熱 交 換 器 の 動 特 性

增 淵 正 美

はしがき

ここ十年来,プロセス制御の技術は急速に進歩し,空 気式,油圧式,電気式制御装置からさらに種々の純電子 式の制御装置も実用になるようになった.

一方,取り扱うプロセスの制御量の数と種類が増すに つれて電子計算機をプロセス系にとり入れて各種の情報 の処理を行ない,さらにプロセス系の制御まで行なわせ ようという傾向にもなってきた.

一般にプロセス制御では永年経験的に行なわれてきた 関係もあるが、制御装置とプロセスとの定量的な動的の 関連が十分検討されていなかったようである.このプロ セスの動特性の検討はプロセスに固有な種々の困難さを 含むものであるが、自動制御の十分な効果を上げるには 制御装置の動特性の検討と共に欠くことのできないもの である.この問題は作業条件の高速化と作業の複雑ざが 増すとともに重要さを増すことであろう.

さて,近年,熱交換器の工業プロセスとしての重要性 が認識され,熱交換器の動特性の研究が急速に進んでき た.これは熱交換器が(a)比較的簡単な構造でユニッ トとしてまとまってはいるが,作動が割に複雑で興味あ る問題を含むこと,(b)熱交換現象はほとんどすべて の化学プロセス,熱工学関係に広く見うけられ,熱交換 器の動特性の研究は直接,間接にそれらの分野の制御に 適用できること,(c)重要な変化量は温度と流量であ るが,いずれも測定が比較的容易であること,(d)熱 交換は種々の流体間で考えられるが,実験的検討には水 や水蒸気が容易に使用できる利点がある,などの理由に よるのであろう.

したがって以上の意味から熱交換器の動特性の研究の 方向と問題点を検討することはプロセス制御の進歩のた めに重要な基礎となることと思う.

1. 熱交換器の理論的取扱い

熱交換器には1流体と固体壁との間の熱交換(パーコ レーション)を問題にする場合と、固体壁をへだてて二 つの流体の間の熱交換を問題にする場合とがある.一般 に流体の出口温度を目的の条件に保つためにその流体, あるいは他の流体の入口温度,もしくはその流量を制御 することになる.

分布系

熱交換器はふつうある長さを有するので,流体の温度 は長さ方向に分布しているため集中系としては表現し難 く,理論的取扱いは複雑になる.流体温度は場所と時間 の関数として表わされるので第1図のような仮定をおい て考えると連立偏微分方程式をうる.これは周波数応答 法によって初めて解析された.

この問題を最初に手がけたのは Profos⁽¹⁾ で熱容量の ある固体壁と1流体間の熱交換をベクトル軌跡で論じて いる.つづいて高橋安人教授⁽⁶⁾と Dusinberre⁽⁶⁾ はこの パーコレーションにつき簡易な計算法を提案した.

第1図 x 方向には温度分布はないとして取り扱う

さらに二つの流体間の熱交換を集中系, 1流体のみ集 中系,および両流体共分布系の場合に分類し,固体熱容 量をも考慮に入れて解析したのは高橋安人教授^(2,3,4) で あり,この研究が端緒になって多くの研究^(9,10,11,12,13) が発表された.この方法は管路の数が増加すると急に複 雑になるが,同一状態,同一条件の管路を使う限り,い かに管路数が増しても特性方程式の次数は3次以上にな ることはなく伝達関数が求められることを筆者^{(24,25,26, ^{27,29)}と Iscol⁽²⁸⁾ が全く独立に見出した.}

集中系

温度が管長に沿って分布しているシェルおよび管路流 体を、十分混合された要素が多数直列につながっている と考えて取り扱う研究が多く行なわれており、このよう な分割をすると一般に連立常微分方程式が成立する. こ れらの研究はアナログ計算機によって動特性を検討しよ うという目標で行なわれたもので、passive element 型で は DeBolt⁽⁷⁾, Mozley⁽¹⁰⁾, Ford⁽¹³⁾, Kourim^(16,17), Carteron, Deloux⁽²¹⁾, Cima, London⁽²²⁾ などがあり、流体 的相似回路では、Juhasz, Clark⁽¹⁵⁾, また active element 型では Chien, Ergin など⁽²³⁾ や筆者^(27,29) の研究があ る.

上述の分布系的取扱いは第1図のような考え方にもと づいているので乱流領域内であれば十分成り立つと考え られる.一方,粘性の高い流体や非ニュートン流体では 第2図のように考えねばならなず,ふつう一般的興味は

少ないであろう が重い油やプラ スティックなど で、このと問題になる している論文に した無いようで ある.

を考える また,集中系 的扱いは集中要素の数を増せば近似の精度をいかように も高められるが,大型の計算機が必要になったり,ドリ フトその他の点で不利な条件が増してくる.

流量変化

流体の流量変化を考えると(1)基礎式の係数が変化 して非線形になるほか,(2)熱伝達率などの変化が温 度変化入力の場合よりはるかに大きくなって取り扱い難 くなるので,この点を論じた研究は割に少ないが^(31,32), 制御上重要な特性である.

凝縮する水蒸気

この範囲では DeBolt⁽⁷⁾, Cohen, Johnson⁽⁹⁾, Catheron, Goodhue, Hansen⁽³⁰⁾ の研究があるが,相変化を伴う現 象は相当複雑で十分な検討はなされてない.しかし,実 際の熱交換器ではこのような場合も多いので興味ある特 性である.

