エサキ接合の容量と Space Charge Narrowing Effect

雄

Capacitance of Esaki Junction and Space Charge Narrowing Effect

後川昭

(1)

トンネル・ダイオードは、原理的に周波数上限 f_o が極めて高い負性抵抗をもっているので大きい魅力がある. その利得帯域幅積 Γ や f_o は次式のように接合容量 Cに支配され良さの指数も一般に rC積を考えている.

筆者は先に負性 抵抗領域 (F_X 領 域)を中心に接合 容量の基礎特性を 発表^{2)~1}したが, 今回はその際測定 した"Space charge narrowing effect"と呼ぶ新 しい現象を主目的

とし接合容量のバイアス特性の検討結果の1例(シリコ ン・エサキ接合)を総括的にあわせて報告したい. なお RX meter による測定結果以外は橋絡T型ブリッジを用 い, 10 mV 以下の微小交流を加えて測定したが,接合 自体のアドミタンス $1/r+j\omega$ C への分離までの経過や 式の誘導は文献3)を参照していただくことにした.

1. エサキ接合の容量

(1) 障壁容量 Cb と内部定数の決定

エサキ接合では不純物密度 Na, Na が 10²⁵/m³ 程度 ドープされ空間電荷層の幅 d も 100 Å 以下になるので, 第1次近似としては階段状の不純物分布で考える.

第4図 1/C² の順方向電圧特性

第4図において $b=V_i, k_c^2=S^2 a/b$ (3) (2)より $N_a^-=1/(\epsilon q k_c^2/2-1/N_a^+)$ (4) 接合製作前の比抵抗 ρ_n から N_a^+ がわかっている (N_a^+ $=n=1/q \mu_n \rho_n$) ので N_a^- がわかる. すなわち容量と 基体半導体の比抵抗の測定から p, n 両領域の電離不 純物密度がわかる. N_a^- の方は比抵抗の測定を正確に 行なうのは困難で, この方法によらねばならない.

2) *e_v*, *e* の推定

n 領域内の電子密度 n は		
$n=2 n^* F_{1/2}(\epsilon_e^*) / \sqrt{\pi}$	(5)	
$c c c c^* = \epsilon_c / kT, n^* = 2 (2 \pi m_c^* kT / h^2)^{3/2}$	(6)	
縮退しているので $F_{1/2}$ の近似式を用い,		
€c*>1.5(300°K で €c>39 mV) のとぎ		
$n=4 n^* (1.645 + \epsilon_c^{*2})^{3/4} / 3 \sqrt{\pi}$	(7)	
$\therefore \epsilon_c^* = \sqrt{(3\sqrt{\pi} n/4 n^*)^{4/3} - 1.645}$	(8)	
$= (3\sqrt{\pi} n/4 n^*)^{2/3} \cdots \epsilon_c^* > 6$		
(300°K で 6c>155 mV)のとき		
p 領域についても		
$\epsilon_v^* = \sqrt{(3\sqrt{\pi} p/4 p^*)^{4/3} - 1.645}$	(0)	
$z \geq k p^* = 2(2 \pi m_v^* kT/h^2)^{3/2}$	(9)	

究

谏

研

24

 ${f H}$ 究 速 鍸

(8), (9) によって、けっきよく N_{a^+} , N_{a^-} がわかれば ϵ_{c^*} , ϵ_{v}^{*} も計算できる.以上 C_{b} の測定によって d, N_{a} , €, が推定できる.

(2) 拡散容量 C_d

順方向電圧 Vo 以上で p 領域から少数キャリアの拡 散によって注入が起こり(第7図参照)、蓄積されたも のが分布容量として眺められる. 縮退している場合でも 少数キャリアに関しては、フェルミ分布関数はマクスウ ェル・ボルツマン分布関数で近似できる. Vo の時およ び接合部を出た n 領域 の 正孔密度を p_c , $p(T_n)$ とす れば順方向バイアス電圧 V では

$$p_c = p_{n0} \exp(q V_c/kT),$$

 $p(T_n) = p_c \exp\left(-q V_c/kT\right) \exp\left\{q \left(V + v_1 e^{jwt}\right)/kT\right\}$ (10) 直流電流 I は

 $I = q D_p p_c(exp\{q(V-V_c)/kT\}-1)$ (11) $(\omega \tau_p)^2 \ll 1 \quad \mathcal{O} \geq \mathfrak{F}$

 $G_d = q(I+I_{sc})/kT$

 $= (q I_{sc}/kT) exp\{q(V-V_c)/kT\}$ (12) $B_d = q(I + I_{sc}) \omega \tau_p / 2 kT$

 $= (q I_{sc} \omega \tau_p / 2 kT) exp \{q (V - V_c) / kT\} \quad (13)$

 $Z \subset \mathbb{K} I_{sc} = q D_p p_c / L_p$

(12), (13)によると、 $\log G_d$, $\log C_d$ と V は直線関係 でその傾斜は q/2.3026kT, 電流 I に関しては G_d , C_d がそのまま直線関係を示す.

