腐蝕と繰返応力を受ける構造用鋼の强さ

——腐蝕疲労について——
岡本舜三·北川英夫

まえがき

機械・構造物材料の破壊原因は疲労によるものが過半 を占めるといわれ,なかでも,腐蝕と繰返し応力を同時 に受ける材料は,腐蝕疲労現象によって特にその破壊が 促進されることが知られている.実際に,老朽化し疲労 破壊した材料を調べてみると,破損の原因が腐蝕疲労に 関係づけられる実例にしばしば出遭う.したがって,戦 時中一時中断されていたかにみえていた腐蝕疲労の研究 も,最近再び着目され,各所で研究が始められるように なった.

腐蝕疲労においては、普通の疲労の場合と違って鋼材 でも明確な疲労限が存在しないこと⁽¹⁾、繰返し速度の影響が大きいこと⁽²⁾⁻⁽⁷⁾、引張応力と 圧縮応力の 効果が違 うこと⁽³⁾⁻⁽¹⁰⁾、ノッチや表面処理の影響が少ないこと⁽¹⁰⁾ -(13) など顕著な特徴を示すことがすでに確かめられてお り、また、種々の金属材料についての実用上の腐蝕疲労 限⁽²⁾⁽⁶⁾、腐蝕疲労防止策⁽¹⁰⁾⁽¹⁴⁾⁻⁽²⁵⁾、腐蝕疲労が乾燥時 疲労限に与える影響⁽²⁶⁾ などについて多くの研究が行わ れている.

筆者らは,最近発生した鉄道橋の破損原因を調査し, 鋼橋の耐久度を研究する立場から,腐蝕疲労の研究を行っている.研究対象を主として普通の構造用鋼におき, 腐蝕疲労の進み方,腐蝕疲労を受けた鋼材の強度の考え 方,応力変動の影響,腐蝕疲労亀裂の性質等を,主とし て従来よりの試験方法によって研究しており,そのうち, 興味ある2,3の結果について述べようと思う⁽²⁷⁾.

1. 試験方法の改善

腐蝕そのものが複雑な現象であり,材料の疲労的性質 も比較的バラツキの多い統計量である⁽²⁹⁾⁻⁽³⁶⁾といわれ ているほどなので,腐蝕疲労実験には長時間安定かつ簡 単な諸条件が与えられることがまず必要である.従来は 試験片を液中に浸漬するか,または,液を注ぎながら繰 返応力をかけるものが多いが,腐蝕作用には空気の存在 が必要⁽³⁷⁾であるため液と空気との境界の条件が問題に なる.筆者らはそれを避ける意味で,試験片を塩化ビニ ール製チャンバーで覆いその中を細かい水霧で飽和しか

つ空気を導入し,試験片表面が一様な水滴また は水煙に囲まれる条件にして,繰返荷重をかけ た.この水霧はノズルよりのジェットを傾斜板 に当てるか,または高速回転円板に液を注入す ることによって作った.装置は数種類試作した が,そのうちの2種類を写真1および表紙写真 (ノズル式)にて示す.

写真1 腐蝕装置(回転円板式)

使用液は、当所水道(地下水)を使用したが液温は一 連の関係実験中ほとんど一定であり $P_{H}=7$ であった.

試験機は小野式回転曲げ疲労試験機を用い,荷重繰返 速度は約 1500 R. P. M. であった.

試験片は、第1回に示すような普通の型のもののほか に第2回に示すような腐蝕疲労試験用の特殊な型のもの を製作し、回に示す 25mm マークの所に、ゴムおよび 塩化ビニール製の円板を装着して、試験機を腐蝕より保 護するとともに絶えず空気がチャンパー内に供給される ようにした・

試験片素材は,普通の鉄道橋梁に現用されている SS 41 の 19mm 厚鋼板中より任意に1枚取り出したものか ら圧延方向に,回転曲げ疲労,板曲げ疲労,引張,衝撃, 硬さ,化学分析等の諸試片を採取した.実際の使用状態 での材料の強さを知る必要上から,実験のための試験片 素材の熱処理は一切行わなかったが,腐蝕疲労において は熱処理の影響は一般的に少ない⁽³⁸⁾ との事実も考慮し

