to act as a negative regulator of a-synuclein
[67]. We further found that SNCB protein is predicted to interact with PSEN2
protein which is postulated to regulate APP processing as described above,
From these observations, we can hypothesize that presenilins are associated
with synuclein family, and that they regulate the processing of SNCA protein
to NAC as well as that of APP protein to Af 40/42.

Experimental verification of the hypothesis is beyond the scope of this the-
sis. Nevertheless, hypothesis such as that described above will help researchers
gain a first insight into their experimental targets, and will accelerate our un-
derstanding of biological systems and disease mechanisms. Although here we
focused on AD, hypotheses on the mechanisms of other diseases, such as PD,
will be generated analogously. Therefore, in the future, not only the mecha-
nism of each disease but also the reiatmnshlps between diseases will be explored
by using our predicted protem—pmtem :nteractlons ’

4.5 Disucussion

Feature selection is an important step for prediction. Previous studies have
explored the use of several protein features such as charge, hydrophobicity,
surface tension [10], domains [14, 22, 5] and k-mers of amino acids [5, 48], and
even non-sequence-based features such as GO annotations [5]. Ben-Hur et al.
reported that their method involving the GO kernel correc tly predicts 80%
of the actual interactions and has a false positive rate of 1% [5 [5]. We did not
use the information on GO annotation because many proteins, especially mam-
malian Qz‘oteins, have no GO annotations and some GO annotations have been
assigned to proteins on the basis of the physical interaction partners of those
proteins (GO annotations with evidence code IPI).' Regardless of the protein
features used, however, a training dataset with as many nan«interacﬁng pairs
as there are interacting pairs does not adequately represent the actual number
of non-interacting pairs. Taking our SVM-based method as an example, we
have demonstrated that the predictive performance can be improved by simply
increasing the ﬁumber of non-interacting pairs in the training dataset. This,
however, increases the training time significantly and thereby makes it hard
to tune the parameters of SVMs and to update the training dataset when new
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— KEGG pathway = Predicted interaction

HPRD Interactions reported by Rual et al.

Figure 4.11. The causal pathway of Alzheimer's disease was obtained from KEGG
[38]. The green nodes represent the proteins that appear in the original KEGG
pathway diagram, and the gray nodes represent the proteins that do not appear
in the original pathway but are predicted to interact with the proteins shown in
green. The edges represent interactions or other relations, and are differently

colored based on the data sources. The edge line types are the same as defined in
KEGG.
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interactions are identified. In this work we have shown that the lowest-score
approach using multiple SVMs, each trained on an unbalanced dataset, can
improve the predictive performance in practical situations. As shown in Fig.
4.2, the lowest-score approach may not be better than the single SVM when
the total number of negatives used for the training is the same. If more than
one CPU is available, however, and if the SVM performance is sufficiently high,
the lowest-score approach is useful to improve the prediction of protein-protein
interactions by enabling the use of a large number of non-interacting pairs of
protein (Tables 4.1 and 4.2).

Several alternative approaches can be considered. One is to assemble an
unbalanced dataset that contains more than four times as many negatives as
positives. Our preliminary tests revealed, however, that a significant amount
of time was then required for the training procedure. In the lowest-score ap-
proach, SVM scores can be weighted according to the predictive ability of
each SVM. This seemed to make little difference for our SVMs because their
performances differed only slightly in a 10-fold cross-validation test. Other
techniques such as boosting, transductive inference methods such as Trans-
ductive Support Vector Machines [37], and automatic negative data collection
schemes such as PEBL [82] can be used to devise a better classifier. We found,
however, that none of these methods trained classifiers in a practical length of
time: less than a month. The lowest-score approach using multiple SVMs is
simple but practical for predicting the interactions between pairs of proteins
in large datasets.

