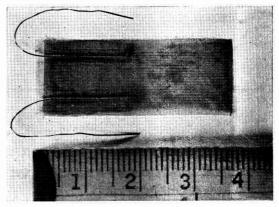
白金温度計による頭部温度上昇の測定

野 村 民 也・山 本 尚 志

1. 緒言

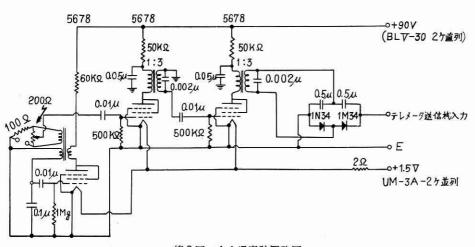

カッパⅢ型ロケットの各部(主として頭部)温度上昇 を実測する計画は, 昨年 12 月のカッパ 128J-TR 6, 7 号機での尾翼および頭部温度の計測が好結果を収めたこ とから, 当初は全機について実施する企画であった. し かるに、カッパⅡ型でレーダ観測が不調におわったた め、その原因究明の目的でテレメータによる計測項目が 変更になったので、その結果、カッパⅢ型3号機につい てのみ、頭部温度の計測を行ったものである。 どのよう な測定でも同じであるが, 測定結果の信頼性は, 同種の 測定を何回か繰返してこそ高くなる. 特にロケット実験 のように、やり直しの効かない場合は、最小限3回の観 測実施が望ましい. もちろん, これでも系統的な誤差の 排除という点では十分ではないが、こうした不備は実験 室での実験でも、ある程度は解明できるからである。し たがって、ただ一回の測定では多少の批判を免れないも のと思うが、幸いにして、池田教授の理論計算の結果1) と照合して, 定性的にはかなり良く一致しているので, 大きな誤りはないものと考えて,ここに結果を報告する 次第である.

2. 計測装置

温度計測の方式は、前回報告したところと同様である²⁾. すなわち、白金線の感温ゲージ(第1図)を測定点に貼布し、温度上昇に伴う抵抗変化によるブリッジの不平衡出力を増幅、整流して直流出力とする。回路も前回報告とほぼ同じであるが、測定範囲を拡大するために倍電圧整流方式を採用した(第2図)。

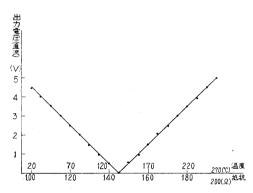
感温ゲージは、 stikon という商品名で、高木教授が

外遊の折入手されたものである。常温 $(20^{\circ}C)$ において 100 α の抵抗をもち、 $1^{\circ}C$ 当り約 0.4% の抵抗温度係数 となっている。貼布用として、シリコン系の接着剤が用意されていて、 $300^{\circ}C$ までの測定に耐えることになっている。実験の結果では、 $200^{\circ}C$ を超えるあたりから、漸次、ゲージの基体が黒変するが、抵抗変化は正常でありまた、常温に復した際の再現性も害われることはない。

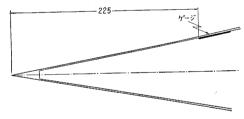


第 1 図

温度上昇の期待値は, 100° C 程度という説と, 300° C 位までになるという説と両様があった. 測定器の感度を 300° C に合せわておいたとして,もし実際の温度上昇が 100° C 程度であったのでは,測定精度の低下が免れない(昨年の 128J-TR 7 号機では, 200° C フルスケールに調整していて,実際の温度上昇は 50° C に留まったので,精度が著しく悪くなった経験がある)。 さりとて, 100° C 前後に合わせておいて,実際の温度がこれを超えるとす

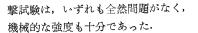

となって記録が失われてしまう恐れがある。そこで、この両様の期待値のいずれであっても、ほぼ同じ精度の測定ができる工夫を試

れば, over scale



第2図 白金温度計回路図

Cで平衡するように調整し、 常温および 300°C におけ る不平衡で、ほぼフルスケール (+5V)の出力となるよ う感度を設定する. このようにすれば、150°C以下の場 合は +5V から 0 までの変化として, また, それを超 えて 300°C にまで達するならば、+5V から一度 0 を 経てふたたび折り返して +5Vにいたる変化となり、い ずれにしても十分な精度が確保できる. ただし, 測定値 に一意性を欠き、 ambiguity が含まれる欠点はある. しかし、それも温度変化の特徴を加味して検討すれば、 誤りを犯すおそれは、ほとんどないであろう・


第3図 温度(抵抗)変化対出力電圧特性

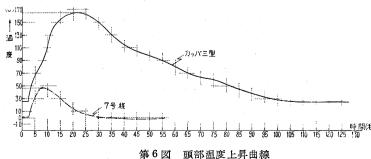
第4図 ゲージ貼布位置

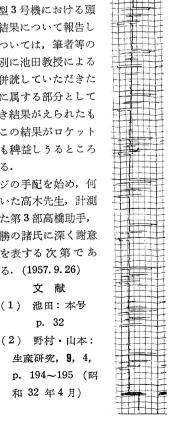
このような考えで調整した装置の特性は、第3図にし めしたようなものである。 事実上, 前回報告のものに比 して、感度が2倍となっているのであって、その必要上 から, 前記のように倍圧整流方式とした次第である.

電源部は前回報告のものと同じで、スイッチ閉成後の 安定度も,前回報告のものと同様で,十分満足しうる. 生研での衝撃試験、および道川における飛しょう前の衝

3. 測定結果

感温ゲージは, 頭部コーンの内面, 第4図にしめした位置に貼布した。ゲ ージ上面およびリード線(テフロンチ ューブ内を通した)には,富士精密で 使用している耐熱塗料を塗布し, 保護 している.


テレメータの記録は第5図で、雑音 の混入もなく,動作は満足すべきもの であった. 第6図は温度の時間的変化 に書き直した測定結果である. 初め2 秒程度の time lag をおいて booster stage で第1次温度上昇があり、つい で main stage で第2次の温度上昇が みられる. 約 25 秒で最高温度 167°C に達し,以後落下点まで,温度は緩漫 に, 多少の曲折を経ながら降下してい る. reentrant における温度の再上昇 は見られないが, この結果は, 128 J-TR7号機における変化と、 ほぼ同じ 傾向となっている (第6図参照).


4. 結 言

以上,カッパⅢ型3号機における頭 部温度上昇の測定結果について報告し た. 結果の吟味については, 筆者等の 専門外であるが,別に池田教授による 詳論があるので、併読していただきた い、電気的な関係に属する部分として は、ほぼ満足すべき結果がえられたも のと考えており、この結果がロケット 開発上に,多少とも稗益しうるところ があれば幸甚である.

終りに感温ゲージの手配を始め、何 かとご鞭達いただいた高木先生、計測 器製作に協力された第3部高橋助手, 吉野英輔, 茨木芳勝の諸氏に深く謝意 を表する次第であ

- (1) 池田: 本号
- (2) 野村・山本: 生產研究, 9, 4,

