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Abstract

Nervous system is a major information processing center of our body. An
important goal of neuroscience research is to clarify the mechanism of its
information processing. Many researchers have attempted to clarify the pro-
cessing done by the neural network. However the neural networks are gener-
ally too complex for their activity to be described in detail. To investigate
their properties, I constructed and analyzed a simplified feedforward network
of a spiking neuron model. For simplicity, I focused on the propagation of
transient spikes. It is well known that when a homogeneous feedforward net-
work receives transient input, it transmits stable synchronous spikes called a
»pulse packet”. Such a network is called a ”synfire chain”. The network can
transmit only one pattern of packets and the packets are the synchronous
spikes of all the neurons in one layer. The propagation of pulse packets in in-
homogeneous feedforward networks has not been thoroughly investigated yet.
In this dissertation I show the associative feedforward network that should
be able to send multiple patterns of pulse packets by embedding memory
patterns in the synaptic weights.

First, I show that the associative feedforward network can transmit em-
bedded pulse packets as expected. In the analysis, We constructed the net-
work of the leaky integrate-and-fire neuron model. We used the Fokker-
Planck equations to describe the properties of the network by using macro-
scopic parameters. Although activation of one memory pattern results in
the propagation of the synchronous activated pattern packet, activation of

two patterns temporally splits the propagation into the groups called ’sub-



lattices’. I describe the details of this activity and its mechanism.

Next, I discuss the relationship between the activity and the density of
the embedded patterns in terms of the temporal split between sublattices, the
basin of the attraction, and the storage capacity. The analysis revealed that
sparse coding is better than dense coding for synchronous spike propagation.
This implies that sparse coding is better for information processing by the
neural networks.

We also analyzed the activity when the embedded patterns are correlated
and found that the correlation does not seem to work well for synchronous
spike propagation. Moreover, I discuss the relationship between the memory
pattern correlation and the pattern rate.

Our analysis of the activity of the associative feedforward network has
clarified many of the properties of packets propagation. Our research is a
basic study of a network that can transmit multiple patterns of packets.
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Chapter 1

Introduction

1.1 Background

Nervous system receives the input from both external and internal environ-
ments and outputs motor control signals. One of the goals of neuroscience is
to clarify how the nervous system processes the information. In particular,
how does it describe, store, transmit, and transform the information? These
questions are too broad and neural networks are generally too complex for
them to be answered at the same time. To investigate the processing mech-
anism, we focused on information transmission. Reliable information trans-
mission is necessary for efficient information processing. Understanding the
transmission is a non-trivial problem because biological systems are noisy,
and the responses of neurons are stochastic (Mainen and Sejnowski, 1995;
Gerstner and Kistler, 2002). Consequently, how neural networks transmit
information reliably is an important question.

1.2 Synfire chain

"Synfire chain” is an important concept in reliable information transmission.
A synfire chain is a functional feedforward network that can transmit syn-
chronous spikes stably (Abeles, 1991). Diesmann et al. analyzed the function
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CHAPTER 1. INTRODUCTION

of a homogeneous feedforward network as a synfire chain constructed by using
a spiking neuron model with white Gaussian noise (Diesmann et al., 1999).
They showed that a homogeneous feedforward network has two modes after
convergence: a synchronous propagation mode and spontaneous firing mode.
Figure 1.1 shows the convergence. The attractor at the upper left represents
the synchronous propagation mode, and the ﬂow‘ arrows to the lower right
represent the spontaneous firing mode. In synchronous propagation mode,
the network stably and reproducibly transmits synchronous spikes, called a
"pulse packet”. Even though the neurons receive noisy current, the network
can transmit a group of spikes reliably with msec precision. However, the
network cannot transmit information in spontaneous firing mode. For the
synchronous, reproductive and stable properties of spikes and the simplicity
of the network, synfire chains have been extensively researched theoretically
(Bienenstock, 1995; Cateau and Fukai, 2001; Gewaltig et al., 2001; Kistler
and Gerstner, 2002; van Rossum et al., 2002; Li and Greenside, 2006; Jin
et al., 2007) and a synfire chain network has been iteratively constructed in
vitro (Reyes 2003).

A notable feature of the synfire chain is its ability to generate repeated
spike patterns with msec precision. The repeated spike patterns have been
experimentally observed in vivo (Abeles and Gerstin, 1988; Abeles et al.,
1993; Prut et al., 1998; Hahnloser et al., 2002; Shmiel et al., 2005; 2006) and
in vitro (Ikegaya et al., 2005; Mokeichev et al., 2007). Figure 1.2, adapted
from Hahnloser et al., 2002, shows that the recording neurons (numbers
1-8) repeatedly generate temporally conserved spike patterns more against
the song motif. The homogeneous synfire chain can reproduce repeated spike
patterns like this because of its high reproductivity and its temporal accuracy.
If one would like to generate more complex song motifs, the network in which
multiple synfire chains coexist might be useful.

Another notable feature of the synfire chain is its ability to generate
synchronous spikes, which may be important in binding problems (Gray et
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a (spikes)

Figure 1.1: Figure adapted from Diesmann et al., 1999. Arrows show the

changes in number of spikes a (vertical axis) and degree of synchrony o
(horizontal axis) between layers.
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Figure 1.2: Figure adapted from Hahnloser et al., 2002, showing raster plot
of neuronal spikes. The upper figure represents the song motif and lower
figure represents spikes of 8 RA neurons in HVC.



CHAPTER 1. INTRODUCTION

al., 1989; Gray, 1999; Singer, 1999; Engel et al., 2001). Figure 1.3, adapted
from Engel et al., 2001, shows an example of temporal binding model. Figure
1.3a shows bistable images. Bistability means that two interpretations are
possible. In this case, one interpretation is that one face is partially occluded
by a candlestick (Figure 1.3b); the other is that there are two opposing faces
(Figure 1.3c). The lower figure 1.3a shows the receptive fields of four neurons.
Figures 1.3d and e show the raster plots of the spikes when the interpretation
is b and ¢, respectively. In this temporal binding model, the binding problem
can be solved by exploiting the synchrony of spikes. As shown in figure
d, neurons 1 and 2 should synchronize if the respective contours are parts
of one background face; neurons 3 and 4, which represent contours of the
candlestick, should also synchronize. If there are two opposing faces, the
temporal activity switches to synchrony between neurons 1 and 3, and 2 and
4, respectively (Figure 1.3e). How do neurons generates the synchronous
spikes? A synfire chain is one of the network models that can generate

synchronous spikes stably.

These properties of the synfire chain make it attractive, and there has
been much research on the synfire chain. However, most of the research
has been on the homogeneous type (Diesmann et al, 1999; Céteau and
Fukai, 2001); the inhomogeneous type has not been researched so thoroughly.
Hamaguchi et al.researched the network with Mexican-Hat connectivity and
showed that the network has several propagation mode, in which the speeds of
propagation are different (Hamaguchi et al., 2005a; 2005b; 2007). Figure 1.4
shows the relationship among the important works and this dissertation. A
fatal defect of the homogeneous type is that the signals can be transmitted
in only one pattern. This is not an efficient way to process information. We
have modified the feedforward network so that signals can be transmitted in
multiple modes.
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1.3 Overview

To enable signal transmission of multiple patterns, we use associative mem-
ory. We constructed an associative network of the leaky integrate-and-fire
(LIF) neuron model, as was done by Diesmann et al., 1999. The LIF neuron
model is a spiking neuron model. Spiking neuron models imitate the dy-
namics of the membrane potential of neurons, so they are more biologically
plausible than simpler models like the rate neuron model and the binary
neuron model.

Previous research on embedding multiple synfire chains in networks con-
structed of binary neurons (Bienenstock, 1995; Herrmann et al., 1995) and
integrate-and-fire neurons (Herrmann et al.,, 1995; Aviel et al., 2005) used
random embedding. The neurons in the networks belong to a layer of a chain
and can also different layers of another chain. As a result, the networks do
not have ordered structure — they are quite similar to a randomly connected
recurrent network. However, the highly ordered structures are often ob-
served in the neural networks of animals, e.g., the six-layer structure of the
mammalian neocortex and the DG-CA3-CA1 structure of the hippocampus
(Kandel et al., 2000). The activity of a structured network in which multi-
ple synfire chains are embedded has not been reported. In this dissertation,
I focus on the feedforward network. Because each synfire chain consists of
feedforward connections, the structure seems natural. A feedforward net-
work is also a good model for analyzing fast signal propagation (Panzeri et
al., 2001). As described in the next chapter, we can analyze the activity in
such a feedforward network by using the Fokker-Planck method.

To enable transmission of multiple patterns, we embed multiple memory
patterns by using the Hebbian learning rule (Hebb, 1949; Willshaw et al.1969;
Hopfield, 1982; 1985; Domany and Meir, 1986; Meir and Domany, 1987a;
1987b; 1988; Amit 1989). The details of the associative feedforward network
and the Fokker-Planck method are described in Chapter 2.

In Chapter 3, I describe in detail the properties of the associative feed-
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CHAPTER 1. INTRODUCTION

forward network. An important feature is that the network can transmit
embedded pattern packets stably as expected. The firing mode depends on
input; some inputs result in spontaneous firing mode, some inputs result in
synchronous propagation mode, and other inputs result in split propagation

mode, which is not observed in the homogeneous network.

An important parameter of an associative network is the ratio of the
number of neurons firing in a pattern to the total number of neurons. This
ratio is conventionally called the ”firing rate”. To avoid possible confusion
with the number of spikes, I call this ratio "pattern rate” (F'). In Chapter
3, the pattern rate is set to 0.5, the simplest case. The properties of a
network, especially storage capacity, strongly depends on the pattern rate. A
network with a low pattern rate, a sparse network, has larger storage capacity
and has been well researched (Willshaw et al.1969; Palm 1980; Golomb and
Sompolinsky, 1990; Meunier et al., 1988; Amari, 1989; Okada, 1996).

