2芯同軸線路を用いたファラデー旋波子

浜 崎 襄 二・木 村 隆 英

1. 序

円形導波管は、その構造の対称性から互いに反対回り で直交した二つの TEn の円偏波を同時に伝送し得るの で、軸方向に磁化されたフェライト棒が導波管軸上にお かれるならばマイクロ波帯のファラデー旋波子が得られ る. この旋波子は、非可逆性回路素子あるいはスイッチ 等の多様の目的に利用されているが、次の二つの欠点を 持っている. 第1は、UHF 帯以下の周波数では円形導 波管の寸法が大きくなり磁化することも容易ではなくな ることであり、第2は、円形導波管の分散特性のため旋 波角が周波数にかなり強く依存することである.

これらの欠点を持たぬファラデー旋波子は縮退 TEM 波回路によって実現できることが近年になって着目され, UHF 帯におけるテンソル透磁率の測定¹⁾や SHF 帯用広帯域ジャイレータ²⁾に 2 芯同軸線路 が利用 され た.

本文では、これらの2芯同軸回路の延長と考えられる UHF 帯ファラデー旋波子の概要を述べ、これを使用し たサーキュレータ、ジャイレータの試作実験結果^{3),4)}を 報告しよう.

なお,縮退 TEM 線路としての2芯同軸線路の有用 性は,本学黒川助教授の指摘によって筆者らは知ること ができたものである.

2. 概 説

第1図のような,断面の金属壁でかこまれた一様な伝 送線路(以下では2芯同軸線路と呼ぶことにしよう)は,

三つの金属壁を持っているの で、互いに独立な二つの電 圧、すなわち、縮退している が互いに独立な二つの TEM 姿態を伝送することができ る.このような線路で任意の TEM 姿態にはそれと直交し た TEM 姿態が対応してお り、また、それは特定の互い

に直交した二つの TEM 姿態の和として表現される. 第2図の電磁界分布から明らかなように,二つの芯線の 励振が同相である 姿態(同相姿態)と逆相で ある姿態 (逆相姿態)とは互いに直交しており,したがって任意 の TEM 姿態は同相姿態と逆相姿態の 1 次結合と考え られる.

さて,同相姿態と逆相姿態との電磁界は第2図の通り

軸方向に磁化された細いフェライト棒がおかれると, 偏 波面の回転方向の違いによって伝播定数に差が現われ る. 左あるいは右に回転する円偏波を持つ TEM 姿態 同志が互いに直交しているならば, 伝播定数に差が現わ れても姿態間の相互干渉はおこらない. 直線偏波は左右 に回転する円偏波の和と考えられるので, フェライト棒 がおかれた部分を通過するとその長さに比例しただけの 偏波面の回転が現われる. したがって, このような回路 はフェラデー旋波子となる.

次に,2芯同軸線路がファラデー旋波子として同軸線 路系に挿入された場合の特性を概算するため,波動イン ピーダンス,TEM 姿態の直交,フェライトの定数と旋 波子の特性を結ぶ係数などを近似理論によって求めよ う.

3. 縮退 TEM 波の波動インピーダンスと直交関係

完全導体で包まれた z 方向に 一様な空間(簡単のた め真空と考える)を直線偏波 TEM 姿態の電磁界が z方向に伝播すると考えよう.(x, y) 面内の電磁界分布 は、ポテンシャル函数 w によって次のように表わされ る.

$$\vec{E} + j\sqrt{\frac{\mu_0}{\epsilon_0}}\vec{H} = -\operatorname{grad} w \qquad (1)$$

第12卷第8号

 $\mu_0, \epsilon_0; 真空の透磁率, 誘電率. <math>\vec{E}, \vec{H}; 電界, 磁界$ ベクトルの瞬時値

(x, y)が真空中の座標であるときには、 $w(\zeta) = u(x, y) + jv(x, y)$ (u, v は w の実部、虚部) は $\zeta = x + jy$ の正則函数であって、その形は線路の境界条件と励振状態によって定まる.

