本庄実験用ロクーンテレメータ送信機

倉茂 周芳・小羽根澄夫・小賀 由章

1. 概 要

本庄予備実験は実験の性質上、ロクーンのバルーンス テージ状態の観測を目的としたため、使用した送信機は 電源外付型という特殊なものである。ロケットに搭載さ れる送信機は、電源を内臓しているのが普通であるが、 観測時間が2時間半もの長時間におよぶため内臓電源だ けでは不足になり、外付電源を使用したのである。送信 機本体はシグマ型ロクーン用として設計されたものでそ の1部を改造して使用した。その送信機の外観構造を第 1図に示す。図は外筐、発振器本体および内部電池を示

左より外筐,発振器本体および電池 第1図 送信機外観図

第1表 送信機概要

送信周波数		411Mc	
送信出力		0.5W	
通信方式		FM-FM	
通信回線		2回線	
50 hm 'Ye ye 田 ye ***	ch. 1	960cps	
副搬达放向放纵	ch. 2	3000cps	
寸 法	108¢×210 m/m		
重量	1.6kg		
アンテナ	λ/2 ダイポール		

第 2 表

送信出力 送信アンテナ利得 Fading Margin Cable loss 受信アンテナ利得 受信機 Noise Figure Noise Level (バンド: 1.1Mc) 一1 Threshold Level (FM S/N 改善限界)		
送信出力 送信アンテナ利得 Fading Margin Cable loss 受信アンテナ利得 受信機 Noise Figure Noise Level (バンド: 1.1Mc) -1	reshold Level (FM S/N 改善限界	8 db
送信出力 送信アンテナ利得 Fading Margin Cable loss 受信アンテナ利得 一 受信機 Noise Figure	ise Level (バンド: 1.1Mc)	—144 db
送信 出力 + 送信アンテナ利得 Fading Margin Cable loss 受信アンテナ利得 -	言機 Noise Figure	7 db
送信出力 送信アンテナ利得 Fading Margin Cable loss	言アンテナ利得	—8 db
送信 出力	ole loss	1 db
送信出力	ling Margin	10 db
送信出力 +	言アンテナ利得	0 db
	信出力	+3 db

-123 db

123 db=自由空間伝播損失(150 km)

している.本庄実験ではこの内部電池を取り除き外付電 池のみで動作させたわけである.外付電池には低温特性 の良い注水電池とマンガン電池を併用している.この送 信機の概要を第1表に示す.送信電力は0.5Wであるが 第2表に示すとおり安全にテレメートできる距離は約 150 kmである.ただしこの際の受信機はロケット搭載の 送信機の周波数が発射の際あるいは他の震動で変動する ことを考慮に入れて設計したバンド幅1.1Mc のもので ある.実際にはこのような大きな安全率を考慮に入れる 必要がなかったことが後に判明した.

2. 動作説明

本機の系統図を第3図に示す(図中1A04は1AD4の誤り). 回路構成はごくありふれたものであるため,簡単に動作 を説明するに止める.

第3図 副搬送波発振器回路図

(1) 副搬送波発振器

回路は第3図に示すとおりCR3 段によ る移相発振器である.発振管は 1AD4, 抵抗管は 5678 である.ともに直熱型サブ ミニアチュア管でヒータ電力の少ない利点 があるので用いた.しかしこのヒータとカ ソードが共通のため真空管のバイアスを自 己方式にするには一つの回線と他の回線の 副搬送波発振器のヒータ電源とは切り離す必要が生じ る.それにもかかわらず第3図に示すように自己バイア ス方式を利用したのは、以前固定バイアス式とした時に バイアス用電池の故障による事故が起きた苦い経験を避 けるためである.構造は第4図に示すように、第2回線

左より第1回線副搬送波発振器および変調器,主発振 器および第2回線副搬送波発振器

第6図 電源電圧に対する周波数変動

数変動状態を第6図に示す. AおよびB電源に対する周 波数変動は,互いに逆特性を示しているが,二つの電源 は互いに独立しているので,この相補性を利用すること ができなかった. B電源に対する変動はカソード抵抗 R_5 および R_7 を調整することにより小さくすることが できた. A電源に対しては電池容量を大きくする以外適 当な方法がなかった.

