塔状構造物の振動解析

Vibration Analysis of Tower Structures

中 野

旭

1. はしがき

塔状の構造物について変断面片持梁としての振動解析 を行ない、ボイラ用鋼製煙突および模型についての振動 実験と対比した. また基礎の剛性の影響についても吟味 を行なった.

2. 固有振動の解析

(1) **有効長さ法** 有効長さ L_e を定義し

$$L_e = \sum_{i=0}^n L_i \left(\frac{S_0}{S_i} \right)^{1/4} \tag{1}$$

とおくと、固有振動数 f は近似的に次式で与えられる.

$$f = \frac{1.875^2}{2\pi L_0^2} \sqrt{S_0} \tag{2}$$

ただし

$$S_0 = \frac{(EI)_{0}g}{w_0}, \quad S_i = \frac{(EI)_{i}g}{w_i}$$

 $(EI)_i$: 曲げ剛性, w_i : 単位長さ当たりの重量, L_i : 長さ,添字0:基準部を表わす.

第1図の供試体について計算を行なった結果は $L_e=2.23\times10^3$ cm, f=1.2 c/s である.

	A 部	B 部			
I(cm ⁴)	1.751×10 ⁵	2. 653×10 ⁵			
W(kg)	5, 038. 46	2, 695. 91			
W/l = w(kg/m)	292. 08	490.16			

2 図

(2) 影響係数法 第2図のように梁を n 個の区間 に分け、全重量は各区間の中央に集中して考える. 影響 係数 C_{ij} を j 点に単位荷重を加えたとき i 点に生じる 撓みと定義すると、inertia loading による変位に関し、 つぎの関係式が得られる.

$$y_i = \sum_{j=1}^n C_{ij} \frac{W_j}{q} \omega^2 y_j \tag{3}$$

$$\sum_{j \neq i} C_{ij} W_j y_j + \left\{ C_{ii} W_i - \frac{g}{\omega^2} \right\} y_i = 0 \qquad (4)$$

ただし

y: 変位 g: 重力の加速度 ω: 角振動数 (4)を書き直すと

$$\begin{vmatrix} C_{11}W_1 - \frac{g}{\omega^2}, & C_{12}W_2, & \cdots & C_{1n}W_n \\ C_{21}W_1, & C_{22}W_2 - \frac{g}{\omega^2}, & \cdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ C_{n1}W_1 - \cdots - C_{nn}W_n - \frac{g}{\omega^2} \end{vmatrix} = 0 \quad (5)$$

これを解けば振動数および振動形態が求まる.

- a) n=3 の場合: $f_1=1.41$ c/s, $f_2=8.73$ c/s, $f_3 = 35.6 \text{ c/s}$
- b) n=6 の場合: 6行6列の行列式を Trial and Error 法および繰返し法によって電子計算機を用いて解 いた.

 $f_1=1.383 \text{ c/s}, f_2=8.094 \text{ c/s}, f_3=21.27 \text{ c/s},$ $f_4 = 36.01 \text{ c/s}, f_5 = 66.35 \text{ c/s}, f_6 = 188.4 \text{ c/s}$ 振動形態は第3図に示した.

	1	次	2	次	
 計算	1. 383 c/s		8. 09	8. 094 c/s	
 実測	1.382 "		7. 60	"	
 模型	1. 22×10 "		6. 20	6. 20×10 "	

(3) Myklestad 法 これも一種の Trial and Error 法であるが、この例で実用した結果では計算手続が繁 雑で、総合して(2)の方法より、はるかに劣るとの印 象を受けた.

研 究

3. 実

供試体は千代田化工建設KKの構内にあり、実験は同 社山本技師を中心として実施された. 固有振動の実測結 果を前述の解析結果と対比したのが第3図である。

以上の1例より推論すると、一次の振動数を概算する には(1)の有効長さ法が有効であり、さらに2次まで の振動数、振動形態を求めるには影響係数法が適当と思 われる. 区分数は断面変化の度合によるが, 6区分程度 であれば繰返し法により手計算でも十分実用になる.

実物の 1/10 の模型を作製し, 動電型加振器により起 振させて、加速度と振幅を測定した結果を第3図に併記 した.