2 芯同軸線路の場合のように同一の境界条件を満たす 独立なポテンシャルが二つ存在する場合(すなわち二つ の姿態が縮退している)を考えよう.それらを w_1 , w_2 とするならば任意の1次結合もその境界条件を満たす ポテンシャルである.二つの一次結合 $i_1w_1+i_2w_2$, $i_1'w_1$ $+i_2'w_2$ (i,i' はx,y に無関係な係数)があるとき,線 路の全断面積 A を伝播する瞬時的相互伝送電力 p_{12} は,(1)より

$$p_{12} = \int_{A} \vec{E} \times \vec{H}' \cdot \vec{dA}$$

= $(i_1, i_2) \begin{pmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{pmatrix} \begin{pmatrix} i_1' \\ i_{2'} \end{pmatrix}$ (2)

ただし dA は z 方向を向いた微小面積ベクトル, $\begin{pmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{pmatrix}$ は縮退姿態 w_1, w_2 の波動インピーダンスマ トリックスであり、その要素は次のように表わされる.

$$Z_{11} = \sqrt{\frac{\epsilon_0}{\mu_0}} \iint_A \left\{ \left(\frac{\partial u_1}{\partial x} \right)^2 + \left(\frac{\partial u_1}{\partial y} \right)^2 \right\} dx dy$$

$$= \sqrt{\frac{\epsilon_0}{\mu_0}} \oint u_1 \frac{du_1}{dn} ds$$

$$Z_{12} = Z_{21} = \sqrt{\frac{\epsilon_0}{\mu_0}} \iint_A \left\{ \frac{\partial u_1}{\partial x} \frac{\partial u_2}{\partial x} + \frac{\partial u_1}{\partial y} \frac{\partial u_2}{\partial y} \right\} dx dy$$

$$= \sqrt{\frac{\epsilon_0}{\mu_0}} \oint u_2 \frac{du_1}{dn} ds = \sqrt{\frac{\epsilon_0}{\mu_0}} \oint u_1 \frac{du_2}{dn} ds$$

$$Z_{22} = \sqrt{\frac{\epsilon_0}{\mu_0}} \iint_A \left\{ \left(\frac{\partial u_2}{\partial x} \right)^2 + \left(\frac{\partial u_2}{\partial y} \right)^2 \right\} dx dy$$

$$= \sqrt{\frac{\epsilon_0}{\mu_0}} \oint u_2 \frac{du_2}{dn} ds$$

$$(3)$$

右辺の線積分は A の周上の積分であり, n は A か ら外へ向かった法線方向単位ベクトルである. 電磁波が 単一周波数の交流の場合には, i_1 , i_2 はその尖頭値と等 しい絶対値の複素数 I_1 , I_2 で表わされ, 複素伝送電力 P_{12} は次のよく知られた関係で表わされる.

$$P_{12} = \frac{1}{2} (I_1, I_2) \begin{pmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{pmatrix} \begin{pmatrix} I_1'^* \\ I_{2}'^* \end{pmatrix}$$
(4)
* は複素共軛を表わす.

いま,対称な構造の線路を考えることにし, $Z_{11}=Z_{22}$ としよう. 任意の1組の (I_1 , I_2) がある時,これと直 交する (すなわち $P_{12}=0$)となる他の1組の (I_1 ', I_2 ') を求めるならば, (4)より

$$\frac{I_1}{I_2} \left(\frac{I_1'}{I_{2'}} \right)^* + \frac{Z_{12}}{Z_{11}} \left\{ \frac{I_1}{I_2} + \left(\frac{I_1'}{I_{2'}} \right)^* \right\} + 1 = 0$$
 (5)

あるいは

$$\left(\frac{I_1'}{I_2'}\right)^* = -\frac{\frac{Z_{12}}{Z_{11}} \cdot \frac{I_1}{I_2} + 1}{\frac{I_1}{I_2} + \frac{Z_{12}}{Z_{11}}}$$
(5')

したがって、 I_1/I_2 が定まれば (I_1'/I_2')* は (5')の形の双一次変換によって決まってしまう.