発熱を伴う場合

化学反応,核反応などで著しい特性であるが,この方 面の研究は今後重要な仕事になるであろう^(19,20).

2. 動特性の実験的測定法

動特性を実験的に求めるには(1)正弦波を加え、その周波数 ω を種々変えて Bode 線図を書く方法,(2) 入力に階段状変化を加えて時間的応答をしらべる方法, (3)種々の形,大いさのパルスを加えて応答を直接比

較, あるいは解析する方法などが主として使われてい る.このうち, (1)が最も多く使われ, 理論的検討と 比較するには最も便利な方法である. (2)は場合によ ると真の階段状変化を与え難いことがあるから注意を要 する.(3)ではパルスをフーリェ解析^(10,33)して Bode 線図などを求めているが,計算に相当の手数を要し, か つ,高周波域で比較的精度が劣ることがある.しかし, 実験的には測定し易い点が長所であろう.

また,実験データから系のパラメータを直接決定し易 い点では研究(12)がすぐれた特色を有する.

3. 動特性の理論的解析法

(1) 動特性の基礎式 (第3図参照)

の熱収支を考えて

$$\frac{\partial\theta}{\partial t} + v \cdot \frac{\partial\theta}{\partial Y} = \frac{\alpha F}{w} (\varphi - \theta) \cdots (1)$$

で表わされる. ただし, v は流速 m/mn, α は熱伝達率 kcal/m²mn^oC, w は単位長さの流体の熱容量 kcal/m^oC, F は伝熱面積 m^2/m , Y は熱交換器の左端から測った距離 m.

係数を無次元化すると

$$\frac{\partial\theta}{\partial\tau} + \frac{\partial\theta}{\partial l} = a'(\varphi - \theta) \cdots (2)$$

ただし

$$\tau = t/L$$
, $L = (熱交換器の長さ)/v$, むだ時間,
 $a' = (\alpha \times 2 G へ 面積)/(v \times w)$, $l = Y/(2 \phi n$ 長さ)

また,ふつうの薄肉管ではその熱伝導率は半径方向に 無限大,長さ方向に零とみなせるから次式が成り立つ.

$$\frac{\partial \varphi}{\partial t} = \frac{\alpha F}{C} \left(\theta - \varphi \right) \cdots \left(3 \right)$$

ただし、C は管壁の熱容量 $kcal/m^{\circ}C$ である.

特に壁厚が無限に薄いとみなせるときは(2)式で a'を $a = (k \times 2 \text{ GM} \oplus 1)/(v \times w)$, k kcal/m²mn^oC 熱通 $過率で、<math>\varphi$ を他の流体温度でおきかえて扱うことができ る.ふつう、流体に関する(2)式と、固体の式(3) を組み合わせて論ずるが、第2流体を考えるとさらに (2)式と同様の式をうるから、これらを連立させれば よい.

以上の基礎式から熱交換器の動特性を支配する要素は (a) 両流体の熱容量

(4) 両加体の熱谷里

(b) 固体壁の熱容量(壁の厚さ)

- (c) 流体速度
- (d) 熱伝達率

などであることがわかる.

次にこれらの偏微分方程式を線形化して扱い易くする ために次のようなある程度の仮定をおいている.

(a) 熱伝達率などの伝熱面定数は一定で流体の温度 や熱交換面の温度によって変化しないとする.温度変化 入力を考える場合には平均の熱伝達率で十分 実 用 に な る.しかし,流量変化の場合は問題になろう.

第12巻第4号

っ.

換されていると考えられる からこの仮定は十分成り立

(c) 固体熱容量を考える場合,厚さが比較的薄いときには,熱交換の長さ方向には熱抵抗無限大で,長さ方向と直角な方向には熱抵抗がないとして扱うことができる.

第1元 単価ねよい円価数交換品, なりいに未中不良次の	eの例	换	置	系	中	集	ĸ	び	6	な	器	۶¥	熱る	流	向	び	よ	お	法流	並	表	1	第
-----------------------------	-----	---	---	---	---	---	---	---	---	---	---	----	----	---	---	---	---	---	----	---	---	---	---