第10巻第1号

てある.この材料の静的諸試験および化学分析の結果を 第1表および第2表に示す.化学分析は含有金属元素の

引張強さ <i>o</i> B	45.8 kg/mm ²
降伏点応力 or	27.1 "
真破断応力 or	79.4 ″
伸び率	26.6 %
断面収縮率	50. 2 //
硬さ (Rockwell B)	74.3 (黑皮部 73.6)
回転曲げ疲労限 σw	22.5 kg/mm ²

		145	- 1	+	
		していたい		77	

第	2	表
---	---	---

C	P	S	Si	Mn	Cu	Cr
0.15	0.012	0. 025	0.07	0. 63	0. 22	0.09
~0. 17	~0. 013	~0.027		~0.66	~0.23	~0.10

腐蝕疲労におよぼす影響を考えて、5元素のほかに特に Cu 等が加えてあるが、これは、たとえば炭素鋼中の含 銅量が適当に多いと耐蝕性が増す⁽³⁹⁾⁻⁽⁴²⁾等の事実を考 慮したものである。第3図に試験方法の概略を示す。

第3図 実験装置説明図

2. 腐蝕疲労による強度の低下

前章の装置により,濡らしながら種々の値の正弦応力 をかけて破断した腐蝕疲労のS-N曲線と,比較のため 同材料についての普通の乾燥時疲労によるS-N曲線を

第4図 S-N曲線

合わせて示したのが第4図である.横軸は破断までの総 繰返数,縦軸は初期の断面につき計算された公称曲げ応 力である.

この実験結果によれば, 腐蝕疲労のS-N曲線は 20~ 21 kg/mm² から, 静的引張降伏点の少し上の 28~29 kg/mm² 付近まで直線性を示している. 20 kg/mm² より 下では, 曲って約 18 kg/mm² の漸近線に接近していく 傾向を示し,上方では,降伏点付近で折れて乾燥疲労の S-N曲線と重なる.戦前は,この下方の水平に近い部 分(いわゆる腐蝕疲労限)が主として問題にされたが, 筆者らは,その上方の傾斜直線部を主な対象としてい る.それは,橋梁では繰返数 2×10^6 回以下で実用上十 分であること⁽⁴³⁾,破壞事故が 10⁶回以下で発生してい ること⁽⁴⁴⁾,また,腐蝕疲労の進行機構を知る上に扱い 易い領域であること等の理由による.

腐蝕疲労のS-N曲線は、一般に、水平部すなわち疲 労限は現われず、どこまでも曲線が下って行くといわれ ているが、この実験にみられるように水腐蝕を受ける普 通の構造用鋼(低炭素鋼)では、繰返数の大なる所で傾 斜が非常に緩慢となり、ほとんど疲労限と見做してよい ものが現われるのは特徴的である.この事実は、他の多 くの研究者の実験結果⁽⁴⁵⁾を整理した結果から、ほぼ断

定してもよいと思われる. (第5図参照, $\beta_{C} = \frac{\sigma_{N}}{\sigma_{NC}}$.)

ただし、 σ_N 、 σ_{NC} は繰返数 N で破断を生ずる乾燥疲 労および水による腐蝕疲労の応力腐蝕疲労でも条件によ っては疲労限の存在の可能性があることは、岩元氏らに よっても指摘されている⁽³⁷⁾⁽⁴⁶⁾.

この SS41 では、上記の考え方による腐蝕疲労限は 約 18 kg/mm² で腐蝕の共働作用による疲労限の低下は 約 20% である.しかし、疲労寿命の点から見るとその 低下は大きく、22.5kg/mm² では乾燥疲労に比し約1/10 に低下する.

次に破断面の状態について説明を加えると、降伏点以 上の応力, すなわち, 両者のS-N曲線が一致した領域 では, 破断面は腐蝕疲労と乾燥疲労の間に差が認められ ない(写真2)が, S-N曲線が分れた部分では, すで によく知られているように両種の疲労破断面には明らか に差が認められ,乾燥疲労では一点より発生した亀裂が 一平面に沿って発達するが,腐蝕疲労では各所よりの亀 裂出発の跡が見られ(写真3)典型的なものはいわゆる カッター状(または放射状)破断面(写真4)となる.