2芯同軸線路の励振装置を考える時の便宜のため,特 定の条件のもとにおける(5)の関係に注目する.

i)
$$\frac{I_1}{I_2} + \left(\frac{I_1'}{I_2'}\right)^* = 0$$
 あるいは $\left(\frac{I_1}{I_2}\right) \left(\frac{I_1'}{I_2'}\right)^* + 1 = 0$ の場合
(5) に上の条件を代入するならば

$$\frac{I_1}{I_2} = \pm 1, \ \left(\frac{I_1'}{I_2'}\right)^* = \mp 1$$
 (6)

(上符号は上符号に,下符号は下符号に対応す) る.次下同様.

 I_1 , I_2 として2芯線に流れる電流をとることにすれば、 $I_1/I_2=1$ は同相姿態であり、 $I_1/I_2=-1$ は逆相姿態である.(6)の結果は同相姿態と逆相姿態とが直交することを示している.

ii)
$$\frac{I_1}{I_2} \cdot \left(\frac{I_1'}{I_2'}\right)^* = 1$$
 の場合
(5) より
 $\frac{I_1}{I_2} = -\frac{Z_{11}}{Z_{12}} \pm \sqrt{\left(\frac{Z_{11}}{Z_{12}}\right)^2 - 1},$
 $\left(\frac{I_1'}{I_2'}\right)^* = -\frac{Z_{11}}{Z_{12}} \pm \sqrt{\left(\frac{Z_{11}}{Z_{12}}\right)^2 - 1}$ (7)

特に Z12→0 の時には

$$\begin{array}{c} \frac{I_{1}}{I_{2}} \rightarrow -2\frac{Z_{11}}{Z_{12}}, \quad -\frac{1}{2}\frac{Z_{12}}{Z_{11}} \\ \left(\frac{I_{1}'}{I_{2}'}\right)^{*} \longrightarrow -\frac{1}{2}\frac{Z_{12}}{Z_{11}}, \quad -2\frac{Z_{11}}{Z_{12}} \end{array} \right) (7')$$

 I_1 , I_2 がそれぞれの芯線に流れる電流であるならば,

(7) で示される姿態は同相姿態と互いに ±45°の関係にある直線偏波であることを示すことができる.(7') によれば Z_{12} が十分小さい線路では これらの姿態は $(I_1, I_2) = (1, 0)$ と $(I_1', I_2') = (0, 1)$ で近似される ことが判る.したがって Z_{12} の小さな線路でこれらの 姿態を励振するには、一方の芯線に集中して電流を流し てやればよい.

iii)
$$\frac{I_1}{I_2} = \left(\frac{I_1'}{I_2'}\right)^*$$
 の場合
(5) に代入することによって
 $\frac{I_1}{I_2} = \left(\frac{I_1'}{I_2'}\right)^* = -\frac{Z_{12}}{Z_{11}} \pm j\sqrt{1 - \left(\frac{Z_{12}}{Z_{11}}\right)^2}$
 $= \varepsilon^{\pm j \cos^{-1} \frac{Z_{12}}{Z_{11}}}$ (8)

特に Z12→0 の時には

$$\frac{I_1}{I_2} = \left(\frac{I_1'}{I_2'}\right)^* \to \pm j \tag{8'}$$

325

 I_1 , I_2 がそれぞれの芯線の電流である場合には(8) は互いに反対向きに回転する円偏波に対応する姿態であ ることが示される. (8') によれば Z12 が十分小さい時 には、これらの姿態は2芯線に時間的に 90° だけ 位相 の異なった電流を流すことによって励振される.

次に、電磁界の様子と姿態の直交について考える.い ま、直線偏波を表わす二つの TEM 姿態 ua と us と が互いに直交しており、 それらの磁界の大きさが等し く、かつ空間的に直交している位置 Q が (x, y) 面上 にあるものと仮定しよう.次のような姿態

$$\phi_{+\pi/4} = u_a + u_b, \ \phi_{-\pi/4} = u_a - u_b \tag{9}$$

$$\phi_{+} = u_a + ju_b, \ \phi_{-} = u_a - ju_b \tag{10}$$

を考えると、Q 点において $\phi_{\pm \pi/4}$ の磁界は u_a のそれ と $\pm 45^{\circ}$ の方向を持ち、 ϕ_{\pm} の磁界は左あるいは右方向 に回転する回転磁界である. $\phi_{\pm \pi/4}$, あるいは ϕ_{\pm} の姿 熊が直交する条件を求めると、いずれの場合にも

 $P_{aa} = P_{bb}$ (11)となる. すなわち $\pm \pi/4$ 姿態, あるいは左右の円偏波 姿態が直交するためには、ua のみの時の伝送電力と us のそれとが相等しいことが条件となる.

