カッパ7型、8型、9L型の構造強度について

森

大 吉

1. はしがき

カッパ8型の構造については、前に溶接チャンバなど の主要構造および空力加熱・空力弾性などの解説いを行 なったが、本稿では前稿との重複を避けつつ7型・8型 9L型の構造強度の問題を概観する. なお 420 ブース タのチャンバ構造などについては安藤助教授の別稿を参 照されたい.

2. 空力加熱

空力加熱は8型の開発における構造上の重要問題の一 つで、慎重な検討を加えて対策を講じ、1・2・3・4号 と順次に実測と改修とを重ねてきた.機体各部の温度の 大要についてはすでに前稿いに6型と比較して概述した ので、ここでは重複を避け経過の記録と基礎解析法とを 述べる.

(a) 8型の開発と空力加熱 7型および8D型の 実験でブースタに関する熱の問題は完了していたので、 8型ではメインロケットに考察を集中した.35年7月 に実験した1号機ではノーズ・尾翼・胴体・計器などの 温度を測定したが、実測値は推定値に近く、機体構造と しては基本設計で合格であることが判った. ただ電波が 60 秒以後中絶したこと,計器部の温度が不確かながら約 100℃ の値を一時示したので、温度計を急ぎ製作して2 号機でも再び計器の温度測定を実施するとともに、計器 に防熱対策を施した.2号機の実験により適当な熱絶縁 を施せば熱が内部へ伝わるのは少ないことが判明した.

その後同年8月に計器関係について地上試験で伝熱特 性と防熱対策に関し検討が加えられ、同年9月の3・4 号において全飛しょう時を通じての機体の正常な飛しょ うを確認し、また諸計器も全部作動し、その温度上昇は 僅少であることが再び実証された.機体については 1.2 号では尾翼とノーズに安全を増すためコーティングを施 したが、以後は施していない. 4号機では航研の池田健 教授、三浦公亮氏よりご教示を受け、尾翼について流れ 方向5点の温度を測定したが(温度計の項第8図),これ を吟味すれば熱伝達特性、乱流遷移の模様なども推察で き一つの貴重な資料となった. 今後も機会を捕えてこの 種の測定を実施したい.また落下時には著しい温度上昇 が認められ、reentry 熱問題の厳しさの一端がうかがえ た.

(b) 熱伝達特性 熱対策のうちでは温度上昇の推 定が根本であり,熱伝達特性の推定,実測よりの解析, 遷移点の判定など重要な事項が多い.温度上昇は熱伝達

郎

特性が定まり飛しょう特性が与えられれば筆算でも計算 できるが,現在はアナログ計算機?)も併用している.こ れは熱伝達の影響の吟味、ゲージ応答特性についての実 測値の補正解析,設計の際の比較計算などが比較的容易 に実施できるからである.

また熱伝達係数 h は速度 V, 空力密度 ρ , 先端より の距離 x に関し下式の関係にある.

$h\infty (V\rho/x)^{\frac{1}{2}}$: (層流)

 $h\infty(V\rho)^{4/5} \cdot x^{-\frac{1}{5}}$:(乱流)

そして (境界層温度 T_{avo})》(物体温度 T_{vo}) であれ ば、熱流入量 q については近似的に下式が成立する.

$q = T_{aw}h \propto \rho^{0.5}v^{2.5}$ (層流) ∞p^{0.8}v^{2.8} (乱流)

よって飛しょう特性が与えられたときに $\rho^{n}v^{m}(t)$ を計 算しておけば、 $\rho^n v^m$ は刻々の熱入量に比例し、 $\int \rho^n v^m dt$ は総熱流入量に比例した判定値となるから、設計初期に 熱に関する大要を知り、飛しょうプログラムを決める参 考として便利である.

以上温度の推定に重点をおいてきたが、今後軽量化に 伴い熱歪・熱応力と剛性低下の問題が重要になるので地 上試験、実機設計、実測などにつき十分な準備を進める 必要がある.

3. 空力弹性

固燃の多段観測ロケットの機体は一般に細長く、機体 曲げと機体上下および縦揺運動とが連成して、ボディフ ラッタを起こすおそれがありその対策が必要である. こ れについては前報告^いにも触れたが,ここでは設計のた めの研究方法につき概述する.

