1.482.24

自 勫 追 跡 装 置 ダ

野村民也•倉茂周芳

1. 緒 풀

自動追跡レーダ装置は、地上におかれたパルス送信機 から送信されたパルスを、ロケットに搭載したレーダ・ トランスポンダ(送受応答装置)により受信し,増幅, 整形して直ちに地上に向け返信するのを、ふたたび地上 受信機により受信し、その時間差から直距離を求めると ともに、地上受信機の空中線に十分尖鋭な指向性をもた せておき,これを利用して,地上受信空中線の軸が常に 電波の到来方向、すなわち、ロケットの方向に一致する ようサーボ機構によって自動追尾せ しめ,これから高 度, 方位両角を標定するものである. 電波を利用するト ラッキング装置としては,非常に高精度が期待できる DOVAP 方式も工夫されているが, 飛しょう径路を飛 しょう中あるいは飛しょう直後に、相当の精度をもって 算定できる点では、自動追跡レーダ装置は他に追随を許 さない利点を具えている。高木教授の視察報告によって も、米国における観測ロケットの飛しょうには、かなら ずこの種の装置が利用されているとのことであるが、こ れもこうした利点によることと思われる.

自動追跡レーダ装置は、海外にあっては第2次大戦中 頃から開発が進んだもので、主として兵器関係であるた め、おおよその原理的な事柄以外は、詳細な内容が明瞭 でないものが多い。わが国では従来製造経験が皆無たの で、その開発には多くの困難が予想されたが、幸いにし て気象庁に対して米軍から貸与になった GMD-1A とい う自動風向風速観測装置(レーウィン装置)が国産で実 用化される機運があり、これを母体として必要な改修を 施せば短い開発期間にもかかわらず、われわれの目的に 適うものが実現できるものと予想されたので、この線に そって開発,試作を行うことに基本方針をさだめた.レ ーダ用の周波数として 1,680 Mc/s を使っているのも, こうした事情による.

上述のように、自動追跡レーダ装置は、自動測距を行 う部分と,自動方向探知の部分から成っている.今回の 秋田実験においては,後者の部分のみについて実用試験 を行ったが,その理由は,第1に自動測距部は,地上に おいて相当程度まで、実際に近い調整、試験ができる が、自動方探部はこのような試験が困難であり、実際に ロケットに対して使用してみることが肝要であると認め られたこと, 第2にロケットの搭載能力に対する負担を 軽くするために、レーダ・トランスポンダを搭載せず に, 簡単な発振器のみとする必要があったことなどの理 由による.

本稿では、今回の秋田実験に使用された自動方探装置 部分について,その内容特性を述べたいと思う.

2. 自動方向探知機構

自動方向探知機構の系統は第1図に示すとおりであ る.受信空中線は、パラボラ反射板をもつヘリカル空中 線で、後述のように、偏心半球の回転に伴って、ビーム が円錐状に目標を探査する、空中線でとらえた信号は受

信機部に導か れ,ここで,空 中線軸と電波到 来方向の差に応 じた角度誤差信 号がつくられ る.角度誤差信 号は、高度、水

平両角成分に分解され、それぞれ、高度角駆動装置およ び水平角駆動装置に加えられ、空中線軸をうごかして角 度誤差を訂正するようになっている.基準位置からの空 中線回転角はセルシン装置によって記録装置に導かれ, その刻々の変化が文字盤の指針の回転として示されると 同時に、記録紙上に時刻信号と同時に記録される仕組み となっている.以上が装置の概要であるが,以下,構成 各部についてその内容を説明することとする.

2.1 空中線円錐状走査部

空中線はパラボラ反射板の中心軸上にヘリカル空中線 がおかれ、これに対して、半球状の反射器が偏心位置に おかれている (第2図). 反射器が偏心位置にあるため,

度の方向がパラ ボラ反射板の中 心軸方向から若 干(本装置では 約2°) ずれた ものがえられ る (第3図). この状態で偏心 半球を回転させ れば, 指向特性 は最大感度方向 が中心からずれ たまま、中心軸

第3図 パラボラ空中線指向特性 の周囲を 円錐状に回転 することになる. したがって, たとえば電波の到来方向が空中線軸を含む垂直面内で上 方にずれていたとすると,指向特性の最大感度の方向 が,もっとも上方に偏ったとき受信信号強度が最大とな り,逆に指向特性の最大感度の方向がもっとも下方に移 ったとき,受信信号強度は最小となる.すなわち,受信 信号強度は偏心半球の回転にともなって周期的に変化す るわけで,これを受信機によって検波すれば,この変化 に応じて周期的に変化する受信機出力がえられる.偏心 半球の回転の位相と,受信機出力信号変化の位相との差 によって,電波の到来方向が空中線の軸とどの方向にず れているかが分ることとなる.

第4図は電波到来方向が基準方向から, 偏心半球の回 転角で φ だけずれ, かつ空中線の軸から θ だけずれた 状態をしめしている. 受信信号強度の変化の基本波成分 の振幅は, 角度誤差 θ の函数で, その位相は基準方向 に最大感度方向が一致した時を基準位相として φ だけ

遅れることになる. すなわち、偏心半球 の回転角速度を ω_c とすれば、位相基準 の正弦波を $\cos \omega_c t$ として、受信信号強 度の基本波成分は、 $f(\theta) \cos(\omega_c t - \phi)$ で 表わされる. なお、

第4図 角度誤差の検出 表わされる本装置の偏心半球回転速度は約 25 rps である.

