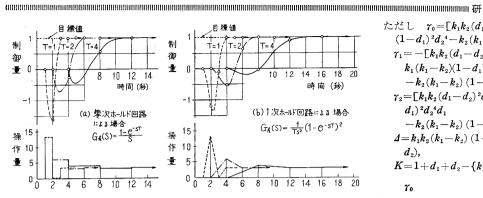
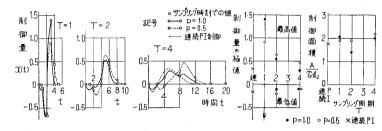
速



第3図 階段状目標値入力に対する制御結果, $G_{
ho}(s) = \frac{1.3}{1+2s}$ ○印, サンプリング時刻における値



階段状外乱入力に対する制御結果

(この場合の $G_{sc}^{*}(z)$ を求めることは第(1)式のときほ ど簡単ではない.)

$$G_c^*(z) = \frac{\gamma_0 z^2 + \gamma_1 z + \gamma_2}{(z - 1)(z + k)}$$
 (7)

ただし $\gamma_0 = [k_1 k_2 (d_1 - d_2)^2 + k_1 (k_1 - k_2)]$ $(1-d_1)^2d_2^4-k_2(k_1-k_2)(1-d_2)^2d_1^4]/\Delta$ $\gamma_1 = - \left[k_1 k_2 (d_1 - d_2)^2 (d_1 + d_2) + \right]$ $k_1(k_1-k_2)(1-d_1)^2d_2^4(1+d_1)$ $-k_2(k_1-k_2)(1-d_2)^2d_1^4(1+d_2)]/\Delta$ $\gamma_2 = [k_1 k_2 (d_1 - d_2)^2 d_1 d_2 + k_1 (k_1 - k_2) (1 (d_1)^2 d_2^4 d_1$ $-k_2(k_1-k_2)(1-d_2)^2d_1^4d_2]/\Delta$ $\Delta = k_1 k_2 (k_1 - k_2) (1 - d_1)^2 (1 - d_2)^2 (d_1 - d_2)^2$ $K=1+d_1+d_2-\{k_1(1-d_1)-k_2(1-d_2)\}$

制御装置の伝達関数を第(7)式に合わせ て制御した結果を第4図に示す. なお図 中には同一プロセスを連続PI制御した 場合の最良応答を併記した. 制御面積, 行きすぎ量,整定時間などの評価により, まえがきに示した(2), (3)の結果を得た.

おわりにこの研究に対し激励, ご援助 を賜わった高橋安人教授,東洋紡績藪田 副社長, 木田技術室部長, 村上技術課長 に御礼申し上げる. (1958, 10.6)

文 献

- (1) 高橋安人, J. G. Ziegler: 生産研究, vol. 8, No. 3, (1956), p. 23
- (2) 森政弘: 東大生研報告, vol. 7, No.3 (1958)
- (3) E. I. Jury, W. Schroeder: Trank. AIEE, I. 28, (1957), 317.

O. I. M. Smith の方法の拡張による逆応答プロセスの連続制御

Continuous Control of the Reverse Reaction Process by Applying O. J, M. Smith's method

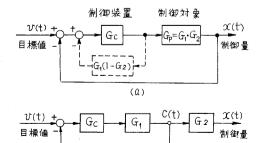
政 弘•松 本 幸 生

1. まえがき

O. J. M. Smith の方法(1)(2)を拡張した逆応答プロセス の連続制御が、単一ループによる連続制御よりも非常に 安定であることを示す.

2. O. J. M. Smith の方法とその拡張

筆者らはむだ時間について示された Smith の方法の 本質をつぎのように解釈する. すなわち第1図(a) にお



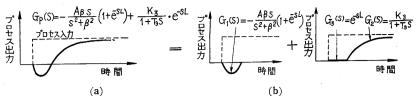
(b) (a) O. J. M. Smith の方法による制御 第1図

(b) (a) の等価変換系

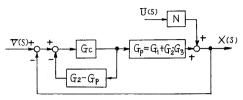
いて、制御対象の伝達関数 $G_{\rho}(=G_1 \cdot G_2)$ のうちの制 御系を不安定化する伝達関数 G2(たとえば むだ 時間) を, 破線のような局所フィードバックを制御装置のまわ りに設けることによって、等価的に第1図(b) のように 閉ループの外に追い出して安定な制御を行おうとするの がそのねらいである(ただし図中で $c(t) \Rightarrow x(t)$ を前提と することはもちろんである). ボイラの液位 その他にし ばしば見られる逆応答プロセス (第2図(a))は、本来な らば負のフィードバックが行われるべき制御系におい て, 逆応答の間, 正のフィードバックを生ずる結果, 制 御が行ないにくい.筆者らは Smith の方法にヒントを得 て,逆応答プロセス特性を第2図(b)のように分解して 考え、そのうち系の安定性を害する G_1 (逆応答部分)と G_3 (むだ時間)を閉ループ外に追い出すための局所フィ ードバックを第3図のように求めることができた.