In Chapter 4, I describe the activity when the pattern rate does not equal
0.5. Although the property of synchronous propagation mode remains the
same as that for a rate of 0.5, the property of split propagation mode changes
qualitatively. When F' > 0.5, the length of the split increases during prop-
agation. When F' < 0.5, the length decreases and eventually disappears,
which is synchronous propagation mode. The activity in an associative net-
work with F' 5 0.5 is described in Chapter 4. The most important difference
between our associative feedforward network and a homogeneous feedforward
network is its ability to transmit multiple patterns of pulse packets. Thus,
an important question is how many kinds of pulse packets can the network
transmit stably. ” Storage capacity” denotes the number of patterns the net-
work can transmit stably. Because of its importance, many researchers have
investigated the storage capacity in the recurrent networks (Willshaw et al.,
1969; Palm, 1980; Hopfield, 1982; Amit et al., 1985b) and randomly embed-
ded synfire chains (Bienenstock, 1995; Aviel et al., 2005). In Chapter 4, I

also discuss the storage capacity of the associative feedforward network.

-9



CHAPTER 1. INTRODUCTION

In Chapter 5, I describe the activity of the network when the embedded
memory patterns are correlated. When they are, even activation of one
memory pattern causes a split of spike timings between sublattices. I describe
this mechanism and how sparse connection promotes synchronization even
in this situation.

In Chapter 6, I summarize our research and discuss the future work.

10



Chapter 2

Network model

2.1 Associative feedforward network

In this dissertation, I describe an associative feedforward memory network
with the Hebbian connections and constructed using the conventional method
(Hebb 1949; Hopfield, 1982; Domany and Meir, 1986; Meir and Domany,
1987a; 1987b; 1988). Here I consider the feedforward network. Each layer
consists of the same number of neurons, N. The index of a layer is [, and
the index of a neuron in a layer is 4,5 = 1,...,N. Memory patterns are
embedded in the synaptic weights. We use d”‘ to represents the uth memory
pattern of the ith neuron in layer I. It takes a value of either +1 or 0. The
number of memory pattern is p, and the index is p = 1,...,p. Memory

pattern §§’” is selected randomly in accordance with the probability
Prob.[¢h* = +1] = F. (2.1)

We call the probability of Eé’“ = +1 the "pattern rate”’, ie., F; and be-
cause of the randomness, there is no correlations between memory patterns.
Memory pattefn fﬁ’“ = +1 means that the ith neuron in layer [ would fire
in memory pattern u, and ff’“ = 0 means the neuron would be silent. We
can regard these memory patterns in feedforward layers as the sequences of

patterns. Here I assume that the sequences are activated deterministically.

11



CHAPTER 2. NETWORK MODEL

o0l o] | 0]

Figure 2.1: Schematic diagram of our associative feedforward network. Each
circle means a neuron. The color shows one memory pattern. Black means

61%’“ = +1, and white 0. Arrows show synaptic connections. Black arrows

means excitatory connections, and gray ones inhibitory.

The activation of sequence branching and binding remains for future study.
Synaptic connection ij from the ith neuron in layer [ to the jth neuron
in layer [ + 1 is given by

p
Ty = W*F—ﬂv—;@;ﬂ“—ﬁ)@f’“ - F), (22)

This Hebbian learning rule is called the ”covariance learning rule”. The
simplest concept of the Hebbian learning does not include the attenuation
or inhibitory effect. Various types of expansions have been proposed for
preventing the divergence and maintaining the balance between excitation
‘and inhibition (Dayan and Sejnowski, 1993; Gerstner and Kistler, 2002). We
adopted the covariance learning rule because it keeps the sum of synaptic
weights equal to zero (3, Ji; = 0) and because its existence is implied by
the results of physiological experiments (Stanton and Sejnowski, 1989). The
synaptic current is normalized by using 1/F(1 — F')N.
- Figure 2.1 is a schematic diagram of this network. -
We use the leaky integrate-and-fire (LIF) neuron model with white Gaus-

12



CHAPTER 2. NETWORK MODEL

sian Noise as well as Diesmann et al. (Diesmann et al., 1999). The dynamics
of the membrane potential v}(t) is described as a stochastic differential equa-
tion,

dvl(t)  UhE) = Vies . IP%(t) + I
(3 — 2 2 t 2'
3 =+l (2:3)

T

where 7 is the membrane time constant, Vies is the resting potential, Iy is the
mean of the noisy input, n(t) is the white Gaussian noise satisfying < n(t) >=
0 and < n(t)n(t") >= 2D46(t — ¢'). D means the diffusion coefficient. Input
current I"*(t) is obtained by convoluting the presynaptic firing I}(t) with the
" function a(t) = a?texp(—at) as follows. (3 is a conversion constant.

1M (1) ﬂ/ dt’ a(t) It — ). (2.4)

Input current I}(t) is derived from the sum of synaptic weights in which
neurons fire. To equalize excitatory synaptic inputs for different pattern rate
F, we set I}(t) proportional to 1/(1 — F).

N
1
j=1

where ¢!, indicates the times that the ith neuron in layer [ fires. The ith
neuron in layer [ has spiked n times until time ¢.

Membrane potential dynamics follow the spike-and-reset rule: when the
membrane potential vﬁ (t) reaches the threshold Vi, a spike is fired, and
after the absolute refractoriness t.e, the membrane potential is reset to the
resetting potential Vieses. By implementing the absolute refractoriness, burst
firings are inhibited and we can focus on pulse packets propagation.

For the following analysis, we introduce the order parameter function
mb#(t), namely the overlap, defined by .

n

mbH(t) = F(l__ NZ EF—F)> s(t—thy). (2.6)

k=1

13



CHAPTER 2. NETWORK MODEL

Here, the overlap means how much the firing pattern matches the yth mem-
ory pattern in layer [. If neurons with their memory patterns ff’“ = +1 fire
once, then ffzo dt mb“(t) = 1. By using the overlap, I}(t) can be rewritten
as '

Py :
IHOESY %—Eml"l’“(t). (2.7)
pu=1

This means that the synaptic current to a neuron dépends only on the overlap
of the preceding layer and its memory patterns. Here we can see that I'(t)
need to be proportional to 1/(1 — F') so that the excitatory inputs does not
change with different pattern rate F. |

Throughout this dissei"tation, the parameter values are fixed as follows:
Viest = Vieset = 0 mV, Vi, = 15 mV, tree = 1 ms, 7 = 10 ms, Jo = 0.075 pA,
C =100pF, D =0.5, a =2 ms™ !, and 8 = 0.17 pA. The number of neurons
per layer is set to N = 5000 in whole the LIF simulations.

2.2 Fokker-Planck method

In this section, we introduce the analytical method of calculating the mem-
brane potential distribution. First, we define a vector whose elements are
memory patterns of the ith neuron as &} = (¢, e ,fé’p ). Each element
takes on a value +1 or 0, and thus this vector has 27 combinations. We can
define 2P groups according to &! values. We call each group a sublattice and
we discriminate each sublattice with the vector & = (€1,€2,...,£P). Each
element ¢* takes on +1 or 0 values. Here we define d(£) as the ratio of
the number of neurons belonging to the sublattice £ to the whole number of
neurons and 'd)(ﬁ ) is described as follows:

d€) = [ (€ F+@1-¢)1-F). (28)

n=1

14



CHAPTER 2. NETWORK MODEL

Neurons belonging to the same sublattice receive the same synaptic cur-
rent, because the synaptic current depends on only the overlaps and its mem-
ory pattern &! (see equation (2.7)). The distribution of the membrane po-
tential is known to evolve according to the Fokker-Planck equation (Risken,
1996),

0

—a—tPé(v, t) = -—% jg‘(v, £) + 6(v = Vieset)A(E) VE(t — tret), (2.9)

Lo

.1 U — Viest I& (t) + I 9 I

t) = — — —D t). 2.1
]E(v’ ) < - C + v Pﬁ(,u7 ) ( O)
Pl(v,t) is the distribution of the membrane potentials of the neurons be-
longing to sublattice £, and v(t) = ji(Vin, t)/d(€) is the flow of probability
across the threshold Vi, per second per neuron, that is to say firing rate;
the number of spikes per second per neuron. Ff(v,t) and vé (t) satisfy the

normalization condition:

4 ’V;h tref
[ v Pio, 1) + a(e) /O dr UGt — 7) = d(€). (2.11)
Here we define the overlap vector, m'(t) = (mb(t), m"2(t),... ,ml’p(t)).

From equations (2.4) and (2.7), we can describe the synaptic current é’o‘ (t)
by using £ and m!(t) as follows:

1) = g /O Tt o)LLt - 1), (2.12)
Ig(t) = %}‘% -ml7i(t), (2.13)

where I is the vector whose all elements are 1 and size is p.
From equation (2.6), we can describe the overlap mb#(t) by using firing
rate v4(t) as

O = F LUK -F -, @1

15



CHAPTER 2. NETWORK MODEL

Here we can describe the network dynamics only by using macroscopic
parameters P¢(v,t), v(t), and m!(t).

In this dissertation, we numerically calculate the Fokker-Planck equation
with the Chang-Cooper Method (Chang and Cooper, 1970; Park and Pet-
rosian, 1996). At the boundary, we stock the flow at Vi, and after t.; add
the stocked flow to the probability at Viess (see equation (2.9)).

The description with the Fokker-Planck method is consistent with the LIF
simulation in the limit of the number of neurons belonging to each sublattice
Nd(€) — oco. Because the minimum value of d(€) is less than 277, we restrict

the total number of memory patterns to p ~ O(1).