3. 腐蝕疲労の進行

4

材料が腐蝕疲労により次第に損傷 (Damage) を与え られ遂に破断に至るその過程を考察するための一つの手 掛かりとして,腐蝕乾燥の2段階実験を行った.これは ある任意の繰返数 N_1 まで腐蝕疲労を続けこれを第1段 とし,続けてその試験片に第2段として同応力で乾燥疲 労をかけて破断せしめるのであって,この乾燥疲労をか けた繰返数を N_2 とする.

これに類似の実験は、第1段応力が第2段応力より低い場合についてはすでに行われているが、(26)(46)われわれは、1、2段とも同じ応力で行ったのである。

その実験結果の1例を第6図に示す。横軸は第1段繰返数 N_1 または第1段繰返比 $R_1 = N_1/N_{1f} \times 100$ で、縦軸は損傷度 D_e 、または第2段繰返数 N_2 を上から下向にとったものである。損傷度としては、慣用に従って

の破断繰返数の 平均値である. 第6図によれ ば、損傷度 D_o は、腐蝕疲労寿 命の初期に $(R_1 = 15 \sim 20\% \pm cc$ に)70~80%程 度に達する.し

4 放射状亀裂 (σ≒21.56kg/mm²)

も,残る寿命が同じで あり,疲労の進行速度 が同じであることを示 している.このことか ら,25kg/mm²の応力 で腐蝕疲労を受けれ ば,全寿命の約15%の

間は、腐蝕による材料 の弱化(恐らく応力集 中部の形成であろう) が急速にかつ一定速度 で進み、約15%以後 は、その弱化された材 料がそのまま(換言す ればある一定の集中応 力により)普通の疲労

作用によって,破断ま で進むという考え方, または応力集中によっ て高められた有効な応 力の値が第5図の両S -N曲線の合致点,す なわち静的引張降伏点 以上に達して,腐蝕疲

労と乾燥疲労による差

かも注目すべきことには、測定値の平均を結ぶ曲線はほ ほ2本の直線におき得ることである。この場合 $R_1 \Rightarrow 15$ ~20%付近にその折れ目があり、しかも、上部の緩傾斜 の直線を D_e 軸の方に延長すれば、 N_2 に換算して約 4.1×10⁵ の付近で D, 軸と交わる。この 4.1×10⁵ と いう数値は、 $R_1 = 100\%$ における N_1 すなわち終始腐蝕 疲労を続けた場合の破断繰返数の平均値に相当している から、第6回を N_1 , N_2 に対して同一 Scale に取れば、 いわゆる D - R 曲線(損傷度 -繰返比曲線)は 45°の 直線にのってくることになる。このことは $R_1 \Rightarrow 15 \sim 20$ %以後は腐蝕疲労のままでも乾燥疲労に切り換えられて

写真? 左 腐蝕疲労(σ≒31kg/mm²) 右 乾燥疲労(σ≒32kg/mm²)

写真3 左 腐蝕疲労(σ≒25kg/mm²) 右 乾燥疲労(σ≒25kg/mm²)

写真5 左 腐蝕疲労(a≒23kg/mm²) 右 乾燥疲労(a≒23kg/mm²)

 $D_{o}=(1-N_{2}/N_{2}f) \times 100$ を採用した. ここで、 $N_{1}f$, $N_{2}f$ はそれぞれ腐蝕疲労のみ、または乾燥疲労のみを (この例では $\sigma=25$ kg/mm²で)継続して破断せしめた場合 が認められなくなったという考え方が導かれてくると思われる.したがって、この $R_1=15\sim20\%$ 以後の領域では、腐蝕疲労現象に簡単な関係が求められることが推測

第6図 蝕疲労損傷度曲線

される.次章の研究はその1例と見做してよいかと思われる.