No.	熱 交 換 器 略 図*	扱い方	基 礎 式**	伝 達 関 数 ^{***}	備考
1	$\begin{array}{c} g_1 & \theta_1, C_1 \\ \theta_{1i} & & & & \\ \theta_{2i} & & & \\ g_2 & & & \\ g_2 & & & \\ g_2 & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & & & \\ \phi_{2}, C_2 & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & & \\ & & & \\ \phi_{2}, C_2 & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & \\ & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & \\ & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & \\ & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & \\ & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & \\ & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & \\ & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & \\ & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & \\ & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & \\ & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & \\ & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & \\ & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & \\ & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & \\ & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & \\ & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & \\ & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & \\ & & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{(\alpha + b)} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{(\alpha + b)} \begin{array}{c} & & \\ \end{array} \xrightarrow{(\alpha + b)} \end{array}$ \xrightarrow{(\alpha + b)} \begin{array}{(\alpha + b)} \begin{array}{c} & & \\ \end{array} \xrightarrow{(\alpha + b)} \end{array}\xrightarrow{(\alpha + b)} \begin{array}{(\alpha + b)} \begin{array}{c} & & \\ \end{array} \xrightarrow{(\alpha + b)} \end{array}\xrightarrow{(\alpha + b)} \end{array}	集中系置換の場 合 固体熱容量のな い場合	$\begin{cases} q_1(\theta_{1i}-\theta_1)-kF(\theta_1-\theta_2)=C_1\frac{d\theta_1}{dt}\\ q_2(\theta_{2i}-\theta_2)-kF(\theta_2-\theta_1)=C_2\frac{d\theta_2}{dt}\\ \vdots \not t_i \not h_i \not h_j\\ \begin{cases} \frac{d\theta_1}{d\tau}+\theta_1-\theta_{1i}=a_1(\theta_2-\theta_1)\\ r\frac{d\theta_2}{d\tau}+\theta_2-\theta_{2i}=a_2(\theta_1-\theta_2) \end{cases} \end{cases} $ (4)	$\theta_{2i} = 0 \mathcal{C}$ $G(s) = \theta_2/\theta_{1i}$ $= \frac{a_2}{rs^2 + s(ra_1 + r + a_2 + 1) + a_1 + a_2 + 1}$	
2	$\begin{array}{c} \theta_{ii} & \theta_{1}, C_{1i} & \text{ transformation} \\ \theta_{ii} & \theta_{2i} & \theta_{2i} & \theta_{2i} \\ \theta_{2i} & \theta_{2i}, C_{2} & \theta_{h}, C_{h} \end{array}$	 1と同一の場合 で直列容量をも つ場合,直列容 量も集中系とし て扱う・ 	$\begin{cases} \frac{d\theta_1}{d\tau} + \theta_1 - \theta_1 = a_1'(\theta_h - \theta_1) \\ \frac{d\theta_h}{d\tau} = b_{h1}(\theta_1 - \theta_h) - b_{h2}(\theta_h - \theta_2) \\ r \frac{d\theta_2}{d\tau} + \theta_2 - \theta_2 = a_2'(\theta_h - \theta_2) \\ \cdots $	$ \begin{array}{l} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & $	
3	$\begin{array}{c c} \theta_1 & \theta_{h1} \\ \hline \theta_{11} & \phi_{h2} \\ \hline \theta_{11} & \phi_{h2} \\ \hline \theta_{11} & \phi_{h2} \\ \hline \theta_{12} & \phi_{h2} \end{array}$	1と同一の場合 で直列容量あり, 直列容量は厚さ 大で熱の移動方 向に分布系と考 える.	$ \begin{pmatrix} q_1(\theta_{1i}-\theta_1)-\alpha_1F(\theta_1-\theta_{h1})\\ =C_1\frac{d\theta_1}{dt}\\ K\frac{\partial^2\theta_h}{\partial x^2} = \frac{\partial\theta_h}{\partial t}\\ q_2(\theta_{2i}-\theta_2)-\alpha_2F(\theta_2-\theta_{h2})\\ =C_2\frac{d\theta_2}{dt} \end{pmatrix} (6)$		
4	θ_{ii} θ_{2i} θ_{2i} t=0 $\theta_{2} \rightarrow t$ t=1	第1流体は分布 系,第2流体は 集中系,固体熱 容量のない場合	$\begin{cases} \frac{\partial \theta_1}{\partial \tau} + \frac{\partial \theta_1}{\partial l} a_1(\theta_2 - \theta_1) \\ r \frac{\partial \theta_2}{\partial \tau} + \theta_2 = a_2 \left(\int_0^1 \theta_1 dl - \theta_2 \right) \\ \dots $	$ \begin{array}{l} \theta_{2i} = 0 \tilde{c} \\ G(s) \\ = & \frac{a_2(s+a_1)(1-e^{-(s+a_1)})}{(s+a_1)^2(1+rs)+a_2s} \\ \times & (s+a_1) + a_1a_2(1-e^{-(s+a_1)}) \end{array} $	
5	$\theta_{1i} \xrightarrow{\theta_{1}} k \xrightarrow{\theta_{10}} \theta_{2i}$ $\frac{1}{l = 0} \theta_{2} \xrightarrow{k} k \xrightarrow{\theta_{10}} \theta_{20}$	並流熱交換器 固体熱容量のな い場合	$\begin{cases} \frac{\partial \theta_1}{\partial \tau} + \frac{\partial \theta_1}{\partial l} = a_1(\theta_2 - \theta_1) \\ r \frac{\partial \theta_2}{\partial \tau} + \frac{\partial \theta_2}{\partial l} = a_2(\theta_1 - \theta_2) \\ \dots $	$G(s) = \frac{2g_2}{\sqrt{(f_1 - f_2)^2 + 4g_1g_2}} e^{-\frac{f_1 + f_2}{2}}$ × sin h $\sqrt{(f_1 - f_2)^2 + 4g_1g_2}$ $f_1 = s + a_1, f_2 = sr + a_2$ $g_1 = a_1, g_2 = a_2$	文献
6	$\begin{array}{c} \theta_{1i} & \theta_{1} \\ \theta_{2i} & h \\ t = 0 \\ \theta_{2i} & t \\ t = 0 \\ \theta_{2i} & t \\ t = 0 \end{array} \xrightarrow{\theta_{10}} \theta_{20}$	向流熱交換器 固体熱容量のな い場合	$\begin{cases} \frac{\partial \theta_1}{\partial \tau} + \frac{\partial \theta_1}{\partial \ell} = a_1(\theta_2 - \theta_1) \\ r \frac{\partial \theta_2}{\partial \tau} - \frac{\partial \theta_2}{\partial \ell} = a_2(\theta_1 - \theta_2) \\ \dots $	$G(s) = \frac{g_2}{\frac{f_1 + f_2}{2} + \frac{\sqrt{(f_1 + f_2)^2 - 4g_1g_2}}{2}} \times \coth \frac{\sqrt{(f_1 + f_2)^2 - 4g_1g_2}}{2}}{f_1, f_2, g_1, g_2 \not t : 5. \ge \exists$	(2, 3, 4)
7	$\begin{array}{c} \theta_1 & \theta_k, C_k \\ \theta_{1i} & \varphi_{2i}, C_k \\ \theta_{2i} & \varphi_{2i} \\ \theta_{2i} & \varphi_{2i} \\ t = 0 \end{array} \xrightarrow{(\alpha_2, \alpha_1)} \left\{ \begin{array}{c} \theta_2, C_3 \\ \theta_{2i} \\ \theta_2 \\ \theta_2 \\ t = 1 \end{array} \right\}$	並流熱交換器 直列および側容 量を含む場合	$\begin{cases} \frac{\partial \theta_{1}}{\partial \tau} + \frac{\partial \theta_{1}}{\partial l} = a_{1}'(\theta_{h} - \theta_{1}) \\ \frac{\partial \theta_{h}}{\partial \tau} = b_{h1}(\theta_{1} - \theta_{h}) + b_{h2}(\theta_{2} - \theta_{h}) \\ r \frac{\partial \theta_{2}}{\partial \tau} \pm \frac{\partial \theta_{2}}{\partial l} = a_{2}'(\theta_{h} - \theta_{2}) \\ + a_{3}'(\theta_{5} - \theta_{2}) \\ \frac{\partial \theta_{5}}{\partial \tau} = b_{5}(\theta_{2} - \theta_{5}) \cdots \cdots$	5. $o_{2}\overline{x}^{c}$ $f_{1}=a_{1}'(b_{h_{2}}+s)/(b_{h_{1}}+b_{h_{2}}+s)+s$ $f_{2}=a_{2}'(b_{h_{1}}+s)/(b_{h_{1}}+b_{h_{2}}+s)$ $+s\left(r+\frac{a_{s}'}{s+b_{s}'}\right)$ $g_{1}=a_{1}'b_{h_{2}}/(b_{h_{1}}+b_{h_{2}}+s)$ $g_{2}=a_{2}'b_{h_{1}}/(b_{h_{1}}+b_{h_{2}}+s)$	
8		向流熱交換器 直列および側容 量を含む場合	上式で第 3 式の複号のーをとる (11)	6. の式と同一, f ₁ , f ₂ , g ₁ , g ₂ は8. と同一.	