16



Chapter 3

Basic associative feedforward
network

3.1 Introduction

The purpose of this dissertation is to clarify the ability of a simple neural
network to transmit signals. Diesmann et al. showed that a homogeneous
feedforward network transmits a pulse packet stably and there is only one
propagation pattern. In this dissertation I describe properties of an associa-
tive feedforward network. I address whether it can transmit pulse packets
that correspond to the embedded memory patterns. In this chapter, I present
the analysis for pattern rate F' = 0.5, meaning that the half the neurons in
the network would fire in a pulse packet.

In the following sections I describe our analysis using LIF simulation and
the Fokker-Planck method. In this chapter, I consider the case in which the
number of memory patterns, p, is much smaller than the number of neurons in
a layer, N. Thus, the results from LIF simulation are always consistent with
those from the Fokker-Planck method. In Section 3.2, I discuss the simplest
case, i.e., when single memory pattern is activated. Next, I discuss the case
in which two memory patterns are activated in Section 3.3. In Subsection

3.3.1, I discuss the simultaneous activation of two memory patterns and, in

17



CHAPTER 3. BASIC ASSOCIATIVE FEEDFORWARD NETWORK

Subsection 3.3.2, the successive activation of two memory patterns. Section

3.4 summarizes the chapter.

3.2 Activation of single memory pattern

In this section, I address whether the associative vfeedforward network can
transmit synchronous spikes of embedded memory patterns stably by using
the LIF simulation and the Fokker-Planck method. Throughout this dis-
sertation, I activate the network by input current into the first layer of the
network and the initial condition is a stationary distribution for no external
input (I}(t) = 0). We use the overlap as an index of how firing patterns
match the memory pattern. For the first layer activation, we consider the
virtual layer and describe the overlap on the virtual layer of memory pat-
tern 1 (the activated memory pattern) as a Gaussian function with standard
deviation o and total volume m. In this section, the volumes of the other

memory patterns (the unactivated memory patterns) are set to 0;

m_ (t —t0)? _
mO(t) = oo P\ 202 A= (3.1).
0 w1

First, we simulated the membrane potential dynamics of the LIF neurons.
We calculate the input currents to neurons from equations (2.4) and (2.7),
membrane potential dynamics from equation (2.3), and the overlaps of the.
first memory pattern m’!(t) from equation (2.6). I plotted the overlaps as
dashed lines in Figures 3.1(a) and 3.1(b). Each figure shows the overlaps
of the five layers vertically. Figure 3.1(a) is the case that the total volume
of the overlap of the virtual layer is set to m = 0.6, and Figure 3.1(b) is
the case with m = 0.4, In Figure 3.1(a), the temporal profile of the overlap
becomes sharper as the activity propagates through the layers. Therefore, the
activated memory pattern synchronously propagates as a pulse packet under
this condition. We call this mode ”embedded pattern propagation mode”. In

18



CHAPTER 3. BASIC ASSOCIATIVE FEEDFORWARD NETWORK

contrast, in Figure 3.1(b), the overlap disappears as the activity propagates.
This means that the activated memory pattern does not propagate under the

latter condition. This is the same mode as the spontaneous firing mode.

Next, we analyze the dynamics of the network by the Fokker-Planck
method. When the input overlap of a memdry pattern is 0, the synaptic
current does not depend on the memory pattern (Eq. (2.7)). Therefore we
does not need to consider the sublattice of the unactivated memory patterns.
In this situation, it is enough to pay attention to only the sublattice of the
activated memory pattern. We calculate 2 membrane potential distributions,
P! (v,t) and P! (v,t), and 2 firing rates, v (¢) and v* (£) on each layer. The
subscript index (+) means £ = (+1) sublattice and (—) means & = (0).
We calculate the input current to the neurons belonging to each sublattice
from equations (2.12) and (2.13), membrane potential distributions and firing
rates from the Fokker-Planck equation (see equation (2.9)), and the overlaps
of the first memory pattern m"!(t) from equation (2.14). I plotted the over-
laps as solid lines in Figures 3.1(a) and 3.1(b). Figures 3.1(a) and 3.1(b)
show the consistency between the results of the LIF simulation and those of
the Fokker-Planck method.

We choose the overlap of the virtual layer to be the Gaussian function
with total volume m and standard deviation o. Now, we evaluate the total
volume m' and the standard deviation ¢’ of the overlap of the first layer by
approximating the overlap with the Gaussian function by using the method
of least squares. Though the overlap of the first layer is precisely not the
Gaussian Function but a little temporally tailed function, the difference is
small and the approximation works well. Figure 3.2 shows the normalized
vector from (m, o) to (m/, o’) as well as the Diesmann et al., 1999 and Cateau
and Fukai, 2001. Figure 3.2(a) shows the results of the LIF simulations and
Figure 3.2(b) shows those of the Fokker-Planck method. Figure 3.2 shows
that if the initial activation is strong and synchronous enough, the overlap
converges the attractor on the left. This attractor means that the spike
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Figure 3.1: Overlaps m"!(t) (I =0---4) when the total volume of the overlap
on the virtual layer is set to m = 0.6(a) or m = 0.4(b), and the standard
deviation is set to o = 0.5 ms. The dashed line is obtained with the LIF
simulation, and the solid line with the Fokker-Planck method. We define t,
when m®*(t) takes a peak value, as 3¢ = 1.5 ms.
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Figure 3.2: Each arrow means the change from an input overlap to an out-
put overlap. The input overlaps are Gaussian functions, and the output
overlaps are approximated as Gaussian functions. (a) LIF simulation result,
(b) Fokker-Planck method result.

pattern almost matches the activated memory pattern and the spikes are
highly synchronized. It indicates that this network works as a synfire chain
and the activated memory pattern propagates as a pulse packet. In contrast,
when the initial input is too weak or too dispersed, the overlap disappears in
the lower right region. Those results of the LIF simulation (Figure 3.2(a)) are
highly consistent with those of the Fokker-Planck method (Figure 3.2(b)).

Next, we analyze the change of the overlap when we change the diffusion
coefficient D. Figure 3.3 shows the result. Figure 3.3 is the case of (a)
D =0.25mV 2-ms™*, (b)D = 0.5mV 2:ms~! (the standard situation), (c)D =
1.0mV 2ms!, and (d)D = 2.5mV 2-ms™*. Figure 3.3 (a-c) shows that the
smaller diffusion coefficient D is, the shaper the temporal profile of overlap
is and the larger value of overlap is, and however the change is small and
the basin of attraction also shows little change. On the other hand, 3.3(d)
shows that if the diffusion amplitude is too large, neurons tend to burst
and the stable propagation collapse. These results imply that the diffusion
coefficient does not effect the dynamics of synchronous signal propagation so
much unless it reaches the threshold.
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Figure 3.3: Each arrow means the change from an input overlap to an output
overlap. The input overlaps are Gaussian functions, and the output overlaps
are approximated as Gaussian functions. 4 figures have different diffusion
coefficient; (a) D = 0.25mV 2ms™!, (b)D = 0.5mV 2-ms™*(the standard
situation), (¢)D = 1.0mV 2ms™?, and (d)D = 2.5mV Z-ms™!

22



CHAPTER 3. BASIC ASSOCIATIVE FEEDFORWARD NETWORK

Finally, I analyze the change of the ovérlap when we change the time
constant of o function. Figure 3.4 shows the result. Figure 3.3 is the case of
(a)a = 8.0ms~!, (b)a = 4.0ms™, (c)o = 2.0ms™! (the standard situation),
and (d)a = Ims™!. Figure 3.4 (a-d) shows that the standard deviation of the
temporal profiles of the overlap at the attractor shows strong dependence on
Q.

Hereafter in this chapter, we show only the results of the Fokker-Planck

method, as all of the results are consistent with the LIF simulations.

3.3 Activation of two memory patterns

In the previous section, I showed that in an associative feedforward network
an activated memory pattern could propagate as a pulse packet. Here we fo-
cus on the temporal profiles of the network activities when multiple memory
patterns are activated. In this section we analyze the simplest case: the acti-
vation of two memory patterns with an arbitrary interval Tyeay. Figure 3.5 is
a schematic diagram of the temporal profiles of the overlaps of the activated
memory patterns. Here we consider two situations: simultaneous activation
(Thelay = 0) and successive activation (Tyeay > 0). In both situations, we
divide neurons into sublattices according to the two memory patterns, be-
cause the overlaps of unactivated memory patterns are always 0 and the
unactivated memory patterns do not effect the activities of the neurons. I
describe the focused sublattices £ = (+1,+1), (+1,0), (0,+1), and (0,0) as
(++), (+-=), (—+), and (——). The membrane potential distributions are ac-
cordingly divided into the following groups: PL ., P._, P!, and P'_. We
denote the firing rates of each sublattice as v}, v} _, vt , and v/ _.
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Figure 3.4: Each arrow means the change from an input overlap to an output
overlap. The input overlaps are Gaussian functions, and the output overlaps
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Figure 3.5: Schematic diagram of the activation of two memory patterns.
We activate memory pattern 1 Tyeay after memory pattern 2. We define the
time of the onset of the first memory pattern activation as 0.

3.3.1 Simultaneous activation of two memory patterns

Let us consider the case in which two memory patterns are activated simul-

taneously. The overlaps of the virtual layer are described as follows:

mk (t —th)? :
mOH(t) = V2rok xDp (W) p=12 (3.2)
0 wFE L2

Regarding simultaneous activation, we assume that neurons on the virtual
layer do not fire no more than twice during our focus. The sum of total
volumes of overlaps satisfies m* +m? < 1 because we consider two orthogonal
memory patterns. Here, we set that m! +m? = 1,0! = 02 = 0.5 ms, and
t} = t2. We change only the ratio of m* to m?2.

First, I explain the simplest situation; m' = 1 and m? = 0. As we have
seen before, the overlap of the second memory pattern was always 0, and
memory pattern 1 propagated as a pulse packet as in Figure 3.1(a).