(a) 基礎式 速度 uo で定常飛行中の機体の運動 の基礎式は以下のごとくである.

$$\frac{m\ddot{z}=Z, \ B\ddot{\theta}=M}{I\ddot{e}+I\omega^2 e=F}$$
 (1)

ここに m: 機体質量, B: 重心周りの慣性モーメン ト, *I*: 広義の質量, *z*: 飛行軸に直角方向の座標, θ: 飛行軸角, e: 広義座標, Z:z 方向の外力, M: 重心 周りのモーメント, F: 広義の力,ω:曲げ固有振動数, ・:時間についての微分、ρ:空気密度、S:基準断面積、 21: 全長.

(1)の第1式は重心の上下運動,第2式は重心周りの 縦揺れ運動についての平衡式であり,第3式が機体曲げ 振動に関する広義坐標を用いた 平衡式 であって,外力 Z, M, F により互いの運動が連成されている.

与えられた機体についての諸数値(質量・剛性・速 度・高度・空力特性など)を(1)式に代入して解が発 散・収剣する限界を求めれば、フラッタ(振動不安定) を起こす限界速度(フラッタ速度 up)または限界剛性 値を算出することができる.

(1) 式より,

$$\xi = x/2l, \epsilon = e/2l, t^* = l/u_0$$
 (2)の無次元変数を用いて変換すれば,

空力徴係数
$$C_{ij}$$
, 質量比 $\mu = m/\rho Sl$,
比慣性モーメント $i = B/\rho Sl^3$,
比振動数 $\omega_e = \omega t^*$ (3)

の無次元係数による無次元化基礎式がえられる.

(b) ダイバーゼンス (1)式の解についての吟味 および計算例によると,6型や8型の形状では1次の不 安定は振動不安定でなく単調発散性(divergent)である 場合が多い.この場合をダイバーゼンスと呼ぶが,この ときは(1)の第2,第3式は次の形になる.

$$M=0, I\omega^2 e=F \tag{4}$$

(4)の第1式は縦揺モーメントの総和が零であるこ とを示し,第2式の右辺は機体曲げ変形に関し外力より 算出した広義の力,左辺は曲げ剛性による復元力を広義 座標で表現したものである.以上の考察では機体の曲げ 変形は規準振動形態を用いることを前提としているが, ダイバーゼンスの場合には(4)を変えて,

$$(C_{m\alpha})_{e} = \sum C_{L\alpha i} \xi_{i} (1 + \theta_{i}/\alpha_{0})$$
(5)

の形に表わすことができる. ここに C_{Lai} : 各揚力点の 揚力係数傾斜, ξ_i : 重心より 揚力点までの距離の全長 (2l)に対する比, α_0 : 標準点の迎角, (C_{ma}): 有効のモ ーメント係数傾斜, $\alpha_0 + \theta_i$: 各揚力点の迎角.

第1図 ダイバーゼンスの模型計算

第1表 フラッタ模型試験機

機種	相似機	全長	重量	直径	縮尺	実験日	機数	備考
F T—122	K-6-RS	3.90 m	45 kg	mm 122	1/2.6	33年10月	2	茨城県大洗海岸
FT— 50	K-8	1.27	2.5	50	1/8	34年7月	5	
FT— 80	K-9	2.46	12.5	80	1/5	35年12月	2	計器つき
FT-120	К—9	3.70	40	120	1/3.5	35年12月	1	計器つき

機体を弾性体とすれば揚力による曲げ変形により各揚 力点の迎角は $(\alpha_0 + \theta_i)$ となり、 (C_{ma}) 。は機体を剛とし た場合の値 (C_{ma}) より小さくなり安定は悪くなるのが 一般である。前稿¹¹にも説明したように、 (5)は静力学 解析で θ_i を算出すれば解ける. また解析の別法として 剛性についての相似模型を用いれば、第1図のように質 量分布に対応したリンク装置で吊り下げて、一方空気力 Li はその作用点の迎角に応じて加えるようにして、模 型実験で慣性力の影響も考慮に入れたダイバーゼンス速 度を求めることができる.

(c) 模型機による試験 幾何学的外形・剛性分布・ 質量分布を相似にし(3)式の諸パラメータを相似にと った模型は,基礎式に関しては実機と同一になるから, この模型を飛ばせて実機のフラッタ特性を推定すること は意義がある.このためカッパ6型以降では新機種の開 発に際しては原則としてモデルテストを実施してきた. 第1表にはその種類を示す.