* 2 種類の流体はそれぞれ添字 1, 2 をつけて区別し、また直列容量(両流体間の管壁)に h, 側容量(外側の管壁)に s なる添字をつける.
 ** a1(無次元)=kF/q, a2(無次元)=kF/q2, a1'(無次元)=a1F/q1, a2'(無次元)=a2F/q2, a3'(無次元)=a3F/q1, b1(無次元)=a1F/(Ch01), b1(無次元)=a2F/(Ch01), b3(無次元)=a2F/(C201), C1, C2 は葉中系のとき流体の熱容量, kcal/°C 分布系のときは Ch, C3 で固体の熱容量を表わす. q=流入熱量 kcal/mm²(分布系では=vvv, r(無次元)=r2/T1(集中系で)=v1/v2(分布系で), T=時定数 mn, T1=C1/q1, T2=C2/q2, t=時間 mn, v=流体速度 m/mn, w=単位長さの流体の熱容量 kcal/m²(, r(無次元)=t/T1(集中系で).

*** これらの伝達関数は基礎方程式で第1流体の入口温度を €^{\$7} なる正弦波状に変化させ、第2流体入口温度変動を零とした場合に各流体温度(固体 温度も)が正弦波状の変動をしているとして解き、左端、右端の境界条件を与えて求めたものである・

† 式中の s を 0 とおけば静特性(温度効率)をうる.

(2) 向流および並流熱交換器

熱交換器を理論的に取り扱い,集中系に置換の例, 1 流体のみ集中系で置換の例,両流体ともに分布系の例お よび直列容量(管壁の熱容量)と側容量(シェルの壁の 熱容量)を含む種々の場合の基礎方程式,ならびに伝達 関数の諸例を第1表に表示した.これらの伝達関数は第 1流体の入口温度に正弦波状の変化を与えた場合の第2 流体の出口温度の変化(第2流体の入口温度変化は0と して)を求めたものである.また,このような正弦波状 の温度変動は静的な温度分布の上に重畳しているから, 伝達関数において変動分を除けば,すなわち s=0 とお けば静特性,温度効率の式が得られる便利さがある.

(3) 多管式熱交換器

第4図に示すように一つのシェル内に2個以上の管路 が存在する場合である.筆者は便宜上,シェル流体の流 動方向に対し管路流体の流動方向が同一の場合にその管 路をP(並流の意),逆の場合をC(向流の意)なる記 号で表わして整理した⁽²⁴⁾.このとき,管路流体の入口 側からみて最初に並流(P)で,次に向流(C)という 配列の場合を P-C 形,逆の場合を C-P 形と略称す る. なる連立偏微分方程式が求められる.温度変化入力の場 合には,入力信号が正弦波状のときに各温度がすべて正 弦波状の変動をしているとして伝達関数を求めることが できる.たとえば P-C 形で,管路入口温度変動は 0, シェル流体入口温度を正弦波状に変えたときの管路流体 の出口温度の応答は

となる. また, 式中で s=0 とおくと静特性, 温度効率 が得られる.