2芯同軸の場合,同相姿態と逆相姿態とは y 軸上の ある点で磁界の大きさが等しく空間的に直交するので, 上述の ua、us となり得る姿態である. このような場合 には $\phi_{\pm \pi/4}$, は ii) で考察した姿態の ポテンシャルで あり、 ϕ_{\pm} は iii) のそれであることを示すことができ る.4)

4. フェライトの定数と伝播定数

左,右回りの円偏波を持つ二つの縮退した伝送姿態が 直交している時、軸方向に磁化された細いフェライト棒 が円偏波の位置に挿入されるならば、両姿態の伝播定数 は異なってくる.フェライト棒が挿入された区間を直線 偏波の電磁波が通過する時には、円偏波姿態の伝播定数 の差によって

<u>1</u>×(円偏波姿態の位相定数の差)

×(フェライト棒の長さ)

ラジアンだけの偏波面の回転が起きる.

フェライト棒を挿入しない時の伝播定数を j^βの, 左あ るいは右回りの円偏波を持つ姿態の、フェライト棒を挿 入した時の伝播定数を $(\alpha + j\alpha)_+$ あるいは $(\alpha + j\beta)_-$ と すると, 摂動理論によって,

$$\frac{(\alpha+j\beta)_{\pm}-j\beta_{0}}{j\beta_{0}} = \left\{\frac{2\left(\frac{\mu_{\pm}}{\mu_{0}}-1\right)}{\frac{\mu_{\pm}}{\mu_{0}}+1} \cdot \frac{\sqrt{\frac{\mu_{0}}{\epsilon_{0}}} \frac{|H_{0}|^{2}}{2}}{2P}A + \frac{2\left(\frac{\epsilon}{\epsilon_{0}}-1\right)}{\frac{\epsilon}{\epsilon_{0}}+1} \cdot \frac{\sqrt{\frac{\epsilon_{0}}{\mu_{0}}} \frac{|\vec{E}_{0}|^{2}}{2P}}{2P}A\right\} \frac{\Delta A}{A}$$
(12)

 H_0 . E_0 はフェライトが挿入される位置における,フ ェライトが挿入される以前の磁界および電界であり、そ の大きさは尖頭値を示す. µ+ は, 左, 右回 り円偏波に 対するフェライトの透磁率、 ϵ はその誘電率であり Pは円偏波を持つ姿態によって伝送される電力であり, △A はフェライトの断面積である.フェライト棒の断面 は円形で十分細長いものと仮定している.

(12)の括弧内第1項の初めの因数はフェライトの性 **質で決まる量であるが、後の因数は線路の形状できまる** 量であり、フェライトを有効に使用するためには後者が 小さすぎてはならない.

5. 2芯同軸線路の近似理論

第3図に示される断面を持つ2芯同軸線路を考えよ 5. 簡単のため外部導体の内径は1とし,芯線の半径は f

および 1-f に比較して十分 小さいものと仮定し, #1 の 芯線に流れる (z 方向に向か う) 全電流を I1 #2 のそれ を I2 とする. #1 あるいは #2 の芯線のみに単位の大き さの電流が流れているような TEM 姿態のポテンシャルを 第 3 図 2芯同軸線 それぞれ で1 あるいは で2 と

路の寸法

するならば、それらは近似的に次の函数で表わされる.

(13) を (3) に代入して波動インピーダンスを求め ると,

$$Z_{11} = Z_{22} = \frac{1}{2\pi} \sqrt{\frac{\mu_0}{\epsilon_0}} \ln \frac{f\left(\frac{1}{f} - f\right)}{r_0}$$

$$Z_{12} = Z_{21} = \frac{1}{2\pi} \sqrt{\frac{\mu_0}{\epsilon_0}} \ln \frac{\frac{1}{f} + f}{2}$$
(14)

さて, (6) から明らかなように同相姿態 (push push mode) と逆相姿態 (push pull mode) とは互い に直交した直線偏波である.以下においてこれらの姿態 を基準の直交姿態と考える都合上,それらの波動インピ ーダンスを求めておく. 同相姿態あるいは逆相姿態の量 にはそれぞれ添字 sh あるいは ll を付け て相互の区別 をする.