Second, we analyzed balanced activation; m! = m? = 0.5. Figure 3.6
shows the temporal profiles of the overlaps. Throughout the observation,
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Figure 3.6: Overlaps m»#(t) when two memory patterns are activated with
the same strength; m; = my = 0.5. We define ¢}, when m®!(¢) takes a peak
value, as 30! = 1.5 ms. ‘

both overlaps mb(t), m"2(t) have the same value and their total volumes
were [°o_dtm#t(t) ~ 0.5. This situation seems to indicate that both memory
patterns propagate with their intermediate levels. We call this mode ”mixed
pattern propagation mode”.

In order to elucidate which sublattices contain firing neurons, we focus
on the firing rate of each sublattice. Figure 3.7 shows the firing rates z/é.
This figure shows that in the mixed pattern propagation mode spikes of
€ = (++) propagate stably. Although the & = (++) sublattice is not a
memory pattern, the activity of & = (++) propagates as a pulse packet.
Therefore, the associative feedforward network is a synfire chain in which
not only memory patterns but also their mixed patfern propagates as pulse
packets.

Next, we gradually increase m! from 0.5 to 1 while stipulating that m! +
m? = 1. As long as m! is approximately smaller than 0.7, m* () > m2!(t)
early in several layers. However the network finally converges to the mixed
pattern propagation mode, as in Figures 3.6 and 3.7. In contrast, when
m? is larger than a certain threshold, mY!(¢) has two peaks, and m?>!(t)
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Figure 3.7: Firing rate v{(t) of each sublattice when two memory patterns
are simultaneously activated with the same strength(m; = mg = 0.5).

has one positive peak and one negative peak. Figure 3.8 plots the overlaps
for m!' = 0.8 and m® = 0.2. After convergence, [~ dtmb!(t) ~ 1 and
[ dtm*!(t) ~ 0. In this regard, this situation is similar to when only the
one memory pattern is activated. However it is different in that the overlaps

have two peaks.

Similar to Figure 3.7, Figure 3.9 shows the firing rate of each sublattice for
this case. Figure 3.9 indicates that neuronsin £ = (++) and (+—) sublattices
fire synchronously in each sublattice but at different timings between the
sublattices. We call this mode ”split propagation mode” because of the
split of spike timings. This difference is due to the difference in synaptic
current strengths. In the first layer, I, (t) = 2 (mbH(t) + m?H(t)) > I, _(¢) =
$(mb(t) — m®H(t)) because m>!(t) > 0. Therefore, neurons in the (++)
sublattice receiving the larger current fire earlier than those in the (+-—)
sublattice.

The split of spike timings does not grow after convergence in the split
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Figure 3.8: Overlaps m"#(t) when memory pattern 1 is more strongly acti-
vated than memory pattern 2 (m; = 0.8, my = 0.2).
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Figure 3.9: Firing rate I/é(t) of each sublattice when memory pattern 1 is
more strongly activated than memory pattern 2; m; = 0.8, my = 0.2.
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propagation mode. To elucidate the reason, we rewrite I, é“ as follows:

1) = 2 (mM(e) + m (1)
= 2 (A0 + A () ) — L)
P+, ()~ A0 — ()
= 2 (Aa0) — (1), (33)
Similarly,
I = 2 (o) 4 0), (3.4)
I = 2 (4 (0) ~ (1) = ~1i2, (3.5)
I = -;f (V_(t) = Vi (1) = =I5 (3.6)

From these equations, the activities of the £ = (++), (——) sublattices inde-
pendently propagate from (4+—), (—+) sublattices. Note that this indepen-
dence cannot be achieved by the activation of more than 3 memory patterns.
In the activation of two memory patterns, the activity of the (++) sublattice
independently propagates from that of (+—). After each activity reaches
a synchronous mode, which is the attractor in Figure 3.2, both activities
propagate at the same speed.

This analysis of firing rate dynamics indicates that the boundary between
the mixed state and the split propagation mode is the boundary of the prop-
agation of (+—) sublattice activity.

Finally, we gradually increased m! to 1. As m! became larger, the split of
spike timings between the 2 sublattices became smaller and finally vanished
when m! = 1. Thus, we can consider the single pattern propagation as a
special case of split propagation mode. |

- In summary, simultaneous activation under the restriction of m!+m? =1

gives rise to two modes, mixed pattern propagation mode and split propa,-
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gation mode. If |m! — m?| is small enough, the network converges to mixed

pattern propagation mode; otherwise it converges to split propagation mode.

3.3.2 Successive activation of two memory patterns

Cateau and Fukai reported that when they activated two pulse packets suc-
cessively with a short interval, the following pulse packet did not propagate
because of hyperpolarization caused by the preceding pulse packet’s propa-
gation (Céteau and Fukai, 2001).

In this subsection I described the case in which two memory patterns are
successively activated with a short interval, Tge,, > 0. By contrast with
the previous subsection, we do not restrict the number of spikes which is
in contrast to the simultaneous activation. Thus m! + m? can take more
than 1. For simplicity, we assume that the overlaps of the virtual layer of
both memory patterns take on the same values except for the timing, and
that the parameters of the Gaussian functions describing the virtual layer
overlaps are m! = m? = 0.7, and ¢! = ¢ = 0.5 ms in equation (3.2). We
activate memory pattern 1 (the following pattern) after memory pattern 2
(the preceding pattern) (Figure 3.5).

When Tyelsy is much larger than the membrane time constant 7(= 10 ms),
for example Tyelay = 50 ms, the £ = (++) and (—+) sublattices are simul-
taneously activated by the preceding pattern activation, and the & = (++)
and (+—) sublattices are almost simultaneously activated by the following
pattern activation (Figure 3.10). In this situation, the following memory pat-
tern seemed to propagate normally without being affected by the preceding
memory pattern’s propagation.

However, when the interval Tyey is decreased, the spikes of neurons be-
longing to & = (+—) sublattice are gradually delayed compared with those of
(++) neurons during the following pattern propagation. Figure 3.11 shows
the firing rate of each sublattice when the interval Tyelay = 20 ms. This mode
is same as the split propagation mode in the previous subsection.
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Figure 3.10: Firing rate of each sublattice when we activate the pattern 1.

Tyelay = 50 ms after the activation of memory pattern 2. tj, when m91(t)

has a peak value, is defined as 30 = 1.5 ms.
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Figure 3.11: Firing rate of each sublattice when we activate the pattern 1
Taelay = 20 ms after the activation of memory pattern 2. t3, when m%!(¢)
has a peak value, is defined as 30! = 1.5 ms. '
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To investigate the reason for this delay, we plot the membrane potential
distribution of the first layer of each sublattice Pgl after the propagation of the
preceding pattern (1 = 2 memory pattern) in Figure 3.12. During propaga-
tion of the preceding pattern, neurons in the € = (++) and (—+) sublattices
fire and their membrane potentials are reset to Vieset (Figure 3.12 dashed
line). In contrast, neurons in the (+—) and (——) sublattices hyperpolarize
because of the inhibitory current (Figure 3.12, solid line). Therefore when
the input from the following pattern arrives, neurons in the (+—) sublattice
take more time than the ones in the (++) sublattice to reach the threshold
Vin. This is the origin of the delay. Membrane potentials relax with the
membrane time constant 7. Therefore this effect remains for the order of the

membrane time constant.

In the deeper layers, a once dispersed (+—) pulse packet develops into a
synchronized pulse packet, and the interval between the preceding pattern
and (+—) pulse packet approaches a certain value, which is long enough for
the membrane potential distribution of the (4—) sublattice to relax to the
stationary state. These dynamics are independent of the (++) sublattice
dynamics. The (4+) pulse packet also develops into the synchronized state,
and the interval between the preceding pattern and the (++) pulse packet
also converges to a certain interval. Therefore, the delay between (+4) and
(+-) also converges to a certain delay period.

If the time interval is further decreased, the activity of the (+—) sublattice
does not propagate after the following pattern activation. Figure 3.13 shows
the firing rate of each sublattice when the time interval is Tyeny = 15ms.
This figure shows that only the activity of the (++) sublattice propagates
whereas that of (+—) dies out. This is the mixed pattern propagation mode
described in Figure 3.7. The activity of (+—) does not propagate because
the smaller T,y is, the more the inhibitory effect remains and it is more
difficult for neurons belonging to (+—) to fire when the following pattern is
activated.
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ms after t3. The membrane potential distribution of the § = (++), (—+)
sublattice is plotted as the dashed line and that of (+—), (——) as the solid
line.
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Figure 3.13: Firing rate of each sublattice when we activate memory pattern
1 Tyaelay = 15 ms after the activation of memory pattern 2.
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Figure 3.14: Firing rate of each sublattice when we activate the pattern 1
Taely = 8 ms after the activation of memory pattern 2. t3, when m%*(¢) has
a peak value, is defined as 30 = 1.5 ms.

When the time interval is decreased even further, for example Tyeay =
8ms, even the activity of the (++4) sublattice does not propagate (Figure
3.14). This is because of hyperpolarization after spikes in the preceding acti-
vation. Therefore it is difficult even for neurons belonging to the (++) sub-
lattice to fire when the first memory pattern is activated. This phenomenon
is similar to the one reported by Céteau and Fukai, 2001.

3.4 Summary and discussion

In this dissertation, I described a model of an associative feedforward network
constructed of LIF neurons and its analysis using the Fokker-Planck method.
First, I showed that the network has propagation modes of the embedded
memory patterns. These modes are observed when one embedded memory
pattern is activated strongly and synchronously. '
- Second, I showed that not only embedded patterns but also mixed pat-
terns propagate synchronously when two memory patterns are activated si-
multaneously. The split propagation mode is observed when there is unbal-
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anced activation of two memory patterns.