大型の構造物では実物実験は技術的に困難であり制約 も多いのであるが、縮尺相似の技術が確立されればこの ような模型実験は割合に手軽であり、精度も良いと思わ れる. 進んでは地動, 風等の外力に対する応答を模型実 験により求めることができ、さらに地盤の影響をも考慮 することが可能となろう. たとえば地震波形への応答を みる場合に地震波形をテープに記録し, この出力で起振 器を介して模型の基礎部に地震波形に相当した変位を与 えればよい. この方法は目下開発中である.

基礎の影響

塔状構造物と して、現在は各 種煙突, 反応塔 あるいは発射前 の直立ロケット 等を想定してい

るが、模型実験 の場合には基礎部の剛性が十分大きくないと, 過渡現象

などで意外な唸り現象や, 高次振動が介入することがあ る. 実物の場合にも基礎部の有効剛性の考察は難しい問 題である. ここでは基礎部剛性が片持梁の固有振動に及 ぼす影響を簡単に解析した.

(1) 弾性支持 系を第4図のように単純化し、均一 断面片持梁がバネ支持の基礎 (質量 M)に固定された場 合を考える. 梁の振動の式としては周知のように

$$\frac{\partial^2 y}{\partial t^2} + \frac{EI}{m} \frac{\partial^4 y}{\partial x^4} = 0 \tag{6}$$

$$y = Y(x)\cos\omega t \tag{7}$$

ここに m: 単位長当たりの質量

境界条件 $\int x=l: Y''=0, Y'''=0$ $\begin{cases} x = 0 : Y' = 0, & M \frac{\partial^2 y}{\partial t^2} = -F - Ky \end{cases}$

より, つぎの振動数方程式を得る

$$\frac{1+\cos\beta\cosh\beta}{\sin\beta\cosh\beta+\cos\beta\sinh\beta} = \frac{1}{\mu\beta\{\Omega_1^2(1.875/\beta)^4-1\}}(8) \qquad \qquad y(x,0) = \frac{l^3}{2EI}X^2\Big(1-\frac{X}{3}\Big) + \frac{1}{K}, \qquad X = \frac{x}{l}$$

ここに $\beta=kl$, $k^4=\omega^2m/EI$, $\mu=M/ml$ (基盤と梁との質 量比), $\Omega_1=\omega_0/\omega_1$, ω_0 : 基盤のみの固有振動数 $(=\sqrt{K/M})$, ω_1 : 片持梁としての一次固有振動数, F: x=0 における剪断力.

(8)式の左辺を $f_1(\beta)$, 右辺を $f_2(\beta)$ としてこれを グラフ化したのが第5図である.

 $f_1(\beta)$ と $f_2(\beta)$ の交点が系全体の固有振動である.

a) ω_0 と ω_i が十分離れている場合:

固有振動数 $\bar{\omega}_0$, $\bar{\omega}_i$ は (8) 式を解いて下記の近似式 で求められる. (ただし *µ*≫1)

$$\bar{\omega}_0 = \omega_0 + \Delta \omega_0$$
, $\bar{\omega}_i = \omega_i + \Delta \omega_i$

$$\Delta\omega_{0} = -\frac{\omega_{0}}{2\mu \ 1.875\sqrt{\Omega_{1}} f_{1}(1.875\sqrt{\Omega_{1}})} \qquad (9)$$

特に $Q_1 \ll 1$ $(\omega_0 \ll \omega_1)$ のときは $f_1(\beta) \Rightarrow 1/\beta$ であるから

$$\Delta\omega_0 = \frac{-\omega_0}{2\mu}, \quad \omega_0^2 = \frac{K}{M+ml} \left(1 - \frac{1}{\mu^2} \right) \tag{10}$$

また

$$\Delta\omega_{i} = \frac{2}{\mu a_{i}^{2} f_{1}'(a_{i}) \left\{ \Omega_{1}^{2} (1.875/a_{i})^{4} - 1 \right\}} \omega_{i} \quad (11)$$