測定結果の検討

3)・4)GM が 28mv以下では (FN 領域はもちろん含む) G_M , $B_M | \omega$ は 1/r, C をそのまま示す. B 領域や 5 mA 以上の F_2 領域では R_s の補正が必要である³⁾.

 F_N 領域の |r| の最小値のバイアス電圧 V_{min} 付近 で接合容量および rC 積は極小となる. V_{min} 近くにバ イアスを選べば周波数上限も利得帯域幅積も大きくなっ て好都合である.

(1) 障壁容量としての解釈

第1表

0 (m2)

	D(mmd)	1*8	1. ⁻⁸ 0
	$D(mm\psi)$	0.151	0.113
	$k_c^2 (m^4/F^2V)$	8. 389	2. ³76
(A)).335 V ∦⊂	単位面積当たりの容量 $C_{b_1} = \frac{1}{k_c \sqrt{V_i - V}} (mF/m^2)$	13.9	26.5
₽ける値	接合の幅 $d = \frac{\varepsilon S}{C_b}$ (Å)	71	39
	電界強度 $F_{max} = \frac{2(V_i - V)}{d} (V/m)$	1. ⁸ 45	2. 864
(B)	N_{a}^{-} (1/m ³)	1. 2566	1. 2615
(C)	$\varepsilon_v (eV)$	0.0294	0.157
	$ \begin{aligned} \varepsilon_c & (eV) \\ \varepsilon_c + \varepsilon_v & (eV) \end{aligned} $	0.0488 0.0782	0.0488
qV;	$=E_g+\varepsilon_c+\varepsilon_v (eV)$	1.184	1.312
格 定 (Å	子 数 率 m_e^* m_v^* Energy gap Eg(e ² 0°k 300 ²	$ \begin{array}{c} \text{Drift} \\ \mu(\text{cm}^2) \\ \mu_k \\ \mu_n \end{array} $	m bility /vsec) °k µp
Si 5.4	43 11.8 1.1m。 0.59m。 1.153 1.10	6 1350	480
Ge 5.6	$66 16.0 0.55m_0 \ 0.37m_0 \ 0.75 \ 0.67$	3900	1900
2. 44 11 1		THERE	6 日本 创造人本

を算出した. 接合面積 S は公称値と, 同種試料の顕微鏡 写真によって二種仮定した.またn領域の比抵抗は 0.001 320

 Ω cm なので N_d ⁺=7.250(1/m³)を用いた. いちおう妥 当な値が出ている.

(2) **F**₂ 領域での拡散容量の出現

(1/V), q/kT=38.4 (1/V), (12) の傾斜に一致している. ここで第8図にバイアス電圧特性をとる. やはり直線 部分が現われ, $\tan \alpha_r'=1/0.059(1/V) = q/2.3026 kT$,

(3) Space charge narrowing effect

本測定において第6図でも明らかな新しい事実の第一 は、 F_1 領域から逆方向の B 領域へとバイアスが小さ くなるにつれ、非縮退 pn 接合の障壁容量(2)式の結論 とは反対に接合容量が増大する点である。第二は F_N 領域の Zener 電流が支配している V_{min} 付近では非縮 退接合の障壁容量以上に減少する特性である。両現象は Chynoweth 等のより広い接合¹⁾には見られぬこ とで、 エサキ効果を起こすほど不純物が多く十分縮退していて 空乏層内の電界も大きいことに起因する現象である

1) 前者について考える. さてトンネル効果自体で考え ると,電子が障壁の厚さ 100 Å 程度を遷移するに要す る時間は古典力学的に 10⁻¹³ 秒以下と早いので, 拡散 現象と異なり電子自身の動きによる容量の問題でなく空 間電荷の問題と考える.

したがって次に述べる推論から,特異現象のうち容量 が増大し始める現象は従来の"Space charge widening effect"と反対に"Space charge narrowing effect"と 呼ぶべき現象である. すなわち,従来の縮退しない接合 では室温でほとんど電離して多数キャリアを生じている ので,第9図(a)のように逆電圧が高くなるとそれに相 当して空間電荷二重層の電荷 Q が増すには dよりほか のいままで電気的中性条件を満足していた N_a , N_d が 新しく空間電荷に加わらねばならなかった. したがって 電荷層幅 d が広がった.

しかしエサキ接合では不純物密度が多く十分縮退して いるので、全部は電離していない. 順バイアス電圧が小 さくなると接合部の障壁電圧が増し、空乏層内高電界の

接合面近くから未電離の $(N_d - N_d^+)$ が電界電離 (Field ionization)を起こし始め、放出電子は n 領域側伝導帯 にトンネル遷移し て接合面近くは 空間電荷が増加する (第10図参照). 伝導帯に達した自由電子は層内電界によ ってn 領域内に移動して空乏層の端を埋め電気的中性条 件を満足させるので、空間電荷層の幅が Ad2 だけ狭め られる. またアクセプタについては ρ 領域側充満帯よ り接合面近くの未電離の Na がトンネル 遷移 で 電子を 受け正孔を電界電離して、自身は空間電荷を増す.充満 帯の正孔は層内電界で移動し, 同じく p 領域側の空乏 層の端を埋め電気的中性に戻すので電界(すなわち外部 電圧)に応じて *Δd*₁ だけ空間電荷層の幅が狭められる. これが接合容量の増大となって現われたと解釈される. より逆方向に電圧が加わると空間電荷層内の不純物が全 部電離して再び widening effect が作用してこよう. 第 5,6 図のシリコン接合ではまだそのバイアス領域は現わ れないが、ゲルマニウム接合では第11図の代表例のよ うに 0.3~0.5mA 以下の F1 領域ですでにこの傾向が 見られる.