Finally, I showed that the successive activation of two memory patterns
produces the mixed pattern propagation mode and the split propagation
mode. The mode of the network activity and the propagation of sublattices
depend on the interval between the two activations.

The difference between the conventional binary neuron network and our
network is the stability around memory patterns. The conventional network
convérges to embedded pattern propagation mode or mixed pattern propa-
gation mode, not to split propagation mode. The split propagation mode
is characteristic of spiking neuron models because spiking neuron models
driven by inputs of different strengths fire at different timings. In contrast,
binary neurons fire simultaneously even if the strength are unequal as long
as the current reaches the threshold. Simultaneous firing means the network
is in memory pattern mode. The meaning of the split of spike timings is
unknown. The split might transmit the information of unbalanced input. In
the next chapter, I discuss the stability of the split propagation mode when
the pattern rate is not 0.5. ‘

35



CHAPTER 3. BASIC ASSOCIATIVE FEEDFORWARD NETWORK

36



Chapter 4

Sparsely and densely connected
associative feedforward network

4.1 Introduction

In the previous chapter, I discussed the signal propagation when the pattern
rate of the network is 0.5, which means that half the neurons in a layer would
fire in the embedded pattern propagation mode. How does the activity of
the network differ when the pattern rate is not 0.57

In this chapter, I discuss how signal propagation depends on the pattern
rate for sparsely and densely connected networks and discuss the difference
in ability to generate synchronous spikes. Sparsely connected networks of the
associative memory constructed of the binary neurons have been intensively
researched (Willshaw et al.1969; Palm 1980; Golomb and Sompolinsky, 1990;
Meunier et al., 1988; Amari, 1989; Okada, 1996). However, the dynamics of

associative feedforward networks constructed of spiking neurons have not.

I describe the activity in single-pattern activation in Section 4.2 and that
in two-pattern activation in Section 4.3. For the latter, I described the net-
work activity in response to the activation of two patterns with different
strengths with the same timing (Subsection 4.3.1) and with the same strength
but with different timings (Subsection 4.3.2). The basin of attraction is also
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described in Section 4.3.3. Section 4.4 is devoted to the memory capacity of

the network. Section 4.5 is a summary and discussion of this chapter.

4.2 Activation of single memory pattern

I showed that an activation similar to a memory pattern causes the prop-
agation of the activated memory pattern with the pattern rate F' = 0.5 in
the previous chapter. In this section, I address whether the activity of the
network observed by activation of one memory pattern is the same or not
with the pattern rate F' # 0.5.

The initial condition is the stationary distribution for no external input.
For the first layer activation, we define the activity of the virtual layer (layer
0). The temporal evolution of the overlap of the first memory pattern on the
virtual layer is described as the Gaussian function with standard deviation
o and total volume m!. The volumes of the other memory patterns are set

to 0. Here, the standard deviation o is always 0.5 ms.

ml o (t —to)? _
mO(t) = oo P\ 202 == (4.1)
0 W L.

First, we simulated the membrane dynamics of LIF neurons as well as

Chapter 3. We calculate the input currents to neurons from equations (2.4)
and (2.7), membrane potential dynamics and firings from equation (2.3), and
the overlaps from equation (2.6). Dashed lines in Figure 3.1 show the firing
rates of neurons whose first memory pattern ff’l is +1. Seven layers are ver-
tically aligned from top to bottom. Figure 3.1(a) is the case of a sparsely
connected network F = 0.4, Figure 3.1(b) is the case of a conventional net-
work F' = 0.5, and Figure 3.1(c) is the case of a densely connected network
F = 0.6. Synchronous spikes propagate in not only the case F' = 0.5 but
also F'= 0.4 and 0.6.

Next, we apply the Fokker-Planck method. In activation of one memory
pattern, it is enough to calculate 2 sublattices as well as the previous chap-
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Figure 4.1: Firing rates of the neurons whose memory pattern 1 (ff’l) is1
on the vertical layer following the activation of single memory pattern. The
pattern rate is F' = 0.4(a), F' = 0.5(b), and F = 0.6(c). The total volume of
input m! is 0.6. The dashed lines are obtained with the LIF simulation and
the solid lines with the Fokker-Planck method. We define t°, when m®*(¢)
takes a peak value, as 30 = 1.5[ms].

ter. We call the sublattices (+) and (—) and calculate the distribution of
membrane potential, P! (v,t) and P (v,t), and firing rates v/ (t) and v’ (t)
on each layer. We calculate the input current to the neurons belonging to
each sublattice from equations (2.12) and (2.13), the membrane potential
distributions from equation (2.9), the firing rates from equation (2.10), and
the overlaps from equation (2.14). Solid lines in Figure 4.1 shows the firing
rates of £ = (+1), ¥4 (¢) on the seven layers vertically.

Figure 4.1 suggests that regardless of pattern rate F' in the associa-
tive feedforward network, the spikes of the activated memory pattern syn-
chronously propagate by one pattern activation. The results seems reasonable
because equation (2.7) shows input currents to the neurons belonging the (+)
sublattice do not depend on the pattern rate F'. This independence from the
pattern rate can be observed in the spontaneous firing modes (Figures 4.2).

Figure 4.1 also shows the consistency between the results of the LIF
simulation and those of the Fokker-Planck method.

4.3 Activation of two memory patterns

In Section 3.3, I described the activities of the network by the activation
of two patterns. In the analysis, I showed that an associative feedforward
network has non-embedded pattern propagation mode: mixed pattern prop-
agation mode and split propagation mode. In this section, I describe the
activities by the two-pattern activation with pattern rate F' # 0.5, especially
the activity of the split propagation mode. As well as Section 3.3, I denote
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Figure 4.2: Firing rates of the neurons whose memory pattern 1 (55’1) is1

on the vertical layer under the activation of single pattern. The pattern rate
is F = 0.4(a), F = 0.5(b), and F' = 0.6(c). The total volume of input m'
is 0.4. The dashed lines are obtained with the LIF simulation and the solid
lines with the Fokker-Planck method. We define t°, when m®*(t) takes a
peak value, as 30 = 1.5]ms]. '

the focused sublattices as (++), (+—), (—+), and (——). Accordingly the
distributions of the membrane potential are described as PL, (v,t), PL_(v,1),
PL_(v,t), and PL_(v,t), and the firing rates are v}, (t), V4_(t), vL,(t), and
vt _(t) in layer I.

In this section, we consider the following overlaps as the activation from
the virtual layer.

O p—— (I$+F exp <—-—-—-—-(t — t++)2>

oo 25°

+I9_(1— F)exp (%D : (4.2)
() =22 (1, e (552)

i exp_<(if§£i;£>> : (4.3)
m%*(t) =0 pw# 1,2 (4.4)

Then from equation (2.13) the input to (++) and (4+—) sublattices on the
first layer is simply described as follows,

0 _ 2 '
B = e (55, (45
0 _
I_(f) = }2-?—0 exp (@—2—2;—)-2-) (4.6)

In Section 4.3 the results of the LIF simulation are not shown but we
confirmed that their results are consistent with those of the Fokker-Planck
method.
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4.3.1 Activation of different input strengths

In this subsection we consider the situation where the volume of the overlaps
of the two activated memory patterns on the virtual layer are respectively
set to m! and m?, and the timings of input to (++) and (+—) are set to
the same value: IS, F+19_(1—-F)=m!, (1 - F)(I9, —I3_) =m?, and
ty 4 = ty_ = tg in equations (4.2) and (4.3). Therefore equations (4.5) and
(4.6) are rewritten as

m! t— t)?

m(t) = = exp <( 2020) ) , (4.7)
m? t— t)?

m®2(t) = — exp (( 2020) > : (4.8)

(4.9)

These equations are equivalent to equation (3.2). And equations (4.5) and
(4.6) are rewritten as

I _(t) = (L (_1 f’);l)l ;im2 exp ((t 2*07;0)2> : (4.11)

Here we focus on the case that the input is similar to the first memory
pattern; m! ~ 1 and m? ~ 0. If m2 = 0, the input to (++) and (+—) sublat-
tices is the same, It | () = I' _(t) and then the memory pattern 1 propagates
in the shape of synchronous firing packet as shown in Section 4.2 (Figure 4.1).
We calculate in the case of m! = 0.9, m? = 0.1 by using the Fokker-Planck
method. Figure 4.3 shows the firing rates v(t). Solid lines indicate the fir-
ing rates of (++) sublattices v (¢) and dashed lines are for the firing rates
of (+—) sublattices v} _(¢). The pattern rate is F' = 0.4 (Figure 4.3(a)),
F = 0.5 (Figure 4.3(b)), and F' = 0.6 (Figure 4.3(c)). With the pattern
rate F' = 0.5 (Figure 4.3(b)) the spikes of (++) and (+—) sublattices propa-
gates in different timings. This is the split propagation mode I described in
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Subsection 3.3.1. With the pattern rate F' = 0.4 (Figure 4.3(a)), at the be-
ginning, the neurons of (++) and (4+—) sublattices fires in different timings
but after propagation of several layers they become to fire synchronously. On
the contrary, with the pattern rate F' = 0.6, the timing difference between
(++) and (+—) sublattices becomes larger as spikes propagate.

These results imply that in the network of the pattern rate F' < 0.5, a
sparsely connected network, synchronous firing between sublattices is pro-
moted and in that of ¥ > 0.5, a densely connected network, synchronous
firing is suppressed.