Constructing protein-protein interaction maps for higher organisms, es-
pecially mammals, is of great significance because relatively little informa-
tion about mammalian protein-protein interaction is available from public
databases. Currently, we have been constructing a hypothetical protein-protein
interaction maps of humans. We have also set up a Web-based service called
the Protein-protein Interaction Prediction Server (PIPS) that can predict phys-
ical protein-protein interactions between yeast, mouse, and human proteins.
In the next chapter, we will discuss the details of this Web service.
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Chapter 5

Web application

51 Introduction

Information on physical protein-protein interactions provides us with many
clues for analyzing protein functions in cellular processes. For a detailed and
comprehensive understanding of a protein of interest, its interaction partners
should be identified from a large number of proteins in the organism. The
key to reducing time, cost and human resources is for us to predict likely
interactions and gain initial insights into nature prior to conducting biological
experiments. To facilitate these pre-experimental tasks, we developed a Web
server called the Protein-protein Interaction Prediction Server (PIPS), which
can predict the physical interactions between two proteins.

- Supervised machine learning on protein-protein interaction data has been
recognized as a prospective approach to accurate predictions [5, 14, 22, 48].
Two issues, however, are worth considering to use the approach in practice.
The first is that most previous methods utilizing supervised machine learning
~ have been developed to predict interactions in yeast. PIPS is a novel server
that provides a way of applying Support Vector Machines (SVMs), one of the
most intensively studied supervised machine learning methods, to predicting
interactions in mice and humans as well as in yeasts. The second is the dif-
ficulty of sampling good negative examples to train classifiers. Based on the
results described in the previous chapter, PIPS predicts likely interactions with
nine SVMs trained on datasets containing four times as many non-interacting
" pairs of proteins as interacting pairs of proteins. The services are available
from http:// prime.ontology.ims.u—tokyo.a,c.jp:8081 /cgi-bin/PIPS.cgi.
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5.2 Server description
5.2.1 Server Architecture

Fig. 5.1 shows the top-level Web page of PIPS. Based on the existence/absence
of domains and amino acid compositions, PIPS can predict protein-protein in-
teractions in yeasts, mice, and humans. For each organism, the system has im-
plemented nine SVMs, each trained on dataset containing four times as many
non-interacting pairs of proteins (negatives) as interacting pairs of proteins
(positives). Given two FASTA-formatted protein sequences, the system first
searches domains retained in the query protems by running hmmpfam [30]. It
subsequently assembles a feature vector, classifies the vector with SVMs, and
finally creates a Web page with prediction results. - :

PIPS can perform homology-based prediction, optionally, in conjunction
with PRIME [42]. PRIME stores interactions automatically extracted from
Medline abstracts through natural language processing techniques as well as
those imported from the major public databases such as DIP, BIND, and -
MIPS. For a query protein pair, the homology-based method implemﬁntéd by
the system predicts interactions by seamhing all the possible pairs of their
homologs in PRIME. All pairs of homologs that are known to interact and
registered in PRIME are displayed in the result Web page along with a result
of SVM-based prediction. For details of the homology-based predzetmﬂ, see
Subsection 3.2.4.

5.2.2 Usage

PIPS is qmte simple to use. The steps required for predicting an interaction
between two pmtems are to select an organism and to cgpy and paste two
FASTA~foma‘cted amino acid sequences. The system starts when the user
pushes the “Predict!” button. The Web browser must be kept open until the
 result page is displayed. Aitema,txvely, by inputting an E-mail address into the
corresponding box on the top page, he or she can choose to receive an E-mail
that informs him or her about the URL for the result page when calculation
- is complete. When the “Perform homology-based prediction” box is checked,
PIPS performs homology-based prediction simultaneously with the SVM-based
prediction. He or she can select the interaction type (direct and/or indirectj
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Figure 5.1. Top page of PIPS.

to be displayed and can change the BLASTP E-value for searching homologs.
This option is especially useful for predicting interactions between proteins
containing no domains and for searching for evidences from Medline abstracts
or from public databases. This function is similar to that of InterWeaver [83].