$$G(o) = \frac{2a_1}{a_1 + a + \sqrt{a_1^2 + a^2} \operatorname{coth} \sqrt{a_1^2 + a^2}} \cdots (15)$$

ただし

2 管路の場合

P-C 形では (第4図 (a)) 第1管路 $\frac{\partial \theta_1}{\partial \tau} + \frac{\partial \theta_1}{\partial l} = a_1(\theta - \theta_1)$ 第2管路 $\frac{\partial \theta_2}{\partial \tau} - \frac{\partial \theta_2}{\partial l} = a_1(\theta - \theta_2)$ シェル流体 $r \frac{\partial \theta}{\partial \tau} + \frac{\partial \theta}{\partial l} = a(\theta_1 - \theta) + a(\theta_2 - \theta)$

 $\cdots\cdots\cdots\cdots(12)$

ただし、 θ_1 、 θ_2 、 θ はそれぞれ第1、第2管路流体お よびシェル流体温度、 $a_1 = kF/q_1$ 、a = kF/q、シェル流体 を表わす記号については添字をつけないとする.

同様に C-P 形では(第4図(b))

第1管路
$$\frac{\partial \theta_1}{\partial \tau} - \frac{\partial \theta_1}{\partial l} = a_1(\theta - \theta_1)$$

第2管路 $\frac{\partial \theta_2}{\partial \tau} + \frac{\partial \theta_2}{\partial l} = a_1(\theta - \theta_2)$
シェル流体 $r \frac{\partial \theta}{\partial \tau} + \frac{\partial \theta}{\partial l} = a(\theta_1 - \theta) + a(\theta_2 - \theta)$
.....(13)

より求められ,すべて複素根である.前述の(2)の純 向流および純並流の時では(17)式に相当する式は2次 式になるから根は容易に求められ,第1表の伝達関数に 直接含まれている.

C-P 形の場合でも同様に求められ,また,管路側が 入力でシェル側が出力の場合でも同様に求められる. 3 管路以上の場合について

一般に同一寸法,同一状態の管路が多数存在する場合 には 各**P**流に対して

各C流に対して

また、シェル流体に対しては

第2表 多 管 路 熱 交 換 器

	略 図†	基礎方程式	静特性*	備考
集中系	→ <u>M</u>	第1表参照	0.40 —7.96 db	
純 並 流 純 向 流		第1表参照	$ \left. \begin{array}{l} 0.49 & -6.19 \text{ db} \\ 0.67 & -3.47 \text{ db} \end{array} \right. $	↓比較のために示す。 { Mは集中系 Pは並流 Cは向流 を表わす。
P-C 2 管 路 C-P		(12) 式 (13) 式	0.556 —5.09 db	** 文献 (24)
P-C-P 3 管 路 C-P-C		$\begin{split} \frac{\partial \theta_1}{\partial \tau} \pm \frac{\partial \theta_1}{\partial l} a_1(\theta - \theta_1) \\ \frac{\partial \theta_2}{\partial \tau} \mp \frac{\partial \theta_2}{\partial l} = a_1(\theta - \theta_2) \\ \frac{\partial \theta_3}{\partial \tau} \pm \frac{\partial \theta_3}{\partial l} = a_1(\theta - \theta_3) \\ r \frac{\partial \theta}{\partial \tau} + \frac{\partial \theta}{\partial \tau} = a(\theta_1 - \theta) + a(\theta_2 - \theta) + a(\theta_3 - \theta) \\ P - C - P は複号の上方, C - P - C は下方を使う. \end{split}$	$\begin{cases} 0.529 & -5.53 db \\ 0.57 & -4.88 db \end{cases}$	** ** 文献 (24)
P-C-P-C 4 管路 C-P-C-P		$\begin{aligned} \frac{\partial \theta_1}{\partial \tau} \pm \frac{\partial \theta_1}{\partial l} = a_1(\theta - \theta_1) \\ \frac{\partial \theta_2}{\partial \tau} \mp \frac{\partial \theta_2}{\partial l} = a_1(\theta - \theta_2) \\ \frac{\partial \theta_3}{\partial \tau} \pm \frac{\partial \theta_3}{\partial l} = a_1(\theta - \theta_3) \\ \frac{\partial \theta_4}{\partial \tau} \mp \frac{\partial \theta_4}{\partial l} = a_1(\theta - \theta_4) \\ r \frac{\partial \theta}{\partial \tau} + \frac{\partial \theta}{\partial l} = a(\theta_1 - \theta) + a(\theta_2 - \theta) \\ + a(\theta_3 - \theta) + a(\theta_4 - \theta) \\ P - C - P - C \ ki / / = \theta) \pm f_7, \ C - P - C - P \ ki / = f_7. \end{aligned}$	0.553 —5.15 db	** 文献 (24)
篬路数 無限個		文献 (25)	0.55 — 5.19 db	** PとCの数は無限大

* 静特性の比較例は r=1, 全体の a1=全体の a=2 の場合を示す.

** PとCの総和が等しい時には静特性は入口,出口の相対位置には無関係である.

- † 太い矢印は考慮中の入力と出力を示す.

ただし、管路数が n で i は管路の順を表わすとする. が得られ、これらの連立偏微分方程式から管路数がいか に増しても3次のpの式((17)式と類似の式で係数が 変わったもの)といくつかの等根が求められるので伝達 関数が得られる.第2表に3管路、4管路の場合の基礎 式を示した.