(2) 変調器

周波数変調器であるが、第7図だけでは振幅変調器と 変わりがない.これは 411Mc 主発振器のプレート電圧

第7図 変調器回路図

を変化せしめることにより、大きく発振周波数が変化す る特徴を利用したためである.この周波数の変化は発振 器の陽極電圧,発振状態および負荷リアクタンスにより 異なるが,陽極電圧の約5%の大きさの信号電圧を発振 器のプレートに加えることにより十分な希望周波数偏移 が得られた.構造は第4図に示すとおり第1回線と同じ 基板に組み込まれている.この主発振器の特性を利用し て変調器を簡略化することができたが,必然的に周波数 変調とともに約7%の振幅変調成分を生じた.しかしこ の振幅成分により生じた歪は受信機の低レベルにおける リミタ動作特性を良好にすることにより除かれた.変調 特性は副搬送波の全周波数域において平坦なることが望 ましいが,部品小型化のためトランスの低周波特性が悪 く第8図に示すとおり(図中電率は盃率の誤り),変調周波数

の近い方で出力レベルが下がる傾向があり、また歪がや

や多い. 変調器自体の歪は約 1% であるから主発振器の被変調特性は 2% 程度と推定される.

(3) 主発振器および高周波増幅器

主発振器はゾンデ用として開発された 6N3 を用いた レッヘル線発振器である.この球を用いたのはプレート とグリッドがカソードおよびヒータから離れた位置に端 子が出ていてレッヘル線共振回路との結合が容易な構造 を有していたためである.また 400Mc 帯ではミニチュ ア管の中では最も能率の良い部類に入り約 25% の発振

第12巻第3号

能率を出すことができる.発振器の構造および回路を第 4図および第9図に示す.主発振器は陽極電圧100V に

電力增幅器回路図

て動作し約0.5Wの出 力を得た.レッヘル線 の適当な位置に容量を 接続し次段の電力増幅 器のカソードと結合し て増幅を行なう.この 高周波増幅器は電力増 幅のほかに主発振器の 発振状態を常に安定に するためにバッファー の働きをする.使用管 はこれもゾンデ用とし て開発されたペンシル 管 5794 である.ゾン

第 10 図 主発振器周波数偏移特性

デでは 1680 Mc 発振用として使用している. この増幅 器はグリッド接地型であるが, プレートタンク回路は半 同軸で短絡の容量を可変にすることにより同調を取って いる.出力は整合された豆球を負荷して約1Wを得てい るが, アンテナには0.5W 程度しか給電されてないと想 像される.主発振器は陽極電圧変化により周波数が変化 するがその特性を第 10 図に示す.

(4) 送信空中線

ロクーンはバルーンステージにて相当距離水平に流さ れて後ロケットに点火して飛しょうするので地上ロケッ トと異なりロケットの横方向に電波の輻射を必要とす る.飛しょう計画により多少異なるが,水平距離 150 km の地点で高度 80km までロケットを飛しょうさせる ことを想定すれば,ロケットの横方向の上下 30 度以内 に電波を輻射させねばならないことが推定できる.それ ゆえこの特性に最も近い $\lambda/2$ ダイポールを使用すること にした.ロケットの垂直方向にエンジン,テレメータ送 信機および計測器等導電体が組まれているため,アンテ ナの指向性にこれらが影響しないよう,またロケットの

第 11 図 送信機用アンテナシグマ型 ロケット実装指向性図

ノーズコーンにアンテナを固定するに適した形にするた めコーン型ダイポールを使用した.その構造および指向 性を第 11 図に示す.この指向性の測定は実物大のもの で行なった.

(5) 送信機用電源

電源は外付型なるゆえ,重量および形状にあまり制限 を受けないので副搬送波発振器のヒータ電源を除き注水 電池を使用した.注水電池は正式には注水型塩化第一銅 ーマグネシウム電池と称しラジオゾンデに多く使用され ている.この電池は使用時に普通の水を注入することに よって活性化するもので陽極には塩化第一銅,陰極には マグネシウムを用いて構成される.特徴としては注水時

の発熱反応が高空における 諸条件に対して影響が少な く常温時の性能と変わらな いことである.また小型鉛 電池の 2/3 の重量で電力が 50%も大きいことも利点で ある.しかし使用時に注水

第12 図 注水電池構造図 し後 30 分経過しなければ 使用できないことは取扱い上不利なことである。電池の 1 素子の構造を第12 図に示す。副搬送波発振器の発振 周波数はヒータ電源電圧により大きく影響されるのでこ の電源のみはマンガン電池を使用した。

3. 後 説

送信機の概略を説明したが、本庄での実験ではロクー ンの各部の温度を測定し幸いにデータを得ることができ だ.しかしまだ高空での高圧のリーク、副搬送波発振器 の受定性および電源等幾多の研究すべき事柄が残されて いる.

おわりに本送信機の研究製作にご指導いただいた生産 技術研究所斉藤教授,野村助教授を初め生研の諸先生方 に感謝の意を表する. (1960.1.14)

53