2) つぎに第6図のような V_{min} 前後から V_p にかけ ての障壁容量の異常な減少は、エネルギー準位図から考 えて n 領域の伝導帯から多量の電子が p 領域価電子帯 に直接トンネル効果で遷移するので、今まで電気的中性 条件を保っていた空乏層のすぐ外側で多数キャリアが希 薄となって空間電荷を生じ,層の幅 d が増大したためと

運動方程式は次式で与えられる.

$$\frac{dv_x}{dt} = \frac{3}{4} \frac{C_{D0}}{ds} \left\{ 1.00 + 0.36 (y/r)^2 \right\} \frac{\gamma}{\gamma_s - \gamma} \left(u_y \frac{\bar{u}'}{\bar{u}} - v_x \right) \left| u_y \frac{\bar{u}'}{\bar{u}} - v_x \right|$$
(6)

$$\frac{dv_y}{dt} = -g - \frac{3}{4} \frac{C_D}{d_s} \frac{\gamma}{\gamma_s - \gamma} v_y \left| v_y \right| \tag{7}$$

空気輸送の数値例を第13図に示す. ただし $F_{r^2}=u_0^2/gr$ $=4\times10^3$, $R_{ep}=2u_0r/\nu=1\times10^5$, $(v_x)_{t=0}=(v_y)_{t=0}=0$ $(y/r)_{t=0} = 1$, $u_y/u_0 = (1 - |y|/r)^{1/8}$, $\bar{u}/u_0 = 0.826$, $\gamma/(\gamma_s)$ $-\gamma$)=1×10⁻³, $C_{D0}=C_{D\infty}=0.45$ の場合であり、(7) 式右辺第2項を省略した. 点線は(6)式の代わりに(8)

$$\frac{dv_x}{dt} = \frac{3}{4} \frac{C_{D\infty}}{d_s} \frac{\gamma}{\gamma_s - \gamma} (\bar{u} - v_x) |\bar{u} - v_x| \quad (8)$$

式を用いたもので、従来よくおこなわれている. この例

考える. しかし順バイアス電圧が小さくなるとともに層 内電界が増し上記 narrowing effect も次第に 作用し始 めるとすれば、直接トンネル効果が順方向で最大になる V_p よりかえって V_{mi} 付近で空乏層 の幅 d が極大値 をとりうる. すなわち接合容量の極小値が現われる.

謝辞 つねにご指導いただく高木教授,安達・尾上両 助教授に厚く感謝申し上げるとともに、資料をいただい たソニー(株)の岩田課長、福井初昭氏のご好意に深謝 する. (1962 年7月 11 日受理)

文献	1)	A. G. Chynoweth etal: Phys. Rev. 118, 425 (1960-04
	2)	後川: 昭和 35 年連大, 1451 (196007)
	3)	〃 : 東大生研電気談話会報告, 11, 19 (1960—10)
	4)	〃 : 昭 35 年信学全大, S 9—21, (1960—11)

は球を初速0で上側の管壁から落下させ、下 側の管壁に衝突するまでの軌跡である.(6) 式と(8)式との差が明らかで、このことは速 度分布と直径比の影響を考慮しなければなら ないことを明確に示している.

結 び

管内乱流中に置かれた単一球の抵抗係数を $C_{Dy} = D/(\gamma/2g) u_y^2 (\bar{u}'/\bar{u})^2 (\pi/4) d_s^2$ で定義すると、CDy は本実験の範囲で $C_{Dy} = C_{D\infty} \{1.00 + 0.36 (y/r)^2\}$ C

与えられる. ここに Cpm は

 $R_{es} = u_y(\bar{u}'|\bar{u}) d_s/v$

文

で定義される球レイノズル数に対する値である. なお $\bar{u}'/\bar{u} = \{1 - (d_s/d)^2\}^{-1}$

である.この結果を管内混相流の解析に用いるには,考 慮すべき点が多数残っている.しかし単一球の抵抗係数 が比較的簡単な関係で与えられることは、混相流の微視 的な解析に役立つことと思われる.

終わりに終始ご指導いただいた本所、石原智男助教授 に深く感謝する. (1962年5月21日受理)

献 1) 機械工学便覧(昭和 26 年版), 8-30.

2) 营,粘度测定,工業物理学講座(F-3).

3) 三雲, 水曜会誌, 8-2 (昭和8年), 263.

27

321