さらに付言すれば、この実験の直接の実用上の意義 は腐蝕疲労によって老朽化した材料に対して、途中か ら防蝕を施した場合、残る寿命はいかに算出されるか という問題に解答を与えたことになる、すなわち、た とえば 25kg/mm² の応力で腐蝕疲労を 6~10×10⁴ 回 以上かけられた構造用鋼 SS41 は防蝕措置を施して も、疲労寿命の上には何らそれによる効果がないとい うことになる、もちろん、逆にその防蝕が途中でまた 再び無効になって腐蝕疲労に変ってもやはり疲労の進 行速度は同じであり、この事実を筆者らは、先述の実 験と順序が反対の乾燥一腐蝕の2段階試験によっても ほぼ確かめた.

4. 腐蝕疲労における2段重複繰返荷重の影響

前章3で、われわれは腐蝕から乾燥への2段階に変る 場合の影響を見たが、実際には、材料の最も苛酷な条件 として継続して腐蝕疲労が行われると考えた方が安全で あるし、理論的にも、腐蝕疲労の2段階試験によって、 荷重変化の影響を見ることは、前章の結果と合わせ考え て重要なことであると思われるので、腐蝕疲労のみによ る2段重複繰返荷重試験を行った.これは、 σ_1 なる応力 で N_1 回腐蝕疲労を繰り返した後、 σ_2 なる応力に切り 代えて、同じ腐蝕条件で続いて破断まで腐蝕疲労をかけ るのである.実験の順序としては σ_1 、 N_1 をある一定の 値にとり、 σ_2 を数段に変えて実験を行い、各 σ_2 に対し て σ_2 をかけた回数 N_2 を求める. $\sigma_1=25 \text{kg/mm}^2$ に対 する3種の N_1 について N_2 を求め、その σ_2-N_2 曲 線3本を一括して第7図に示す.

ただし、この場合、 σ_1 (この図では 25kg/mm²) に相 当する点はここだけは1、2段とも同応力で、 $N_{1'}=$ $N_{2f}=N_1+N_2$ であるから、 σ_1 のみによる破断繰返数 N_{1f} より $N_2=N_{1f}-N_1$ で求めたものである. この N_{1f} は、1本のS—N曲線ごとに求めて、補正のための基準 値としたが、これは材料の採取箇所による差、製作に当 る工員の個人差、実験の時期的ずれによる偏差等を除く ためであり、疲労試験の性質上多数の試験片の平均値 を取るよりもこの方がより実際的であると思われる. ただし、ここでは N_{1f} , N_{2f} はそれぞれ、第1段応 力、または第2段応力のみによる破断繰返数である. 第7図によれば、第1段繰返数 N_1 が0回 ($R_1 = 0$

%), 1.7×10⁵ 回 (R_1 =41.5%), 3×10⁵ 回 (R_1 =73%)の3本のS-N曲線は, 20~27kg/mm²の傾斜直線部で平行となった.

この事実から直ちに,同じ σ_2 に対する各S-N曲線の N_2 の比は σ_2 の取り方にかかわらず一定である ことが分る. しかるに $N_1=0$ の曲線は同応力で継続 して破断させた時の繰返数 $N_2 f$ を示しているから,

第7図 腐蝕疲労の2重重複試験による第2段 S-N

 σ_1 , N_1 をきめれば, N_2/N_{2f} は σ_2 にかかわらず一定となる.

しかるに、各S-N曲線は、 $\sigma_2=25 \text{kg/mm}^2$ では N_2 (= $N_{1f}-N_1$)を通るので、任意の σ_2 に対する N_2/N_{2f} は $\sigma_2=25 \text{kg/mm}^2$ における $N_2/N_{2f}(=N_2/N_{1f}=1-N_1/N_{1f})$ に等しくなる、したがって $\sigma_1=25 \text{kg/mm}^2$, $N_1=1.7 \times 10^5$, $N_1=3 \times 10^5$ に対して

$$rac{N_1}{N_{1f}} + rac{N_2}{N_{2f}} = 1$$

が第2段応力 σ_2 の如何にかかわらず成立することになる.