 $i=1: a_i=1.875, f_1'(a_i)=-1.854, i=2: a_i=4.694.$ $f_1'(a_i) = -0.965$, …… とくに片持梁の一次振動の形態 の場合には

$$\Delta\omega_1 = \frac{\omega_1}{3.26\mu\{1 - \Omega_1^2\}} \tag{12}$$

b) ω₀≒ω_i (μ≫1) の場合:

$$\overline{\omega} = \frac{1}{2} (\omega_0 + \omega_i) \pm \sqrt{(\omega_0 - \omega_i)^2 - \frac{(\omega_i + \sqrt{\omega_0 \omega_i})^2}{\mu_{a_i} f_1'(a_i)}} \quad (13)$$

c) $\omega_0 = \omega_i \ (\mu \gg 1)$:

$$\bar{\omega} = \omega_i \left(1 \pm \sqrt{\frac{-1}{\mu a_i f_1'(a_i)}} \right) \tag{14}$$

i=1 のときは、

$$\bar{\omega} = (1 \pm 1/1.864 \sqrt{\mu})$$
 (15)

この場合の振動の様相の吟味の1例を示す. 棒の先端 に力を加えて撓ませ、ついで急に放した場合の渦渡振動 を解析する. 撓み曲線の初期値は

$$y(x,0) = \frac{l^3}{2EI}X^2\left(1 - \frac{X}{3}\right) + \frac{1}{K}, \quad X = \frac{x}{I}$$

究 速 報

2次の項までとって過渡振動を計算すると

 $y=27.8Y_1(x)\cos 30.1t+27.3Y_2(x)\cos 34.1t$ (16) 上式よりx=0 の点の振動を計算したのが第6図である.

第 6 図

ただし

 $mg = 6.50 \times 10^{-4} \text{ kg/mm}$

Mg = 25.9 kg

 $K = 2.70 \, \text{kg/mm}$

 $\mu = 41.5$

 $l = 960 \, \text{mm}$

直径: 10 mm

材質:真ちゅう、

f=4.80 c/s, 5.42 c/s,

 $Y_1(x), Y_2(x)$ 上記の振動数における振動形態.

これに対し, 同寸の模型の固有振動数は

f=4.84 c/s, 5.47 c/s

で過渡振動も第6図の解析値とほぼ類似のものが得られ、模型実験の有用性の一端が認められた.

(2) 回転弾性支持 系を第7図のように考えた場合

(1) と類似の結果が得られる.

第 7 図

(6), (7) および境界条件

$$\begin{cases} x = l \; ; \; Y'' = 0, \quad Y''' = 0 \\ x = 0 \; ; \quad Y = 0, \quad I_r \frac{\partial^2}{\partial t^2} \left(\frac{\partial y}{\partial x} \right) = M_t - K_r \frac{\partial y}{\partial x} \end{cases}$$

より, つぎの振動数方程式を得る.

$$\frac{1+\cos\beta\cosh\beta}{\cos\beta\sinh\beta-\sin\beta\cosh\beta} = \frac{1}{\mu_r\beta^3\{\Omega_{1r}^2(1.875/\beta)^4-1\}}$$
(17)

ここに

Ir: 基盤の慣性モーメント

Kr: 基盤のバネ常数

 M_t : x=0 におけるモーメント

 $\mu_{\textbf{r}}{=}I_{\textbf{r}}/ml^3$

 $\Omega_{1r} = \omega_{or}/\omega$

 ω_{or} : 基盤のロッキング固有振動数($\sqrt{K_r/I_r}$)

(1964 年1月 31 日受理)

東京大学生產技術研究所報告刊行

第 14 巻 第 1号 坪 井 善 月

「偏平球殼理論と応用」(和文)

屋根ドーム,アンテナ等に広く用いられる偏平球殻 (開角の小さい球殻) の弾性理論を扱っている.

偏平球殻の応力、変位の解は変形ベッセル函数(ber, bei, ker, kei)を用いて表わされるが、従来の理論の不完全な点や見落とされていた点を補い、完全な公式の形にまとめた。また、自重、風圧力、地震力等の各種荷重および不均等な温度変化に対する特解を求め、公式として示してある。

例題として屋根ドームおよび巨大アンテナを取り上げ、特解および境界条件の扱い方を解説してあり、工学的に 直ちに応用できるよう考えた.