同相姿態

 $I_1 = I_2$, $I_1 + I_2 = I_{sh}$ とおき, 2 芯線に流れる z 方向 の全電流 Ish を同相姿態の電流とすれば、伝送電力

第12巻第8号

Psh, 波動インピーダンス Zsh は

$$P_{sh} = \frac{1}{2} Z_{sh} |I_{sh}|^2, \qquad (15)$$

 $Z_{sh} = \frac{Z_{11} + Z_{12}}{2} = \frac{1}{4\pi} \sqrt{\frac{\mu_0}{\epsilon_0}} \ln \frac{f(\frac{1}{f} - f)(\frac{1}{f} + f)}{2r_0}$

(16)

逆相姿態

 $I_1 = -I_2 = I_{ll}$, すなわち芯線の逆相電流を I_{ll} とすれば, 伝送電力 P_{ll} , 波動インピーダンス Z_{ll} は

$$P_{ll} = \frac{1}{2} Z_{ll} |I_{ll}|^2, \tag{17}$$

$$Z_{ll} = 2(Z_{11} - Z_{12}) \doteq \frac{1}{\pi} \sqrt{\frac{\mu_0}{\epsilon_0}} \ln \frac{2f\left(\frac{1}{f} - f\right)}{\left(\frac{1}{f} + f\right)r_0}$$
(18)

同相,逆相の両姿態は(9),(10)の u_a, u_b と考え ることができるので,それらの組合せによって円偏波姿 態, $\pm 45^{\circ}$ 姿態が作られる.円偏波姿態相互の間で,ま た, $\pm 45^{\circ}$ 姿態相互の間で直交条件が満たされるために は(11)より $P_{sh} \ge P_{ll}$ が相等しくなければならない. (15),(17)を(11)に代入すると

$$\frac{I_{sh}}{I_{ll}} = \sqrt{\frac{Z_{ll}}{Z_{sh}}}$$
(19)

電磁界の様子は (13) の w_1 , w_2 を (1) に代入し て電界,磁界を求めそれらを適当に重畳することによっ て得られる. (19) の条件のもとで同相,逆相の両姿態 の電磁界の大きさが y 軸上で等しくなる点 Q の座標 を $(x, y) = (0, y_{\pm})$ とすれば

$$|y_{\pm}| = -\frac{1}{4} \left(\frac{1}{f} + f\right) \sqrt{\frac{Z_{ll}}{Z_{sh}}} + \sqrt{\frac{1}{16} \left(\frac{1}{f} + f\right)^2 \frac{Z_{ll}}{Z_{sh}} + 1}$$
(20)

またこの点における(12)の電磁界分布の係数は

$$\frac{\sqrt{\frac{\mu_{0}}{\epsilon_{0}}} \frac{|\vec{H_{0}}|^{2}}{2P}}{2P} A = \frac{\sqrt{\frac{\epsilon_{0}}{\mu_{0}}} \frac{|\vec{E_{0}}|^{2}}{2P}}{2P} A$$
$$= \frac{\frac{\pi}{4} \sqrt{\frac{\mu_{0}}{\epsilon_{0}}}}{Z_{sh}} \cdot \left\{ \frac{1}{2\pi} y_{\pm}^{2} \cdot \frac{\left(\frac{1}{f} - f\right) \left(\frac{1}{f} + f\right)}{(y_{\pm}^{2} + f^{2}) \left(y_{\pm}^{2} + \frac{1}{f^{2}}\right)} \right\}$$
$$= \frac{\frac{\pi}{4} \sqrt{\frac{\mu_{0}}{\epsilon_{0}}}}{Z_{ll}} \cdot \left\{ \frac{1}{\pi} \cdot \frac{\left(\frac{1}{f} - f\right) (1 - y_{\pm}^{2})}{(y_{\pm}^{2} + f^{2}) \left(y_{\pm}^{2} + \frac{1}{f^{2}}\right)} \right\} (21)$$

(16), (18), (20), (21) を数値計算した結果をそれ ぞれ第4図, 第5図, 第6図, 第7図に示す.