3. 逆応答プロセスの本法による安定な制御

第3図が筆者らの提案する制御系である。制御量のラブ プラス変換 X(s) はつぎのようになる.

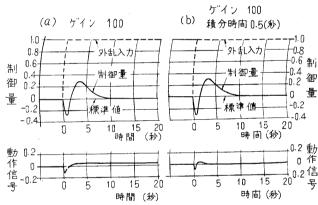


第2図 逆応答プロセスの分解



第3図 筆者らの提案する制御方法

$$X(s) = \frac{\frac{G_{c}(s)G_{p}(s)}{1 + G_{c}(s)\{G_{2}(s) - G_{p}(s)\}}V(s) + N(s) \cdot U(s)}{G_{c}(s) \cdot G_{p}(s)} + \frac{G_{c}(s) \cdot G_{p}(s)}{1 + G_{c}(s)\{G_{2}(s) - G_{p}(s)\}}$$
(1)



第4図 本法による制御経過

第(1)式を展開すれば $1+G_cG_2=0$ という特性方程式を有する次式を得る.

万在年代を有する(人工を行る)。
$$X(s) = \frac{G_c(s)\{G_1(s) + G_2(s) \cdot G_3(s)\}V(s) +}{1 + G_c(s) G_2(s)}$$
御 $N(s) \cdot [1 + G_c(s)\{G_2(s) - G_\rho(s)\}]U(s)$ 量

第 2 図(b) を参照すれば $G_2(s) = \frac{k_3}{1+T_3 s}$ だから第(2)式より第3 図の系の特性方程式はつぎのようになる。

$$1 + \frac{k_3 \cdot G_c(s)}{1 + T_3 s} = 0 \tag{3}$$

この特性方程式は、1次おくれ特性を有する制御対象の(その伝達関数= $k_s/(1+T_sS)$)単一ループによる制御の場合と同一のものである。したがって制御装置 G_c のゲインは極めて大に(理論上は無限大に)することができる。ゆえにまた積分動作は不要になる。自動

制御系ではゲインをどこまで上 げうるかは、その系の安定度を 表わす一つの目安である.

第4図は本研究所設備の日立 製低速アナコンによる,本法に よる制御経過の計算結果であ る.また第5図は通常の単一ル ープによる制御の経過の計算結

果である。第5図ではゲインが2.5ですでに振動的になっているのに第4図ではゲインが100でも振動状の応答は現われていない。(この結果は(3)式の当然の結論である。計算によると単一ループによる通常の方法ではゲインが4で,すでに不安定に陥ることがわかっている。本法ではゲインが100でさえも安定である。アナコン計算では,むだ時間の実現が困難なため,逆応答特性は第2図の方法によらずに二つの1次おくれ特性の20)として表わしていった。

4. あとがき

第3図のような制御を行えば、従来不安定な難物とされていた逆応答プロセスを、極めて安定に高いゲインで制御でき、その上積分動作は不要なことを明らかにした、今後はこの方法でのプロセスのパラメータの変化に対する安定度の変化を研究する予定である。

おわりに、アナコン使用についてご援助を賜つた 野村助教授、山本尚志氏に御礼申上げる.

(1958, 10, 6)

文 献

- (1) O. J. M. Smith: Closer Control of Loops with Dead Time Chemical Engineering Progress, vol. 53, No. 5, pp. 217— 219, May, 1957.
- (2) O. J. M. Smith: Improved Regulation of Loops with Flow Time, Proc. ISA Instrumentation and Control Symposium, May, 1957.
- (3) 高橋安人: 自動制御理論, 岩波全書, pp. 62.

(a) ゲイン 2.0 ゲイン 2.5 着分時間 積分時間 3(秒) 3 利 1.0 _1.0 - 0.8 0.8 外乱入力 0.6 制 制 0.6 0.4 海 御 0.4 制御量 制御量 0.2 0.2 暈 0 Ω -0.2 煙進備 -0.2-0.4-0.4 U 5 10 15 20 25 0 15 20 25 時間(秒) 時間(秒) 1.0 1.0 40.8 0.8 動 0.6 0.6 動 0.4 作 作0.4 -0.2 信 信0.2-号 0-号 0.2 n 号 -0.2 -0.4 -0.4 -0.6 -0.6 25 0.8 -0.820 25 10 20 5 10 15 時間 (秒) 間 (米)