The cause of these promotion and suppression of synchronous firing can
be understood from the input currents to each sublattice I;(t). The input
currents are described as follows:

I () = mM(8) +m>(2) | (4.12)
=2Fut (t) — 2(1 = F)ut_(¢)
F =2 L) + L, (), (4.13)
(@) = mb(g) — I—_E—Fm%(t) (4.14)
_ 11‘_ 25 (P (1) - (1= F) ()
B -2k ). (4.15)

These equations are generalized form about the pattern rate F of equations
(3.3) and (3.4). With the pattern rate F' = 0.5, that is 1 — 2F = 0, (++)
sublattices do not interact with (+—) as previously described. Therefore the
split of spike timings caused by the difference of input strength does not
change during propagation. When the pattern rate F' is less than 0.5, that
is 1 — 2F has positive value, there are excitatory connections from (++)
and (4—) sublattices to (+—) and (4-+) sublattices in the next layer respec-
tively. The excitatory connections promote the synchronous firing between
the sublattices and finally v/ (t) = vL_(t) and IS (¢) = IYA(t) in large
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Figure 4.3: Firing rates of (++) sublattices (v}, (¢); solid lines) and (+—)
sublattices (v} _(t); dashed lines) on the vertical layer when the strength of
activation is different. The pattern rate is F' = 0.4(a), F = 0.5(b), and
F = 0.6(c). The total volume of input of the first memory pattern m? is
0.9 and that of the second memory pattern m? is 0.1. We define t°, when
m%1(t) takes a peak value, as 30 = 1.5[ms]. These results is obtained with
the Fokker-Planck method.

[. That is why the the split of the spike timings decreases as spikes propa-
gate. In contrast, when the pattern rate F' is more than 0.5, that is 1 — 2F
has negative value, there are inhibitory connections as well. The inhibitory
connection seems to suppress the synchronous firing and made the timing
difference larger as spikes propagate.

The promotion or suppression by sparse or dense connection is regarded as
disappearing or remaining of the effect of a weakly activated pattern. We can
also understand this phenomena from the currents to sublattices I é (t) and
densities of sublattices d(€). The densities of the (++) and (+—) sublattices
are F? and F(1 — F) respectively. When the connections are sparse, (+—)
has larger density and effect than (++) and vice versa. In addition, in the
sparsely connected network the effect of pattern 2 in (+—) sublattice becomes
smaller (see equation(4.14)) and that in (++) remains regardless of pattern
rate (see equation(4.12)). Therefore in a sparsely connected network the
effect of a weakly activated pattern becomes smaller during propagation. In
contrast, in a densely connected network the effect of a weakly activated
pattern remains after propagation. |

4.3.2 Activation of different input timings

In the previous subsection, when the strength of input to sublattices is dif-
ferent, it seems that sparsely and densely connected networks respectively
promote and suppress synchronous firing. To clarify whether the promotion
and suppression of synchronization work by different timings activation, in
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this subsection I describe the activity when we set a difference not in the
strength but in the timing of input to sublattices; I8, = I?_ = I° in equa-
tions (4.5) and (4.6). Then equations (4.5) and (4.6) are rewritten as

L.t = _;jm exp (%#) , (4.16)
I ()= \/‘;;U exp (Q_T?;f) . (4.17)

We calculate in the case that the input to (++) is earlier than that of
(+—) by lms, that is ¢4 =ty + 1[ms].

Figure 4.4 shows the firing rates v}(¢). Solid lines are the firing rates
of (++) sublattices v/ , (t) and dashed lines are for the firing rates of (+—)
sublattices v/} _(¢) on the seven layers. With the pattern rate F' = 0.5 (Figure
4.4(b)), the spikes of (++) and (+—) propagates at the same speed. With the
pattern rate F' = 0.4 (Figure 4.4(a)) the timing difference becomes smaller,
and when the pattern rate F' is 0.6 the timing difference becomes larger as
spikes propagate. Figures 4.4(a-c) shows that the promotion and suppression
of synchronization work under this situation. These results are consistent

with the analysis of the previous subsection.

4.3.3 Basin of attraction

In Subsections 4.3.1 and 4.3.2, I showed that sparsely and densely connected
networks seem to promote and suppress synchronous firing between sublat-
tices, respectively. Here we focus on not firing timing but the stability of
firing of sublattices. The timing of inputs to (++) and (+—) is set to be
same, lLe., T4 = t;_ =ty in equations (4.5) and (4.6). Then equations (4.5)

and (4.6) are rewritten as

IL(t) = d ;J exp (“ 2"020) ) (4.18) |
0 TRY ~
IL_(t)= VI%—E exp <~(-t-§;7;°—)—> : (4.19)
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Figure 4.4: Firing rates of (++) sublattices (v} (¢); solid lines) and (+—)

ones (V4 _(t); dashed lines) on the vertical layer when the timing of activation

is different. The pattern rate is F' = 0.4(a), F' = 0.5(b), and F' = 0.6(c).
The size of input 9 is 1. We define t;, when I9 +(t) takes a peak value, as
30 = 1.5[ms] and ¢, _ = ¢4 + 1[ms]=2.5[ms]. These results is obtained with
the Fokker-Planck method. ’

We observe the firing rates when we change the input strength of (++)
subllatices 19, and (+—) one I9_ independently from 0 to 1. If the maximum
of the firing rate of a sublattice on the fifth layer is more than 600[Hz],
we regard the sublattice fires. Figure 4.5 is the result obtained with the
Fokker-Planck method. The vertical axis means the input strength of (++),
I? ., and the horizontal axis means that of (+—), I2_. The black, dark
gray, light gray and white region in Figure 4.5 mean no firing, activity in
(++) sublattice is propagated, activity in (+—) sublattice is propagated,
and memory pattern 1 is fully associatéd, respectively. With the pattern rate
F = 0.4 (Figure 4.5(a)) the region of memory pattern 1 is larger than that
with F' = 0.5 (Figure 4.5(b)). In contrast, with the pattern rate F' = 0.6
(Figure 4.5(c)) the region of memory pattern 1 is smaller than that with
F = 0.5 (Figure 4.5(b)).

These results imply that sparsely and densely connected networks not
only promote and suppress synchronous firing but also enlarge and shrink
the basin of attraction of the memory pattern, respectively. The cause of
enlargement and shrinkage seems to be the excitatory and inhibitory con-
nections between sublattices as described in Subsection 4.3.1. Under the ex-
istence of excitatory connections between (++) and (+—) sublattices, (++)
and (+—) sublattices mutually excite each other. On the other hand, under
the existence of inhibitory connections, (++) and (+—) sublattices mutually
inhibit each other and suppress the propagation.
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Figure 4.5: The firing of each sublattices. The pattern rate is F' = 0.4(a),
F = 0.5(b), and F' = 0.6(c). The vertical axis means the input strength of
(4-+) 19, and the horizontal axis means that of (+—) I%_. If the maximum of
the firing rate is more than 600[Hz] on the fifth layer, we regard the sublattice
as 'firing’. The black, dark gray, light gray and white region in respectively
mean no firing, activity in (4++) sublattice is propagated, activity in (+—)
sublattice is propagated, and the first memory pattern is fully associated and
activity in both (++) and (+—) sublattices are propagated.

4.4 Storage capacity of an associative feed-
forward network

In binary neurons networks it has reported that sparse connection increases
the storage capacity of memory patterns (Meunier et al., 1988; Amari, 1989;
Okada, 1996). In this section, I describe the results in the case of the feed-
forward associative network constructed of the LIF neurons. The number of
neurons per layer N is set to 5000, and we change the total number of the
memory pattern p from 1 to 500. The input is written by equation (4.1) as
- well as Section 4.2, but the total volume of the input m* = 1.

Figure 4.6 shows the maximum value of the overlap of the input memory
pattern on the 20th layer. This figure suggests that the smaller the pattern
rate F', the more stable the propagating patterns are. It seems that the
result is also caused by the excitatory and inhibitory connections because
synchronous firing enlarges the maximum value of the overlap.

" The increase of storage capacity by sparse connection is also shown by the
- following flow diagrams (Figure 4.7). These diagrams are same diagrams as
Figure 3.2. These diagrams shows the change of the total volume of overlaps
of the inputed pattern m' (vertical axis) and the standard deviations of
overlaps divided by the membrane time constant /7 (horizontal axis) in a
layer. To draw the diagrams, we first set the memory pattern of the virtual
layer §? # as well as those of other layers. Ideally the overlap of the memory
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Figure 4.6: The maximum value of the overlap of the input memory pattern
on the 20th layer. The horizontal axis means the rate of the total number of
memory pattern p to the number of the neurons per layer N. We averaged
the overlap over 10 trials and shows the standard deviations as the error-bars.

pattern 1 in the virtual layer M 0.1(¢) is the following equation;

ml (t - t0)2
MO = ex (———————) . 4.20

ma_ p 20_2 ( - )
In order to realize this overlap, the neurons of the virtual layer fires with the
probability of f? L MO1dt during time dt. We calculate the overlaps in the
virtual layer not only of the memory pattern 1 but also of the other patterns

from equation (2.6). Then we can calculate the input currents to the neurons
in the first layer. We observed the spikes in the first layer and approximate
the overlap of memory pattern 1 with the Gaussian function by using the
method of least squares. Figure 4.7 shows the change of overlap between
the virtual layer and the first layer. We show the change by the normalized
vector from input (m!,o/7) to the output of the overlap of memory pattern
1. Figures 4.7(a)(b) show that when the number of patterns p = 1, the
change of overlap are independent on pattern rates F' because we set the
input currents independent to pattern rates (see equation (2.7)). This is also
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the case of the Fokker-Planck method (data not shown). On the other hand,
when the number of patterns is increased to p = 100 (Figures 4.7(c)(d)),
the flow attracts to smaller volume in the F' = 0.6 than F' = 0.4. This
shows the increase of storage capacity by sparse connection. This seems also
the result of the noise from the excitatory(inhibitory) effects from the other
memory patterns discussed Subsection 4.3.1 because the stochastic spikes in

the virtual layer results in non-zero overlaps of the other memory patterns.