それ以外の N_1 について考えてみると、 $N_1=3\times10^5$ の場合は前章に述べたように $D_c>90%$ で、材料の元来の寿命の大部分が失われていて、破断はその機会が常にあり組織や表面条件等に支配され易く、しかも、このS -N曲線が、比較的データが揃う換算累計回数(47)(50) によるS -N曲線でないため多少のバラツキが目立つが、それにもかかわらず、なお3本のS -N曲線がこの程度の平行性を持つことを考えると、 $N_1=1.7\sim4.1\times10^5$ すなわち $R_1=41\sim100\%$ の間では

$$\sum_{n=1, 2} \frac{N_n}{N_{nf}} = 1$$

5

5

が破壊法則として成立すると考えられる、筆者等はさら にこの法則が $\sigma_1=25 \text{kg/mm}^2$ のみならず $\sigma_1=20-27 \text{kg}$ /mm²の範囲で一般に成立することを実験的に示すこと ができたが、それは主として $R_1>40%$ についてであ り、第7回に示す緩傾斜の直線部 ($R_1>15-20\%$)の範 囲に入るので、前章の結果より大体想像しうることでは ある・もちろん、腐蝕一乾燥 2 段試験の損傷度曲線の緩 傾斜部で 上記の 破壊法則が 成立することを 断定するに は、なお多くのことを実験的に調べなければならないが 後に述べる $R_1 \leq 15\%$ についての実験や、軟鋼では平滑 な場合より切欠がある方が $\sum \frac{N_n}{N_{nf}} = 1$ に近づくとの河 本・関両氏による実験結果⁽⁴⁷⁾等より、一応の推定をし たのである、この間の立入った考察についてはまた別の 機会に述べたい、

厳密な適用範囲については、未だ完全に解決されては いないが、腐蝕疲労において、この破壊法則が相当広範 囲に成立することは注目すべきことであって、乾燥疲労 の2段重複試験では、かかる簡単な関係が一般には成立 しないことがすでに多くの実験により⁽⁴⁸⁾⁻⁽⁵¹⁾、また筆者 らの同材料についての実験によっても明らかにされてお り、上記の関係は腐蝕疲労に特に顕著に現われる現象と してその機構を解明するのに重要な手掛りになるかと考 えられる.

また,この2段重複試験の結果が実用上直接意味する ものは,腐蝕疲労で老朽化した材料が途中で荷重が変更 された時,なお,どの程度の寿命が保証されるかを示す ものであるので,荷重変更による寿命計算を,上記の法 則から簡単に算出できることになる.

しかしながら、筆者らの実験によれば、この法則には 例外があり σ_1 =20kg/mm² および σ_1 =26kg/mm² にお いては平行性が保証されず、20~27kg/mm² の第 2 段 S --N曲線は、 $N_1=0$ の元曲線より緩傾斜となり、しか も、 $\sigma_1=20$ kg/mm²、 $\sigma_1=26$ kg/mm²の両曲線の傾斜は 全く一致する.また、第 7 図と同じ $\sigma_1=25$ kg/mm² で も $R_1 \leq 15\%$ の実験では、やはり平行性が成立しなかっ た.上記の不成立領域の存在は腐蝕疲労の進行の機構に 関係し、上記の法則の内容をさくる手掛りになるものと 思われるが、今回はこれについては触れない.

5. 腐蝕疲労研究の当面の課題について

われわれは、他の多くの人々の研究成果により、また 当研究室自身の手による実験により、腐蝕疲労の結果と して現われる諸特性については、すでに幾多の事実を知 っている.さらに一歩、腐蝕疲労自身の機構について、 具体的な知識が得られれば、すでに知っている諸特性に ついて一貫性のある説明を行うことができ、従来個々の 場合についてのみ個別に行われたか、または全く行われ ていない次の諸問題について、弾力性ある解決ができる

- ものと思う・
- (a) 腐蝕疲労の防止についての時期と方法
- (b) 腐蝕疲労材の強度基準の考え方
- (c) 腐蝕疲労の早期発見と損傷度の判定
- (d) 腐蝕疲労材の回復
- (e) さらに進んで機械・構造物の設計への腐蝕疲労概念の導入
- (f) 腐蝕疲労研究の立場から一般の乾燥疲労の機構研 究への寄与

また,腐蝕疲労を受ける材料の強さを実際の工学上の 要求にそって判断するためには,次の諸項についての研 究の蓄積を必要とする.すなわち,

(イ) 繰返速度の影響

特に非常に遅い場合を必要とする.従来の研究結果は 毎分数サイクル程度までに過ぎない⁽²⁾.しかし,繰返し 速度が小さい場合に特に各繰返毎の腐蝕疲労の被害が大 きいので,従来の知識だけでは不十分である.