A sample of a result Web page is shown in Fig. 5.2
pag

5.3 Discussion

Most of the previous studies using methods based on supervised machine learn-
ing to predict protein-protein interactions have used training datasets con-
taining approximately the same numbers of positives and negatives. [t has
previously been suggested, however, that with these training datasets even
good classifiers tend to yield many false positives when they are applied to
an input dataset containing far more non-interacting pairs of proteins than
interacting pairs of proteins [48]. As discussed in Chapter 4, this is partially
because negatives that is sampled as much as positives for training classifiers
cannot represent all the negatives that should be considered. PIPS tackled this

problem by compensating for the information on negative examples, i.e., by
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Figure 5.2. A sample of a result Web page. The query pair is an amino-acid
sequence of tumor protein TP53 and of cell cycle controller CDC2 of humans.
We checked the “Perform homology-based prediction” box so that the prediction
results of the homology-based method was shown on the Web page.
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implementing nine SVMs each trained on data containing four times as many
negatives as positives. As we can see from the results shown in Figs. 4.2 and
4.5, this approach improves the ability of predicting interactions.

The server PIPS is novel in that it is able to predict physical interactions
between mammalian proteins as well as that between yeast proteins. Currently,
few servers are publicly available to predict the interactions in mice and hu-
mans. An exception is OPHID developed by Brown et al. [11]. An advantage
of their the system is that it provides several evidences such as domain-domain
co-occurrence, gene co-expression, and GO annotations with the prediction re-
sults. The system predicts interactions based on the homology-based method,
however, which shows poorer performance than our SVM-based method does
(Figs. 3.4, 3.5, 3.7, and 3.8).

Some defects of the PIPS are worth noting. First, PIPS cannot predict
interactions between proteins that do not have known Pfam domains. This
restriction reduces the numbers of target proteins to 58.9%, 66.7%, 65.7%,
respectively for yeasts, mice, and humans. However, PIPS can eliminate this
drawback by performing the homology-based prediction, which does not re-
quire a protein to have domains. Second, PIPS requires few minutes to predict
interactions especially due to the domain search procedure. PIPS provides an
E-mail option as a solution for this drawback. Another possible solution is
to provide all predicted protein-protein interactions as a database. Such a
database will significantly reduce search time and will be useful for users who
wish to know the interactions between characterized proteins. To this end, we
have now been predicting interactions between human proteins as an opening
activity. Nonetheless, we emphasize that it is significant to run PIPS using
FASTA-formatted protein sequences as a query because it provides a way to
predict interactions between uncharacterized, newly discovered, or even artifi-
cial proteins. Third and finally, PIPS can predict protein-protein interactions
only in yeasts, mice, and humans. Predicting protein-protein interactions in
other model organisms such as chimpanzee, rat, and guinea pig will have sig-
nificant impact for pharmaceutical industry, because few interaction data are
currently available from public databases. Since cross-species prediction is ap-
plicable for our SVMs when the evolutionary distance is short between the

source and target organisms (Table 3.7), prediction of interactions in these
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mammals will be possible by using the SVMs trained on human protein pairs.
We will provide the predicted protein-protein interactions in these mammals if
sufficient numbers of protein-protein interactions are made available for testing

the performance of our SVMs.
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Chapter 6

Conclusions and future work

- We have developed a new SVM-based method for predicting physical protein-
protein interactions in yeasts, mice, and humans. The details were presented
in Chapter 3. The method is novel in that it takes into account the protein-
protein interactions mediated by more than two domains, and that several
protein features such as amino acid compositions and subcellular localizations
can easily be combined into feature vectors. A cross-validation analysis on a
yeast-protein dataset showed that the highest F-measure of 0.788 was obtained
by combining the features “domain,” “amino acid composition,” and “subcel-
lular localization,” which was more accurate than that of the methods reported
so far. The method can also be used to assess the reliability of the interactions
detected by error-prone systems. Although in this study we focused mainly
on the assessment of protein-protein interactions detected by yeast two-hybrid
systems, our method may be used to validate other high-throughput interac-
tion data such as those automatically extracted from literature. The present
method is also applicable to the prediction of protein-protein interactions in
mammals.