また純向流および純並流の場合と同様に直列容量や側 容量が加わった時でもその影響を考慮に入れた理論式が 得られ、その動特性に及ぼす影響を論ずることができる。

4. アナログ回路について

熱交換器自身の動特性の研究や熱交換器を含む制御系 の検討のために熱交換器の電気的な相似回路を利用する 研究が行なわれていることは前に述べた.この方法は分 布系としての熱交換器を有眼個の集中系の集合で近似す る方法である.近似の程度は要素の数を増せば高くなる が回路が扱い難くなる.比較的高い周波数範囲を問題に しない場合や,制御系の他の要素の時間おくれが割に大 きいときは比較的低い周波数範囲までを考えれば十分 で,一般に 4~12 個ぐらいの要素の組合わせがよく使 われている.

熱系と電気系の相似では温 度→電 圧

▲ 反 → 电 ⊥
 熱 流→→ 電 流
 熱容量→→電気容量

熱抵抗→→電気抵抗

なる対応を考え,集中化したときの熱系の方程式と電気 系の方程式とが数学的に等しくなるようにする. scale factor は相似系で扱い易い容量,抵抗の範囲で決めるこ とができる.

次に二つの異なった形式の相似回路を示す.

(1) 2 管路熱交換器の相似回路

第4図(a)の P-C 形を例にとろう. 第5図に示す ように長さ方向に直角な断面でたとえば四つに分割し, 分割されたシェル要素, 管路要素はすべて混合が完全で 集中要素として扱えるものとする.いま, 図のように

第5図 第4図(a)の場合の2管路熱交換器を4分割して 集中系としたもの

θ₁, θ₂, ……, θ₈ は分割された管路要素の温度
 ①₁, ①₂, ①₃, ①₄ は " " シェル要素 " "
 C₁, C₂, ……, C₈ は " " 管路要素の熱容量
 C₁', C₂', C₃', C₄' は " " シェル要素の熱容量
 とおけば四つのシェル要素の中でそれぞれ管路要素との
 間の熱交換を考えることができるから熱収支を考えると

第6図 アナログ計算機結線図

管路で

$$\begin{cases}
q_1(\theta_{1i}-\theta_1)-kA(\theta_1-①) = C_1\frac{d\theta_1}{dt} \\
q_1(\theta_1-\theta_2)-kA(\theta_2-①) = C_2\frac{d\theta_2}{dt} \\
\dots \dots \dots \\
q_1(\theta_1-\theta_2)-kA(\theta_2-①) = C_2\frac{d\theta_2}{dt} \\
\dots \dots \dots \\
q_1(\theta_1-\theta_2)-kA(\theta_2-①) = C_2\frac{d\theta_2}{dt} \\
q_2(①) = -kA(\theta_2-①) = C_2\frac{d\theta_2}{dt} \\
\dots \dots \\
q_1(\theta_1-\theta_2)-kA(\theta_2-①) = C_2\frac{d\theta_2}{dt} \\
= C_1'\frac{d①}{dt} \\
\dots \dots \\
q_2(①) = -(1)-kA(①) + C_2(0) \\
= C_1'\frac{d①}{dt} \\
= C_1'\frac{d0}{dt} \\
= C_1'\frac{d0}{dt}$$

分割を等分割とし、 $C=C_1=C_2=\dots=C_8$ $C'=C_1'=C_2'=C_s'=C_4'$ とおき、 $T=C/q_1, T'=C'/q, a_1=kA/q_1, a_2=kA/q_2$ $r=T'/T, \tau=t/T$ を用いると次の連立常微 分方程式が得られる.

$$\left(\frac{d\theta_1}{d\tau} + (a_1+1)\theta_1 = \theta_{1i} + a_1 \bigoplus_1 \\ \frac{d\theta_2}{d\tau} + (a_1+1)\theta_2 = \theta_1 + a_1 \bigoplus_2 \\ \frac{d\theta_3}{d\tau} + (a_1+1)\theta_3 = \theta_2 + a_1 \bigoplus_3 \\ \frac{d\theta_4}{d\tau} + (a_1+1)\theta_4 = \theta_3 + a_1 \bigoplus_4 \\ \frac{d\theta_5}{d\tau} + (a_1+1)\theta_5 = \theta_4 + a_1 \bigoplus_4$$

第7図 向流熱交換器のアナログ回路

$$\begin{vmatrix} \frac{d\theta_6}{d\tau} + (a_1+1)\theta_6 = \theta_5 + a_1 \oplus_3 \\ \frac{d\theta_7}{d\tau} + (a_1+1)\theta_7 = \theta_6 + a_1 \oplus_2 \\ \frac{d\theta_8}{d\tau} + (a_1+1)\theta_8 = \theta_7 + a_1 \oplus_1 \\ r\frac{d\bigoplus_1}{d\tau} + (2a_2+1) \oplus_1 = \bigoplus_i + a_2(\theta_1+\theta_8) \\ r\frac{d\bigoplus_2}{d\tau} + (2a_2+1) \oplus_2 = \bigoplus_1 + a_2(\theta_2+\theta_7) \\ r\frac{d\bigoplus_3}{d\tau} + (2a_2+1) \oplus_3 = \bigoplus_2 + a_2(\theta_3+\theta_6) \\ r\frac{d\bigoplus_4}{d\tau} + (2a_2+1) \oplus_4 = \bigoplus_3 + a_2(\theta_4+\theta_5) \end{vmatrix}$$

これより求めたアナログ回路は第6図に示したように なる.