4.5 Summary and discussion

In this chapter, I described the activity of an associative feedforward net-
work constructed of the LIF neurons, taking into account the sparseness of
the memory patterns. The effect of sparseness has been studied mainly for
recurrent networks constructed of binary neurons.

In Section 4.2, I showed that with activation of one memory pattern, the
network propagates synchronous pulse packets regardless of the pattern rate
(F). This is explained by the independence of the input current from the
pattern rate (2.7).

In Section 4.3, I discussed the split propagation mode described in Sub-
section 3.3.1, which is observed following the simultaneous activation of two
memory patterns. When F' = 0.5, the split of spike timings between sub-
lattices is preserved in the split propagation mode (Subsection 3.3.1). In
contrast, the split becomes smaller and converges to zero in an F' < 0.5
network. In an F > 0.5 network, the split increases during propagation.
That is, in two-pattern activation, sparse (dense) connection promotes (sup-
pressed) synchrony between sublattices because of the excitatory (inhibitory)
connections between sublattices arising from the pattern rate change.

In Section 4.3.3, I described the basin of attraction observed following
activation of two memory patterns. Results showed that a sparsely connected
network has a larger basin of attraction than a densely connected one. This
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Figure 4.7: Arrows shows the change from an input overlap to an output
overlap. The vertical axis means the volume of overlaps and horizontal axis
means their standard deviations. The input overlaps are the Gaussian func-
tions, and the output overlaps are approximated as the Gaussian functions.
The pattern rate is F = 0.4 (a) and (c) and F' = 0.6 (b) and (d). The number
of embedded memory pattern is p = 1 (a) and (b) and p = 100 (c) and (d).
The number of neuron is N = 5000.
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can also be explained by the excitatory (inhibitory) connections between
sublattices.

Finally, in Section 4.4, I discussed the investigation of storage capacity by
using LIF simulation. The results show that a sparsely connected network
has larger storage capacity than a densely connected one, corresponding to
the results for recurrent networks and. The result of simulation is consistent
with that of flow diagrams.

The results presented in Section 4.3.3 and Section 4.4 suggest the supe-
riority of sparse connection for memory pattern propagation. The results
presented in Section 4.3 indicate the superiority of sparse connection for syn-
chronous firing between sublattices. However, the role of synchronous firing
needs to be elucidated. Future studies will be done to clarify how neural
networks can use the synchronous propagation of pulse packets for the infor-
mation processing.

‘The question of whether sparse or dense connection is better for infor-
mation processing is very important in terms of neural representation of
information. It has been researched in a wide variety of flelds: visual (An-
derson et al., 2002; Finn et al., 2007), auditory (Asari et al., 2006), olfactory
(Wilson et al., 2004; Shang et al., 2007; Olsen et al., 2007), and theoretical
(Zhang and Sejnowski, 1999). Our results should contribute to answering
the question above.
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Chapter 5

Correlated memory patterns

5.1 Network model

I this dissertation, I have discussed memory patterns represented by pop-
ulation of neural firing and used mutually independent and orthogonalized
mei’nory patterns. However, the memory is not necessarily orthogonalized
and there may be a correlation between memory patterns and concept for-
mation (Amari, 1977). In this chapter, I discuss packet propagation when
the memory patterns are correlated. For simplicity, I consider networks em-
bedded with two correlated memory patterns.

If there is no correlation between two patterns, the density of sublattices

is described by

[d(++),d(+=), d(—+), d(—=)]
=[F?% F(1—F),F(1-F),(1-F)?, (5.1)

Here, (++), (+—), (—+), and (——) denotes sublattices with (+1,+1), (+1,0), (0, +1),
and (0,0) memory patterns of a neuron §. The correlation parameter is rep-
resented by ¢, and the sublattice density is given by '

[d(++),d(+=), d(—+), d(——)]
=[F?+¢,F1—F)—c¢,F1-F)—c,(1—-F)?+ (5.2)
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Three constraints are placed on ¢ because the density of sublattices must

be no less than zero.

c>—F? (5.3)
c>—(1—F)? (5.4)
c< F(1—-F) | (5.5)

We construct the associative feedforward network in accordance with the
Hebbian learning rule as (equation (2.2)). Even if there is correlation between
the embedded memory patterns, overlaps mb#(t) are described by equation
(2.6). By using firing rates in the layer I (4 , (¢), v} _(t), VL. (t), and v (t),
the overlaps of the two embedded patterns (m', m*') are described by

N n
) = 6~ P 0~ ) (5.6)
- m((ﬁ + o)L= FYh, () + (1= F)F — o) (1 — F)/_

—F((1=F)F —cpl, — F((1 - F)*+cvt——) (5.7)

m__l_ﬁﬁ((ﬁ 41— F)A,(f) — F(L— F)F — )

+((1—F)F—c)(1-F), — F(1 - F)* +)v'~-) (5.8)

m>H (t) =

From these equations, we can calculate the activity of the network using
the Fokker-Planck method.

5.2 Activation of single memory pattern

In this section, I describe the activity of the network following activation of
one memory pattern. For the activation, the overlaps in the virtual layer are

given by

mt o (t —to)? _
m ) ={ Varo P\ 202 ) HT 7 (5.9)
p# L
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Here, m' = 1 is set to 1, which means that memory pattern 1 is strongly
activated. I define cprax = F(1 — F) for convenience.

First, I focus on a network with a pattern rate of F' = 0.5 and calculate
the network activity when ¢ = —cprax/4, —caax/8, 0, carax/8, and carax /4.
Figure 5.1 shows the firing rates for the (++) and (+—) sublattices. The
results suggest that if there is correlation, the (++) and (4-—) sublattices
do not fire synchronously. The stronger the correlation, the larger the split
of spike timings. Positive (negative) correlation results in a firing order of
(++) then (+-) ((+—) and then (4+4)).

These results can be explained by the currents input to each sublattice,
calculated from equation (2.13):

I = (1= F)m®(t) + (1 - F)m (1)
APt -F) , . (F(L=F)—o)1-2F)

7 vy (t) + I (1/3__ (t) + Vl——l— (%))
—2((1 = F)* + )t _(t), (5.10)
2 . - _ 2 _
s (P c)]gl )1 gy 4 I F)Fé) (_2% 2P+,
(1 —F) — ) - LT F)itcﬁ)fl “20) ) ) s11)
Jlar Gl C)}g} 2F) 1 (§) = 2(F(1— F) — o)k _(t)
(F(1—=F)—c)(2F? —2F +1) (1—-F)2+c)(l—2F) ,
T Fl-F) v (t) - 1-F -
(5.12)
e e CMURRENO)
_2r(d - 13, ). (5.13)

These equations mean that even if the firing of the (++) and (+—) sub-
lattices are completely the same in layer [ and (—+) and (——) do not fire
(WL @) = vi_(t) = v(t) and v} (t) = vL_(t) = 0), the current input
to (++) and (+—) sublattices in layer | + 1 are not same when ¢ # 0;
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Figure 5.1: Firing rates of (++) sublattices (v4(t); solid lines) and (+—)
ones (V4 _(t); dashed lines) in the vertical layer obtained using Fokker-Planck
method. Pattern rate F was 0.5, and correlation parameter c¢ was (a)
—caax /4, (b) —cmax/8, () 0, (d)emax/8, and (e) cmax /4. Input over-
lap m! was 1. The to when m®!(t) took a peak value was 30 = 1.5[ms].
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I — 1" = cy(t)/F(1 — F). Therefore, even with the activation of one
memory pattern, the spikes of (++) and (+—) sublattices do not synchro-
nize (Figure 5.1).

Next, I describe the dependence on the pattern rates F' under weak corre-
lation ¢ = cprax/8. As shown in Figure 5.2(a), a sparsely connected network
promotes synchronous firing between sublattices in comparison to a half-
connected network (Figure 5.2(b)). In contrast, as shown in Figure 5.2(c)),
a densely connected network sﬁppresses the synchronous firing and the split
of the spike timings increases during propagation (Figure 5.2(c)). This de-
pendence of synchrony on pattern rates are similar to that described in the
previous chapter. The reason of the dependence is apparently the excitatory
(inhibitory) connection between the different sublattices arising from sparse

(dense) connection.

5.3 Summary and discussion

In this chapter, I described signal propagation when embedded memory
patterns are correlated. When I embed two correlated patterns, even by
single-pattern activation, the activated memory patterns do not propagate
synchronously. The split is observed whether the correlation is positive or
negative. This implies that correlation between memory patterns does not
promote synchronous propagation and work well for synchronous signal prop-
agation.

Moreover, sparse connection promotes synchrony and dense connection
suppress it with single-pattern activation. This means that sparse connec-
tion can suppress synchrony collapse caused by pattern correlation. This
also indicates the advantage of sparse connection in terms of information

processing.
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Figure 5.2: Firing rates of (++) sublattices (v} (t); solid lines) and (+—)
ones (1 _(t); dashed lines) in the vertical layer obtained using Fokker-Planck
method. Pattern rate F was (a) 0.4, (b)0.5, (¢)0.6 and Correlation parameter
c was cyrax/8. Input overlap m! was 1. The t; when m%!(¢) took a peak
value was 3¢ = 1.5[ms].
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Chapter 6

Conclusion

6.1 Summary

In this dissertation, I described signal propagation in an associative feedfor-
ward network constructed of the LIF neurons and the analysis of its activity
by using the Fokker-Planck method.

In Chapter 2, I described in detail the properties of our feedforward net-
work. We constructed the network of LIF neurons with white Gaussian noise
input. The feedforward connections are defined by the Hebbian learning rule.
We were able to calculate the properties of the network without having to cal-
culate the membrane potentials of each neurons by using the Fokker-Planck
method. We described the network properties by only macroscopic parame-
ters: mbH(t), Pi(v,t), and vg(t).