小型模型機は新機種実機と同等あるいはそれ以下のフ ラッタ速度を持つように設計して低角度で発射し目視と

カメラ撮影でその 飛しょう軌跡の正 常か否かを観察す るが、FT-80、120 ではさらにテレメ ータ・加速度計・ 振しょう特性を削 定した.第2図は FT-80の写真であ る.このフラッタ 試験は機体が破壊

第2図 フラッタ・モデル FT-80

第3図 剛性調節器

する公算が大きく,はなはだ危険 な実験であるから,危険範囲を沖 合に制限するためと,十分弱い機 体の実験を思い切って行なえるよ うにするために,FT-80,120 に おいては第3図のような延時薬付 プッシャで作動する機体剛性調節 器を備え,発射後若干秒時の後に 334

機体一部の剛性を弱くする工夫をこらした.

(d) 固有振動特性 機体の曲げ振動特性は全般的 に機体の強度剛性の判定値となり、またフラッタ解析の ためには規準振動形態を求めることが必要である. その ためには理論・実験両方面の研究と試験が必要となる. 第2表は8型,9型の曲げ振動数の計算値を示す.この 程度の長い機体となると支持起振方法により特性が異な るので純粋の固有振動特性を実験的に求めるのが難しい ので、なんらかの対策が必要である.

第2表 8型、9L型の機体曲げ振動数

148	種	全長	重量	機体1次曲げ振動数			
15%				(ブースタ)+(メイン)	メイン		
カッパ 8	型1号	10.0 ^m	ton 1.47	c/s 7.6	c/s 32		
カッパ9L型		12.5	1.57	4.2	9		

4. K-9Lの構造設計

9型 (K-9L) は8型に直径 150 mm エンジンをメ インロケットとして付け加えた初めての3段ロケットで ある.構造上の問題点と対策につき8型と比較したがら 以下に列記説明する.

(a) 空力弾性 8型において空力弾性は重要な問 題であったが、9型ではさらに細長比が大きく3段結合 であり,一般に空力弾性上の条件が辛い.第4図の動圧 特性に示されるように3段結合状態である第1ブースタ 段階において動圧が最も高い. 一般に動圧が高くなるに つれて空力弾性安定が悪くなるから、やはり第1段での 安定性が一番の問題となる. 前項で記したような安定 解析を実施し,機体の1次曲げ固有振動数を 4.5 c/s、水 平に第1ブースタを保持した際の150L 先端の撓みを約

高速時における 空力弾性効果に よる安定モー メント係数傾斜 (*C*ma) の減少量 が 33%, 第1 ブースタを固定 とした場合の 245・150L系と してのダイバ ーゼンス速度が 1340 m/s とい う程度に空力弾 性の諸数値を抑 えるために第3 段メイン・ロケ

ット(150L)の全長と重量に制限を加えた、さらに前項 の模型飛しょう試験の要項に従い、1/5 および 1/3.5 のフラッタ・モデルを3機製作し、計測器と剛性調節器 を組み込んで、35年12月に秋田で飛しょう試験を実施 した.

実機より 10~15% ほど条件の悪い状態においても機 体はおおむね正常に飛しょうしたので、これにより9L の空力弾性上の安全性を確認し設計を完了した.

8型の最高速度が 1900 m/s (マッ (b) 空力加熱 ハ数 6) であるのに対し, 9型の 150L の最高速度は 2700 m/s (マッハ数 9) に達し、もちろんわれわれの未経 験の領域であるので空力加熱は慎重な考慮を必要とした が、大局的には6型 (マッハ数 4.5), 8型の経験をも ととし、($\rho^{n}v^{m}$)の諸パラメータ値の考察と空力加熱に よる温度上昇の解析を基礎として、たいした困難もなく 自信を持って対熱設計を進めることができた.

対策と実測の要点を列記すると以下のごとくになる.

(1) 予想飛しょう特性から $\rho^{n}v^{m}$, $\int \rho^{n}v^{m}dt$ 特性の 考察と、代表点の温度上昇の解析とを実施し、その結果 により対熱設計の全体計画を定め、飛しょうプログラム (点火・コースティングの秒時など)を検討する.

(2) ノーズコーン, 尾翼などは代表点の温度が 250 °C を越さぬよう部材寸度を決め、また要所にはコーテ ィングを施す.

(3) 推薬温度が高くなると点火・燃焼に不安が生ず るので、特に最終段の 150 L チャンバの温度上昇を防 ぐ必要がある. そこでチャンバ外周に鋼板製外筒をかけ る案がまず検討され、東大工学部の小林繁夫助教授にも ご相談したが、パネルフラッタの見地から好ましくない のでこの案は断念した.次いでプラスティックスのカバ ーをかける案が考えられたが、これについては幸い東大 工学部の林毅教授より懇切なる全面的ご指導をえて、フ ェノール樹脂・硝子ファイバの FRP カバーをかけるこ とが実現した. これはバーナー焰を当てた程度では表皮 が一層だけ炭化するのみであり、また熱伝導率も低いの で、予想される環境条件に対し、(フェノール・カバー) +(チャンバ)+(レストリクタ)の防熱壁で推薬温度を 50°C 以下に止め得ることに、計算および模型地上試験 で確信をえた、なお推薬については小型試験体で温度と 衝撃に関する環境条件のサイクリングを行なったものに ついて地上燃焼試験を実施して特性を確かめてある.