(2) 向流熱交換器のアナログ回路

向流熱交換器については多くの研究があるが,第7図 に示したのはその一つ⁽²¹⁾ で原偏微分方程式を階差方程 式に直して求めたものである.多数のC, Rを組み合 わせて各分割要素の第1流体,第2流体,熱交換面など を相似している.

このようなアナログ回路を使用すると,流体の流動に よる熱の移動と,伝熱による熱の移動の経路がはっきり して直観的に過渡状態の推定がつく利点もある.

5. 結 言

以上で熱交換器の動特性に関する研究の方向を展望し 問題点を概説したが、今後のこの方面の研究に少しでも 役に立てば幸いである. (1960. 2. 29)

文 献

- P. Profos, Die Behandlung von Regelproblemen vermittels des Frequenzganges des Regelkreises, Diss. Zürich, 1943
- Y. Takahashi: Transfer Function Analysis of Heat Exchange Processes, edited by A. Tustin, Automatic and Mannal Control, Butterworths, London, 1952, P. 235
- Y. Takahashi: Regeltechnische Eigenschaften von Gleich-und Gegenstromwärmeaustauschern, Regelungstechnik, 2, 1953, pp. 32~35
- 高橋安人: 熱交換の自動制御,日本機械学会誌, 54,393,昭26~10, p.426
- J. W. Rizika: Thermal Lags in Flowing Systems Containing Heat Capacitors, Trans. ASME, 76, 1954, pp. 411~20
- G. M. Dusinberre: Culculation of Transient Temperatures in Pipes and Heat Exchangers by Numerical Methods, Trans. ASME, 76, 1954, pp. 421~426
- R. R. DeBolt : Dynamic Characteristics of a Steam-Water Heat Exchanger, M. S. Thesis, Univ. of California, 1954
- 8) Y. Takahashi: Graphically Determine the Dyna-

mics of Heat Percolation, Cotrol Engineering, 2, 5, 1955, pp. $46\!\sim\!50$

- 9) W. C. Cohen and E.F. Johnson: Dynamic Characteristics of Double-Pipe Heat Exchangers, Ind. & Eng. Chem., 48, 6, 1956, pp. 1031~1034
- J. M. Mozley: Predicting Dynamics of Concentric Pipe Heat Exchangers, Ind. & Eng. Chem., 48, 6, 1956, pp. 1035~41
- S. Lees and J.O. Hougen: Pulse Testing a Model Heat Exchange Process, Ind. & Eng. Chem., 48, 6, 1956, pp. 1064~68
- 12) H. M. Paynter and Y. Takahashi: A New Method of Evaluating Dynamic Response of Counter flow and Parallel-flow Heat Exchangers, Trans. ASME, 78, 1956, pp. 749~58
- R. L. Ford: Electrical Analogues for Heat Exchangers, Proc. IEE. 103, Paper No. 1934, 1956, pp. 65~82
- 14) J. W. Rizika: Thermal Lags in Flowing Incompressible Fluid Systems Containing Heat Capacitors, Trans. ASME, 78, 1956, pp. 1407~13
- 15) S. Juhasz and J. Clark: Hydraulic Analogy for Transient Conditions in Heat Exchangers, Fourth Int. Inst. and Meas. Conf., Paper CMP II C, Sept. 1956
- 16) G. Kourim: Die elektrische Nachbildung der instationären Vorgänge beim Wärmeaustauschern, Regelungstechnik, 5, 1957, pp. 163~7
- G. Kourim: Ein elektrisches Analogiegerät für Uberhitzer, Regelungstechnik, 9, 5, 1957, pp. 302~306
- 18) B. D. Hainsworth, V. V. Tivy and H. M. Paynter Dynamic Analysis of Heat Exchanger Control, ISA Journal, 4, 6, 1957, pp. 230~235
- 19) J. A. Clark, V. S. Arpaci and K. M. Treadwell: Dynamic Response of Heat Exchangers Having Internal Heat Sources-Part I, Trans. ASME, 80, 3, 1958, p.612
- 20) V. S. Arpaci and J. A. Clark: Dynamic Response of Heat Exchangers Having Internal Heat Sources-Part II, Trans. ASME, 80, 3, 1958, p. 625
- 21) J. M. Carteron and G. Deloux : Analog Representation of Heat Exchange, Application to the Simulation of Heat Exchangers of Nuclear Power Plants, Proc. of the Computers in Control Systems Conference, AIEE, May 1958, pp. 46~53
- 22) R. M. Cima and A. L. London: The Transient Response of a Two-Fluid Counterflow Heat Exchanger-The Gas-Turbine Regenerator, Trans. ASME, 80, 1958, pp. 1169~79
- 23) K. L. Chien, E. I. Ergin, C. Ling and A. Lee: Dynamic Analysis of a Boiler, Trans. ASME, 80, 1958, pp. 1809~19
- 24) 筆者:多管路熱交換器の自動制御(第1報),日本機械学会論文集,24,139,昭33~3,pp.209~213
- 25) 筆者:同第2報,日本機械学会論文集,24,147,昭33~11,pp.934~940
- 26) 筆者:同 第3報,日本機械学会論文集,25, (42ページへつづく)

生

イロットバルブの圧力流量特性はゼロ重合のもので,第 46 図に示す.