Predicting the interactions between all the possibie pairs of proteins in a
given organism (making a protein-protein interaction map) is a crucial subject
in bioinformatics. The performances of the methods proposed so far, including
the one described in Chapter 3, are not good enough for this task, because even
a good classifier yields a huge number of false positives if input data is all the
pairs of proteins in a given organism. We have therefore developed a method
based on multiple SVMs that uses more negatives than positives. The details
were described in Chapter 4. Using our SVMs developed in Chapter 3, we
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first showed that the negatives used in the previous studies cannot adequately
represent all the negatives that need to be taken into account, thus causing the
classifiers to yield many false positives. We then showed that, if more than one
CPU was available, an approach using multiple SVMs was useful not only for
improving the performance of classifiers but also for reducing the time required
for training them. We further demonstrated that our multiple-SVM-based
method can also be used to extract likely interactions from high-throughput
interactions, which is another important issue in obtaining a part of reliable
interaction maps from existing data. Currently, we have been eénstructing a
hypothetical protein-protein interaction map of humans. A resulting map will
provide us with many clues for the understanding of biological systems and
disease mechanisms. , ’

A Web-based service described in Chapter 5 provides a way of applying the
multiple-SVM-based method to the prediction of interactions between proteins
of interest. The server can facilitate experimenters to detect true i:)rotein-
protein interactions efficiently. The main drawback of the SVM-based method
is that it requires the information on domains. As for the Web service, a
homology-based method implemented by the system is especially useful for
predicting interactions between proteins containing no domains.

Our future work encompasses three directions. The first direction is to
improve the performance in predicting a comprehensive set of protein-protein
interactions in an organism. The task is quite difficult as we first estimated in
Chapter 4, and many more efforts are necessary to further improve the predic-
tive performance. ‘The performance is expected to improve if more information
on protein-protein interactions and subcellular localizations of proteins is made
available for public, as indicated in Chapter 3. Another possible way to im-
prove the performance is to make use of the feedback from experimenters with
the scheme of active learning. In this approach, test protein pairs are first
scored using our SVMs, and those whose data points fall into the margin area
(the pairs that have the scores above -1 and below +1) of each of the SVM
and those that are predicted inconsistently between SVMs are experimentally
examined. Then the training datasets are updated, and the SVMs are re-
trained to score new test protein pairs. The above steps are repeated until
acceptable performance is achieved. This procedure should efficiently improve
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the performance of SVMs because we can selectively obtain the new data for
training that are difficult to classify by the SVMs trained on the current data.
For this approach to work, it is inevitable to collaborate with experimenters.
Improvement in performance makes it possible to apply our method to more
specific problems. For example, roles of splice variants in health and disease
will be explored by predicting and analyzing the difference in the interaction
partners between splice variants. It will be also possible to investigate the
difference in function in ‘biolagical processes between very similar proteins by
predicting and comparing the interaction partners of the two proteins.

The second direction is to predict interactions between proteins from differ-
ent organisms. This task is inevitable to analyze the mechanisms underlying
pathogenesis. For example, predicting interactions between virus proteins and
human proteins will explore how the virus proteins affect the biological sys-
tems of humans. The method presented in this thesis will be able to apply to
this task if sufficient number of interactions between proteins from different
organisms is made available for training SVMs.

The third and final direction of our future work is to predict the causes, or
rules, of interactions. The method presented in this thesis is mainly devised
so that biologists can gain insight into and frame hypotheses on biological
systems of interests from a set of protein-protein interactions and, as such, it
is not suitable for inferring the cause of each interaction. An approach to apply
our method to this task is to predict interactions between sequence fragments
so that we can infer the key peptides that are responsible for the interactions
between full-length proteins. For this aim, the SVMé must be trained on a
large set of interactions between sequence fragments, which are not publicly
available so far.

To explore relationships between biomolecules, for example, protein-protein
interactions, is indispensable for a systematic understanding of biological sys-
tems. Challenges for a comprehensive prediction of protein-protein interactions
are just beginning. The predicted interactions and a resulting map will accel-
erate and deepen our understating of biological systems and mechanisms of

diseases and disorders.
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