(ロ) 平均応力の影響

これについては、信頼すべきデータは非常に少ないようであるが重大な影響を持つといわれており⁽³⁹⁾、実際の 問題では、平均応力に応力振幅が重畳した形の応力を受ける場合が相当ある・静的応力だけでも、応力腐蝕亀裂 を生ずる場合があることはよく知られており⁽⁵²⁾⁽⁵³⁾、応 力の分布状態も影響すると思われるので、相当量のデー タの蓄積を必要とする・

(ハ) 種々の材料と種々の腐蝕条件による腐蝕疲労

腐蝕という電気化学的現象を伴ったもの⁽²²⁾ であるた め、各種の材料と各種の腐蝕液の組合せについて、多数 の実験より一般的な関係を求め得ることが望ましい.従 来の研究は、主として、鋼材について水道水または食塩 水によるものであったが、Cu 合金についても別の腐蝕 条件下で主要な事故が発生しているし、熱処理や添加 合金元素によって強度を改善したはずの鋼材が、腐蝕作 用によって驚く程の強度低下を見ることもあり得るし、 また、逆に腐蝕疲労に対して特に強い材料を求め得るこ とも可能であろう.

(ニ) 亀裂の発生と進行についての解明

現在これについての研究は発展途上にあるように見受 けられるが、それは別途に進められており、腐蝕疲労の 研究と結びついていないように思われる.極言すれば、 腐蝕疲労の研究上問題にしていたのは腐蝕孔から亀裂が 発生する所までか、亀裂を念頭に入れても、それによっ て生ずる切欠効果の面だけであるか、または破断面の判 定の手掛りのみに限られていたように思われる.しかし 亀裂についての具体的な諸知識は実用上非常に有効であ るのみならず、腐蝕疲労の機構についての認識をさらに 深めるためにも必要である.またさらに、普通の疲労、 腐蝕疲労、高温疲労、脆性破壊、衝撃破壊等を統一的に

第10巻第1号

解釈する重要な鍵かとも考えられるのである.

終りに本文に述べた研究は岡本研究室において北川の 担当として行われたものであって,これについては大井 東大助教授,遠藤広大教授,国鉄構造物設計事務所(旧 施設局特殊設計室),鈴木当所試作工場長の諸氏よりご 助言ならびにご協力をうけ,また国鉄より研究費の補助 をうけた.また,丸山製作所,松尾橋梁株式会社には材 料,設備の点でご協力をいただいた.ここに感謝の意を 表するものである. (1957.11.30)

文 献

- D. J. McAdam; Proc. ASTM, Vol. 26, p. 224 (1926), ただし間接に.
- (2) D. J. McAdam; Congress Intern. Essai, Material, Amsterdam, (I) p. 305 (1927)
- (3) 遠藤吉郎, 宮尾義治; 機械学会第 34 期通常総会 前刷, p. 21 (1957)
- (4)遠藤吉郎,宮尾義治;機械学会60周年第5区講演 会前刷,p.5 (1957)
- (5) F. N. Speller; Proc. ASTM, Vol. 29, (II) p.411 (1930)
- (6) H. J. Gough: J. Inst. Metals, Vol. 49, II, p. 117 (1932)
- (7) M. Vater, M. Henn; Korrosion und Metallschutz, Vol. 20, No. 6, p. 179 (1944)
- (8) H. J. Gough, D. G. Sopwith; J. Iron Steel Inst., Vol. 135, p. 293 (1937)
- (9) 岩元兼敏:機械学会第34期通常総会前刷, p. 25 (1957)
- (10) A. Thum, H. Ochs; Korrosion und Dauer festigkeit, VDI-Verlag, Heft. 9 (1937)
- (11) T. J. Dolan; Univ. Illinois Engi. Experi. Station Bulletin No. 293 p. 39 (1937)
- (12) T. J. Dolán; J. App. Mech., Vol. 5, p. A 141 (1938)
- (13) T. S. Fuller; Trans. ASST. 19, p. 97 (1931)
- (14) 南義雄; Proc. 6th Japan Nat. Congress App. Mech. (1956)
- (15) 山口啓一, 邑本広志; 材料試験 Vol. 6, No. 46,
 p. 474, (1957)
- (16) R. Mailänder; Zeits. VDI, 77, p. 271 (1933)
- (17) R. Mailänder, O. Hengstenberg; Zeits. VDI, 74, p. 1126 (1930)
- (18) F. N. Speller, McCorkle, P. F. Mumma; Proc. ASTM, 28, (II), p. 159 (1928)
- (19) P. Ludwick, R. Scheu; Zeits. VDI, 76, p. 68. (1932)
- (20) Trans. ASM. (1956)
- (21) J. Iron and Steel Inst. Aug. (1951)