さて、以上の結果は外部導体の内径が1であると仮定 して求められたものである。断面の寸法が相似的に l 倍 に拡大されるならば、円偏波が現われる位置 y_{\pm}^2 は l 倍 される が、(16)、(18) の波動インピーダンスや (21) の値は変化しない。

6. 1000 Mc 帯のファラデー旋波子

1000 Mc 帯において,フェライトを使用した2芯同 軸型のファラデー旋波子を試作し,その性能を検討した.次にその構造と性能の概略を述べよう.

i) 2芯同軸線路の構造

第8図はその構造の概略を表わす.

 $f=0.385, r_0=0.103, Z_{sh}=78 \Omega, Z_{ll}=210 \Omega$

第 7 図 フェライトと電磁界の相互作用の強さ

 $|y_{\pm}| \doteq 0.355 \ (6.9 \text{ mm})$

ii) 同相, 逆相励振器の構造

第9図は中心周波数 1300 Mc に設計された同相逆相 励振器の構造の概略を示す.

逆相姿態の電力は端子Bから同軸姿態で供給され,平 衡一不平衡変換器によって逆相姿態に変換される.変換 器部分は第10図に示され,アンテナ等に広く用いられて いるものである.平衡線路側の波動インピーダンス Z_n は変換器によって1/4 に変成され同軸線路に整合してい る.

同相姿態の電力は端子Aから同軸姿態で供給される. 端子Aが繋がれている同軸部分の波動インピーダンスは 51 Ω であり、2芯同軸線路の同相姿態波動インピーダン ス Z_{sh} と整合させるため $\lambda/2$ の長さのテーパー部分が 設けられ、また、端子Bをとり出すため端子Aの位置か ら $\lambda/4$ 離れた所で短絡されている.

iii) ±45° 姿態励振器の構造

第 11 図は 1000 Mc~2000 Mc に設計された ±45° 励振器の構造の概略を表わす.

(7), (7') によれば ±45° 姿態は2芯線間の結合を 十分小さくするならば一方の芯線だけに電流が集中する

90 1300

10 20

30

1350 MC

周波数 MC

1250 60 70 80

18

姿態となることが判っている. この励振器では、テーパ ー部分によって2芯線間の結合を徐々に減少させ、つい には2芯線を完全に分離して別個の同軸端子に接続して ある. この励振器は周波数に鋭敏な構造を使用していな いので広帯域にわたって使用可能である.

iv) 励振器の特性

試作された励振器の端子間の姿態の直交性を実験的に 確かめるため、一つの励振器に終端短絡の2芯同軸線路 を接続して一方の端子から電力が供給された時の他方端 子へ流れ込む漏洩電力を測定した.測定結果は第12図

(a) の通りであり、1250 Mc~1350 Mc にわたって 20 db 以上の直交性が得られている. またこの時, 電力を 供給する側の端子の定在波を測定した. 励振器と2芯同

第13図 励振器の特性

軸線路を往復する時の 減衰はこれから 求められ,第12 図 (b) の通りであった.

同相, 逆相姿態励振器と ±45° 姿態励振器とは互い に 45°の関係にあるから、両励振器を2芯同軸線路の 両端に接続して一方の励振器の1端子から電力を供給す るならば、他方の励振器の両端子から半分ずつの電力が

第 15 図

得られるはずである. ±45° 姿態励振器の一方の端子か ら電力を供給し(他方の端子は無反射終端する),同相, 逆相姿態励振器の両端子の整合負荷に与えられる電力を 測定した結果が第13 図である.両端子から得られる電 力はだいたい -(3 db + 損失分) であり、両励振器は互 いに 45° に近い関係を持つことが確かめられた.

v) ファラデー旋波子を用いた 1300 Mc 帯のサーキ ュレータ

2芯同軸線路の y± の一方の位置に細いフェライト棒 を置き軸方向に直流磁界を加えるならば、ファラデー旋 波子が得られる.実験には,東京電気化学KK社のUH F用フェライト (直径 6 mm¢, 長さ 314 mm, テーパ

ത

329

ー部 25 mm)を使用した. $|y_{\pm}|$ の値を実験的に検討した結果, $|y_{\pm}|=6$ mm が適当であった.