In Chapter 3, I discussed the case of pattern rate F = 0.5, and described
three notable features. One is that the associative feedforward network can
transmit an embedded memory pattern as a pulse packet as well as a ho-
mogeneous network when the network is activated by an embedded memory
pattern. Another is that activation of two memory patterns produces a mixed
pattern propagation mode and a split propagation mode in addition to the
embedded pattern propagation mode and the spontaneous firing mode. In
the mixed pattern mode, the propagation pattern is not embedded patterns
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but a mixture of the embedded patterns. In the split propagation mode,
the propagation pattern is an embedded pattern, but the firing is not syn-
chronous — the propagation is split into sublattices. The last feature is that
when the network is activated successively by two different patterns, the fol-
lowing patterns do not always propagate synchronously. They sometimes
converge resulting in the split propagation mode, mixed pattern propagation
mode, or the spontaneous firing mode. ‘

In Chapter 4, I discussed the case of pattern rate is not 0.5. I described
the dependence of the activity on the pattern rate (F). The activity ob-
served following the activation of one memory pattern does not change with
the pattern rate. In contrast, in the split propagation mode observed fol-
lowing the activation of two memory patterns, the activity changes with the
pattern rate. In a sparsely connected (F < 0.5) network, the split of spike
timing between sublattices converges to zero after propagation, and the em-
bedded memory pattern synchronously propagates. In contrast, in a densely
connected (F > 0.5) network, the split increases during propagation.

In addition to the split propagation mode, we analyzed the basin of at-
traction and storage capacity. For both, our analysis suggests that a sparsely

connected network is better than a densely connected network.

In Chapter 5, I discussed the case of the correlated patterns. When
correlated memory patterns are embedded, even single-pattern activation
results in the split of spike timings between sublattices. This might be a
disadvantage of correlated memory patterns in terms of synchronous signal
propagation. Even with correlated patterns, sparse connection promotes
synchronous firing and dense connection suppress. Sparse connection is thus

also better in terms of synchronous signal propagation.

Our analysis of the activity of the associative feedforward network has
clarified many of the properties of its propagation modes. Our research is a
basic study of a network that can transmit multiple patterns of packets.
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6.2 Future direction

Our research can serve as the basis for several types of studies.

One possible study is the usability of the synchrony of neural spikes, which
is potentially of great benefit. As described in Chapter 1, synchronous spikes
apparently play a special role in neural information processing, especially in
terms of binding problem (Gray et al., 1989; Gray, 1999; Singer, 1999, Engel
et al., 2001). Several questions, however, need to be answered: what kinds
of networks generate synchronous spikes, what stimuli caused synchronous
spikes, and what information do synchronous spikes transmit? Our research
would help in answering the first question.

Another possible study is the construction of synfire chains using various
kinds of neural models: conductance-based models, bursting neuron mod-
els, and compartment neuron models (Koch, 1999; Koch and Segev, 2001;
Kistler and Gerstner, 2002; Izhikevich, 2002; Li and Greenside, 2006; Jin
et al., 2007). The different models result in qualitatively different changes
in network activity and signal propagation. Shinozaki et al. reported that
enhancement of pulse packet propagation by an inhibitory synaptic current
can be observed in the Hodgkin-Huxley network, but not in the LIF network
(Shinozaki et al., 2007). Izhikevich reported that when he took account of the
length of axons, the network could reproduce accurate spike trains without
synchronization; he called this network activity 'polychronous’ (Izhikevich,
2006). Further study using various neuron models in synfire chains or asso-
ciative feedforward networks would be rewarding.

The robustness of signal propagation in the presence of various kinds
of noise can be investigated. Many researches on synfire chains, including
this dissertation, considered noise generated by the input current as white
Gaussian noise (Diesmann et al., 1999; Céteau and Fukai, 2001; Hamaguchi
et al., 2007; Ishibashi et al., 2006; 2007). However, noise can also be expressed
in the synaptic weights, or by a deficiency of neurons. Investigating this in
detail is important because the robustness of pulse packet propagation is an
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important feature of the synfire chain.

Our research provides useful insights for not only signal propagation but
also for information representation, especially into the effect of firing sparse-
ness. The density of spikes and the broadness of the receptive field have
been hot topics in neural coding (Zhang and Sejnowski, 1999; Anderson et
al., 2002; Wilson et al., 2004; Asari et al., 2006; Finn et al., 2007; Shang
et al., 2007; Olsen et al., 2007). Our research results indicate that sparse
connection is better for synchronous signal propagation.
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Appendix A

Stationary membrane potential
distribution and spontaneous
firing rate

The initial condition for the membrane potential distribution is the stationary
distribution for no synaptic current, I{(t) = Ié’o‘(t) = 0. The stationary
distribution under the dynamics of equations (2.9) and (2.10) is obtained as
follows:

—_ 2 ‘/th ' — 2
Pute) = o (- [™ o e (L )
(A1)

where ©(z) denotes the Heaviside function, ©(z) = 1 for z > 0 and ©(z) = 0
otherwise, vg = Viest + 7Io/C, and v is the spontaneous firing rate for no
synaptic current (Brunel, 2000; Hamaguchi et al., 2007). Py(v) is the proba-
bilistic distribution, therefore it satisfy the following normalization condition,

Vin
/ Pu(0) dv + Tyesvo = 1, (A.2)

—00
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APPENDIX A. STATIONARY MEMBRANE POTENTIAL
DISTRIBUTION AND SPONTANEOUS FIRING RATE

where 7. is the absolute refractory period. From equation (A.2), I can get
Lo,

Vin—vo

d N[y v A3
S U exp (27’D> /_oo v exXp <—27‘D> (A.3)

Vin—vo
V2rD

= Tref + 27/ _— du exp(u?)(1 + erf(u)), (A.4)
V2rD

where erf(z) is the error function, erf(z) = 7= [ exp(—y*)dy.
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Appendix B

features of homogeneous synfire
chain

A homogenous synfire chain has important features and therefore researchers
have investigated the dynamics of its activities. In this chapter, I review 2
features, reproductivity and synchrony.

Tn this chapter, I discuss the homogeneous network and therefore synaptic

weight takes same value in the network.
J=—=. (B.1)

Synaptic current is derived from the sum of synaptic weights in which

neurons fire,
N
I'ey=>_J) &(t—1t5) (B.2)

1 N
ZNZ 5(t—th (B.3)

In homogeneous network, the current is firing rates of the previous layer and
takes same value in one layer. Thus we can assume the current as overlap
function of the previous layer. Other conditions of the network and dynamics

of neurons is same as the associative feedforward network.
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B.1 Reproductivity of spikes

The most important feature of a synfire chain is accurate reproductivity of
spike timings. The feature enables the network to generate repeated spike
patterns. What gives a synfire chain the ability? It seems the population of
neurons. Figure B.1 is the raster plot of spikes of a neuron belonging to a
synfire chain in 20 trials. I activate the first layer of the synfire chain by the

following input:

') = \/%0 exp (ﬁt—z‘;@i) (B.4)

Figures B.1(a)-(d) means that large population of neurons can generate
spikes reproducibly. Because the noise to each neuron has no correlation, the
input to next layer, which is summed up the spikes, is averaged. Then if the
number of neurons increases more and more, does the spike timing become
more and more accurate? The reproductivity of spikes does not seem to
change between the case of 100 neurons (Figure B.1(c)) and that of 1000
(Figure B.1(d)). This is because the synchrony of the spikes has deviation
and the deviation depends on the convolution of o function. I review the

detail about the deviation in the next section.

B.2 Synchrony of spikes

In the previous section, I showed that there are poor reproductivity in small
population network, and on the other hand large population network has high
reproductivity. However, these results do not mean that large population
realize the synchronized firing. In fact, when the population of the neurons
is small, the neurons fire synchronously. Figure B.2 shows the spikes of whole
neurons in the layer 10. The vertical rows represents the trials. These figures
shows that the reproductivity of the firing is different between 50 population
network (Figure B.2(a)) and 1000 population network (Figure B.2(b)), and
however both networks generate synchronous packet.
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Figure B.1: Raster plots of a neuron in the vertical layer. Rows in each figure
means trials. Population of neurons was (a)1, (b)10, (¢)100, (d)1000. Input
overlap I, was 0.6. The to when I'(t) took a peak value was 30 = 1.5[ms].

Why do packets synchronize during propagation even in the small pop-
ulation network? Céateau and Fukai discussed the effect of neglecting the
diffusion and relaxation during signal propagation (Céteau and Fukai, 2001).
This approximation works well because the synaptic currents, I(t), take much
larger values than the diffusion and relaxation terms during signal propaga-
tion. By using this approximation, we can verify the reason for spike syn-
chronization. If we neglect the diffusion and relaxation, neurons do not fire
without synaptic currents. This means that the duration of output firing
does not become longer than the synaptic input. Now, synaptic input is
calculated from the convolution of the output firing in the previous layer
and EPSP profile, o function. Figure 3.4 and B.3 supports this story. In
Figure 3.4, the sharper the temporal profile of o function is, the more syn-
chronous the attractor of the output firing is. This is consistent with the
small population network (N=50) (Figure B.3).

In conclusion, the largeness of synaptic current compared to diffusion and
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Figure B.2: Firing rates of neurons in layer 10. Vertical rows represents
trials. Population of neurons was (a)50, (b)1000. Input overlap o was 0.6.
The to when I'(t) took a peak value was 30 = 1.5[ms].
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relaxation term cause the synchronous firing, regardless of the population of
neurons. And the deviation of the synchrony depends on the sharpness of

the temporal profile of EPSP, « function.
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Figure B.3: Firing rates of neurons in layer 10. Vertical rows represents trials.
The parameter of a function, (a)a =lms™!, (b)a =2ms™!, (c)o =4ms™".
Population of neurons was 50. Input overlap o was 0.6. The o when I L)
took a peak value was 30 = 1.5[ms].
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