(4) 温度実測結果の一部を第5図に示す。

全体として上昇中の温度特性は計算値よりも若干(10 秒程度)時間遅れがあるが,最高温度は推定とほぼ一致 する. ノーズコーンや尾翼の温度はかなり高温になって いる. チャンバのフェノール・カバーは有効である. 露 出ケーブルのまわりに塗付した耐熱塗料も有効で脱落し た様子はない、計器は遮熱筒により熱絶縁が施してある

第 13 巻 第 10 号

ので、全飛行時間にわたって温度上昇は15°C以下であ る.要するにマッハ9、境界層温度2700°Cの未経験の 領域であったが、高空であることを考慮して諸解析を信 頼して樹立した対熱設計がおおむね妥当であったといえ る.

(c) その他 2段および3段では機体はスピンを かけられているが、このための尾翼荷重は僅少であるの

で上はあたン曲お体の成強対用たス機振び動動動産で、ピ体動機と連け

第6図 接手部の剛性試験

るためにスピン上限に制限を加えた.2・3段間の接手 には新形式の割目円板ネジ結合式の破壊接手と,張力ボ ルト結合部とが設けられた.第6図はその接手部の剛性 試験中の写真である.

(d) 飛しょう結果 飛しょう試験(36年4月)の 結果は機体は異状なく飛しょうし、テレメータによる温 度・加速度・振動の記録も完全にとれ空力弾性・空力加 熱とも設計はおおむね合格であることが判った。

5. 7型の構造強度

ここでカッパ7型の構造強度を振り返って考察する. 7型は 420 エンジンを用いた初めての実験機であった が,糸川教授別稿のように発射後 10 秒で電波が絶え, 機体に異常があったものと推定された.テレメータ記録 などを参考にして構造強度上の問題を点 検すると下記のとおりである.

(1) 尾翼:前縁部が重く組付けがや や弱い.静的負荷は 1 ton に耐え,まず 十分であるが,アルミ鋲はクリープの原 因となる.

(2) チャンバ:初めての薄肉溶接チャンバで全体曲げおよび断面の剛性が懸 念されたが、地上試験および解析で剛性 は十分と判定された.

(3) 尾翼取付筒:アルミ合金鋳物で
 衝撃値が低く,安藤助教授の別稿(48ペ
 ジ)のように 脆性破壊の 危険が大である.

(4) スリッパ:「ランチャー」の稿 (46ページ)で述べるように形状が不適当 で、レール先端でこじった形跡がある.

(5) 火焰の逆流:「ランチャー」稿で述べる. 逆流し た火焰は機体下部を一瞬なめたが, そのための特別の損 傷はないと思う.

(6) ランチャーレールのガタ: ロケットをレールへ 取り付ける際のワイヤロープ操作のため、レールには2 カ所に切込みがつけられ、滑走中に尾翼取付筒があたっ た懸念がある。

上記各項目について裏付けの実験や理論解析が行なわ れ,改造がなされた.まだ十分な検討がし尽くされてい ないが,筆者の意見ではその後の8型の実験結果をもあ わせ考えると,故障の原因は空力弾性や加熱のようなロ ケット本来の高級な現象でなく、上記の(3)と(6)な どの項目の組合せによるものが最も可能性が強いと思っ ている.故障を起こしたのはたいへん残念であるが,た だこれらの考察を契機として多くの突込んだ研究がなさ れ,8型,9型完成への基礎が築かれた.

6. むすび

カッパ6H型は6型と比較してブースタ長さが延びた もので構造上は、熱の問題は少なく、1段での空力弾性 が8型よりも条件が悪くて検討を要した程度で、その他 には特記することはない.

8型が完成したことにより観測ロケットの構造設計に 対しかなりの資料と自信がえられたが、今後さらに性能 を向上させるために基礎と応用の両面にわたって努力を 重ねてゆきたい. (1961年8月9日受理)

文 献

- 1) 森大吉郎, 生産研究. Vol. 12, No. 12 (S. 35. 12), p. 504.
- D. Mori, Proc. 1st Sympo. on Rockets and Astronautics, 1959, Tokyo, p. 136.

45 -