第 14 図のように二つの励振器の間に 45°のファラ デー旋波子を置き, A' 端子に入力を加えた場合,各端 子の整合負荷に得られる電力を測定した結果が第 15 図 である. 同図 (a), (b) は磁界特性であり (c) は周波 数特性である. 図の A_+ 曲線は第 15 図に示される方 向に磁界を加えた時, A 端子の整合負荷に得られる電 力を示し, A_- は磁界の向きを逆転したときのそれであ る. B, A', B' についても同様である.

vi) ファラデー旋波子を用いた 1300 Mc 帯ジャイレ ータ

直交姿態励振器に一端が短絡された 45°のファラデ ー旋波子が接続されるならば、ジャイレータが得られ る. ±45° 姿態励振器に前述のサーキュレータに使用し た旋波子を接続し、その終端を短絡してジャイレータを 構成した. ±45° 姿態励振器は広帯域性の回路であるか ら、このジャイレータは磁界の調整によって広帯域で動 作させることができる. 第 16 図は、周波数の変化に応 じて磁界を調節した時の特性であり、L(H=0)は磁界 を加えない時の挿入損失, H は挿入損失を最小とする 磁界の強さ、 $L(H_{\pm})$ はその時の挿入損失の値である.

7. 結 び

本学黒川助教授によって指摘された2芯同軸線路の有 用性を近似理論によって解明し、波動インピーダンス, 円偏波が得られる位置,フェライトと電磁波との相互作 用の強さを検討した.また,2種類の直交姿態励振器を 考案し,これを用いて 1300 Mc 帯のサーキュレータ, ジャイレータを試作してその特性を実験的に検討した. その結果だいたい理論的に予想された特性を示すことが 明らかになった.

本実験を行なうに当たり東京電気化学KK研究部の各 位にはフェライト材料について多大のご援助を仰いだ. また,本学高木教授,斎藤教授,黒川助教授にはご指導 ご助言をいただいた.また,本研究所の試作工場の各位 には実験装置の試作について援助を仰いだ.以上の方々 に深謝の意を表明する. (1960. 6. 20)

献

文

75

60

- 1) 黒川,岡田; "1000 Mc 帯におけるフェライトテンソル透磁率の測 定法"昭 34 電気四学会連合大会 815.
- E. M. T. Jones et, al, ; "A nonreciprocal TEM-mode structure for wideband gyrator and circulator applications" Trans. IRE vol. MTT-7 pp. 453-460 Oct. 1959.
- 3) 浜崎,木村; "2芯同軸を用いた 1000 Mc帯サーキュレータ"昭 34 通信学会全国大会 194.
- 4) 浜崎,木村; "2芯同軸線路を用いたファラデー旋波子" 電気通信 学会マイクロ波伝送研究専門委員会資料 1960.4.12.

ま (7日島)

			正訣	夜(1月与)	
頁	段	行	種別	正	誤
4	右	19	本文	FFn	FF
6	右	23	"	10 ¹	101
10	左		第3図左	88 Fc	88
"	"		第4図右	92 Ft	92
"	"		同上説明 文	削 除	(図中 92 は 92 Fc)

		次号	予告(9月号)				
研	究	解説						
		原子燃料の動向	•••••		······································	□ 村	康	治
		吸着法を用いたカーボンブラックの研究に、	っいて	•••••	水	、鳥	Æ	路
		磁気テープ多重情報蓄積装置		••••••	爾 山	 高村 本 	周民尙	平 也 志
海	外	事情			•	• • • •		
研	究	第8回国際自動車技術会議······· 速報	••••••	· · · · · · · · · · · · · · · · · · ·	······ · ¥	尾		収
		Pb-Sb 合金の機械的性質について	••••••••••••••••••	•••••	西	i 川 、林	精繁	一 美