- (22) U. R. Evans; Failure of Metals by Fatigue (A Symposium Melbourne) p. 84 (1946)
- (23) H. Buchholtz, K. Krekeler; Stahl u. Eisen Vol. 53, p. 671 (1933)
- (24) A. J. Gould; Engineering, Vol. 136, p. 453 (1933)
- (25) D. G. Sopwith, H. J. Gough; J. Iron Steel Inst., Vol. 135, p. 315 (1937)
- (26) D. J. McAdam; Proc. ASTM, Vol. 28, (II), p. 117 (1928)
- (27) 岡本舜三, 北川英夫; Proc. 7th Japan, Nat. Congress. App. Mech.
- (28) ASTM Spec. Tech. Publ. No. 137(1952)
- (29) ASTM Spec. Tech. Publ. No. 121(1951)
- (30) 横堀武夫; J. Phys. Soc. Japan, 6, p. 81,(1951)
- (31) "; ", 8, p. 265,(1953)
- (32) ";東大理工研報告, 8, p. 5 (1953)
- (33) A. M. Freudental; ASTM, Spec. Tech. Publ.
- (34) ", E. J. Gurnbel; Proc. Roy. Soc., A216, p. 309, (1953)
- (35) A. M. Freudenthal; Fatigue in Aircraft Structure (1956)
- (36) 篠塚正宣; 材料試驗, Vol. 4, No. 25, p. 433 (1955)
- (37) R. Cazaud; Fatigue of Matals, p. 209(1953)
- (38) W. Lequis, H. Buchholtz, E. H. Schultz; Stahl Eisen, 53, p. 1133 (1933)
- (39) 石橋正;金属の疲労と破壊の防止, p. 279(1956)
- (40) 大和久重雄; 鉄道技研, 未発表
- (41) Iron Carbon Monograph Series, Copper and Its Alloy (1934)
- (42) 森岡進,多賀谷正義;耐蝕合金,日本金属学会篇
 p. 44 (1954)
- (43) 土木学会; 鋼鉄道橋設計示方書解説, p. 34(1950)
- (44) 岡本舜三, 久保慶三郎, 北川英夫; 鉄道業務研究 資料, Vol. 13. No. 19, p. 13, (1956)
- (45) 河本実,水上嘉明;材料試験 Vol. 3, No. 17,
 p. 427 (1954) に掲載されている文献より採用
- (46) 岩元兼敏; 機論, Vol. 23, No. 127, p. 238(1957)
- (47) 河本実, 閱護雄; 材料試驗協会第6期総会前刷
 p. 29 (1957)
- (48) 鵜戸口英善; 材料試験 Vol. 6, No. 45, p. 361 (1957)
- (49) 川田雄一, 中沢一; 材料試驗 Vol. 6, No. 45, p. 368 (1957)
- (50) 河本実, 伊吹幸彦; 材料試験 Vol. 5, No. 36,
 p. 544 (1956)
- (51) J. B. Kommers; Proc. ASTM, 45, p. 532(1945)
- (52) 金森政雄:金属防蝕技術総覧(下), p. 353 (1952)
- (53) Symp. Stress Corrosion Cracking Met. (Philadelphia, 1944)

7