配管の長さ l=100 cm配管の剛性 $K_{p}=10^{4} \text{ kg/sec}^{2}$ 配管の直径 $D=5\phi$ 配管内油の質量 $M_{k}=0.016 \text{ kg}$ 配管内油の粘性抵抗 R=1.4 kg/sec(101) より4端子マトリックス定数を求める. $A=D=1+0.7\times10^{-4}s+0.8\times10^{-6}s^{2}$ (102) $B=0.26\times10^{2}(1.4+1.60\times10^{-2}s+6.45\times10^{-5}s^{2}+4.25\times10^{-6}s^{3})$ (103) $C=3.84\times10^{-6}s(1+0.233\times10^{-4}s+2.66\times10^{-7}s^{2})$ (104)

ここで scale factor を次のように選び、パイロットバ ルブと配管の signal-flow diagram を求めると第 47 図 のようになる.

time scale factow s=1,000 S

pressure scale factor $p = 10^5 P$

flow rate scale factor q = 200 Q

spool displacement scale factor x=0.01 X

負荷は第6図のようなものとし,その scale factor 等 はそのまま用いる.その結果得られた演算用ブロック線 図は第48図のようになる.

アクチュエータの断面積 1 cm² 負荷の質量 M=1 kg 負荷の粘性摩擦

 $D_2 = 0.01 \times 980 \frac{\text{kg} \cdot \text{cm}}{\text{sec}^2} / \frac{\text{cm}}{\text{sec}}$

のような簡単な負荷の場合,スプールに二種類の大きさ のステップ入力が与えられたとき負荷の速度の応答を第 49 図に示す.入力が小さいとダンピング が小さく 振動 的になることが分かる.

§ 結 語

以上の事柄は筆者が目下研究途上のものであり,紙数 の都合上十分に説明ができなかったが,詳細は末記の文 献を参照されたい. なお多くの誤りもあることと思われ

(49	ページよ	りつ	づく)		
	155,	昭	34~7,	pp.	703~708

- 27) 筆者:同第4報,日本機械学会論文集,25,155,昭34~7,pp.708~711
- 28) L. Iscol and R. J. Altpeter: Frequency Response of Multipass Shell and Tube Heat Exchanger, ASME Paper, No. 59-IRD-4, 1959-3
- 29) M. Masubuchi: Dynamic Response and Control of Multi-Pass Heat Exchangers, ASME Paper, No. 59-IRD-6, 1959-3
- 30) A. R. Catheron, S. H. Goodhue and P. D. Hansen: Control of Shell and Tube Heat Exchanger, ASME Paper, No. 59-IRD-14, 1959-3
- 31) 清水浩, 宗像健: 向流型熱交換器の過渡応答につ

生産研究

るので、お気付きの点はご指導下されんことを望む.

最後に実験用サーボバルブの製作に絶大なる援助を賜 わった津上製作所,津上社長,武藤氏,畑佐氏,日立川 崎工場松本氏,アナログ計算機の使用を許していただい た東芝鶴見研究所高橋義造氏,日立中央研究所阿部善右 衛門氏,三浦武雄氏,日本原子力研究所三井田純一氏, 昌雄氏の各位に深く感謝する.また文部省科学試験研究 原"高速度油圧サーボ機構に関する研究"の委員会にお いて日ごろご鞭達いただいている東大藤井教授,大島助 教授,東工大池辺助教授,および各位に深謝いたします.

(1960. 3. 7)

参考文献

中田 線形制御要素のマトリックス解法 淁 自動制御論 高橋安人編 共立出版 国枝寿博 ラプラス変換・演算子法 コロナ社 山田 直亚 洋 油圧案内弁サーボモータ 池辺 自動制御論 同上 洋 パイロット弁方式油圧サーボモータの力学 池辺 自動制御 Vol. 4 No. 3 大島康次郎 サーボ弁 自動制御 Vol 4 No. 3 S.Y. Lee, J.F. Blackburn Contributions to Hydraulic Control 1~6 ASME 1952~4 J.L. Shearer, Dynamic Characteris of Valve Controled Hydraulic Servomotors ASME, Vol. 76, No. 6 1954 T.Y. Feng Static and Dynamic Control Characteristic of Flapper-Nozzle Valves ASME. Series D Vol. 81 富成 裏 高速高圧バルブピストンの伝達関数 機械学会秋期講演大会前刷 昭和 33 年 富成 襄 ノズルフラッパがサーボバルブの安定性に およ ぼす影響 機械学会関西支部 205 回講演会前刷 昭和 34 年 高速油圧サーボバルブの設計,解析,実験 富成 機械学会秋期講演会前刷 昭和 34 年 富成 襄 制御用バルブピストン系における singing の発 牛機構 機械学会関西支部 206 回講演会前刷 昭和 34 年 高速油圧サーボ機構における配管の伝達特性(理 富成 竆 論と計算法) 機械学会第37期通常総会講演会前刷 昭和35年 高速油圧サーボ機構における配管の伝達特性(ア 富成 棄 ナログ計算機による検討) 機械学会関西支部 207 回講演会前刷 昭和 35 年

いて、日本機械学会九州支部講演会(60周年記念) 前刷,昭 32-10

- 32) 高橋安人:流量変化に対する熱交換器の応答,自動制御,6,1,1959,pp.2~7
- 33) H. J. Morris: The Dynamic Response of Shell and Tube Heat Exchangers to Temperature Disturbances, Paper for the 41 st National Meeting. AICh.E, Sept. 1959
- 34) L. F. Fricke, H. J. Morris, R. E. Otto and T. J. Williams: Process Dynamics, Automatic Control and Analog Computer Simulation of Shell and Tube Heat Exchangers, Paper for AICh.E, Dec. 1959