 $f(\theta)$ は θ の変化に対する指向特性の変化によって決 まる、第5 図は空中線の軸を含む平面内で、もっとも指 向特性が偏よりをしめす2 状態(すなわち、最大感度方 向がその平面内にくる二つの状態)の指向特性をしめし (受信機の AGC 特性を含む)、これからビームの最大 感度方向のズレは約 ±2° になっていることが分る、 $f(\theta)$ はほぼ A_1 , A_2 の差に比例すると考えられ、した

第5図 水平面アンテナ 指向特性 第6図 角度誤差による f(θ) の変化

がって $f(\theta)$ の相対値を 第5 図から求めると,第6 図 のようになる. $f(\theta)$ の正負は空中線の軸がどちら側に ずれているかを示すもので,後述のようにサーボ機構の 動作は,この正負に応じて電動機の回転方向を切換えて 角度誤差を訂正するようになっている. 第6 図で θ の絶 対値が大きくなると,ふたたび $f(\theta)$ の正負が反転す るようになるが,これは指向特性の側ローブ(side lobe) の存在によるもので,この限界角度誤差より大きい角度 誤差に対しては,サーボ機構は逆に角度誤差を助長する ように動作してしまい,不安定におちいる.すなわちこ の限界角度以内が,理論的に追跡可能な視野となる訳 で,今回実験に使用した装置では,約±8°の範囲がこ れに当っている.

2・2 角度誤差の分解

上述のように,空中線の指向特性は偏心半球の回転に より,目標を円錐状に走査し,これにともなって,電波 の到来方向と空中線の軸が不一致の場合には,受信信号 強度が角度誤差に応じて変化する.サーボ機構は,この 角度誤差を高度角(垂直方向)と水平角(水平方向)に 分けて訂正するもので,そのためには,角度誤差をこの 両成分に分解する必要がある.

いま偏心半球を回転する電動機軸に直結して、2相交 流発電機をおく、その一方の発生電圧を $E_r \cos \omega_c t$, 他方の発生電圧を $E_r \sin \omega_c t$ とする、これらの電圧を 基準の電圧として、前述の受信信号強度の変化によって えられる受信機出力電圧をそれぞれ平衡位相検波したと すると、その出力の直流分はそれぞれ、

$$e_{E} = \overline{f(\theta)} \cos (\omega_{c}t - \phi) \cdot E_{r} \sin \omega_{c}t$$
$$= \frac{1}{2} E_{r} \cdot f(\theta) \cdot \sin \phi \cdots (1)$$

となり、すなわち、角度誤差 θ によって生ずる誤差信号 $f(\theta)$ が、垂直方向成分 e_{ϵ} および水平方向成分 e_{A} に 分解されることとなる.

実際の装置では、受信機の AGC 特性、平衡位相検波 器の特性、受信機の低周波増幅特性などによって、平衡 位相検波後の角度誤差信号(直流分)は、(1),(2) 式にしめすとおりとはならず(すなわち第6図のƒ(0) に比例はせず)、角度誤差が大きくなるにつれて飽和す る傾向をもつ.第7図は総合特性の一例で、角度誤差に 対し平衡位相検波器の出力電圧の関係をしめすものであ

ある.すなわち円錐状走査はいわば到来電波に対して,振 幅変調をかけることに相当しているが,その際えられる 変調度は指向特性で決まる.したがって到来電波が強い 場合には、同じ角度誤差でも受信機検波出力としてえら れる誤差信号の振幅が増大し、それにともなって平衡位 相検波出力も増すことになる.自動追跡レーダの自動方 探部は一種の角度追尾のサーボ機構であるが、単なる計 器サーボなどの場合と若干異なる点がここにある.すな わち、その設計に当っては、使用するトランスポンダの 出力、受信機の特性などに応じて、直距離に対して、第 7 図のような特性がどのように変化するかを知らねばな らないのである.

サーボ機構として考えた場合,利得定数が上記のよう な理由で大幅に変るとすれば,その設計には多くの困難 を生ずることになる.そのため受信機としては,十分良 好な AGC 特性を備えていることが本質的に必要であ

る. 第8図 は 本受信機の AGC 特性で, 受信機入力 端信号強度対検波電流(中 間周波出力信号電圧にほぼ 比例する)の関係をしめし たもので, ほぼ満足すべき 特性となっている. 第9図 は総合特性の一例で, 角度 誤差が 0.5°の場合に, 受

信機入力端における平均信号強度の変化に対する平衡位 相検波器出力の関係を求めたものである,利得定数の変

db 以上にわたる大幅な変化も,利得定数に対しては, 数 db の変化を与えるのみである. しかも,入力信号レ ベルが 100 μV 以上では,ほとんど利得定数としての変 化はない特性となっており,この程度であれば,後述の ように若干の工夫を施すことで,妥当なサーボ系の設計 ができることとなる.

観測ロケットとして、100km 程度の追跡には別掲の ような回線設計が基準となっており、この場合には、受 信機入力端で 20 μV 程度(尖頭値)の信号レベルが予 期できる.したがって距離が大幅に変ったとしても、第9 図の特性から利得定数の変化は 6db 程度にすぎない.

2.3 空中線駆動部

空中線駆動部は,高度角用と水平角用とがあるが,内 容的にはいずれもほとんど同じである.

第10図はその原理的な回路図である、平衡位相検波

器の出力は直列補償回路網を通して、制御管 12A X 7 のグリッドに加えられる. 12A X7 の各三極管部はそれ ぞれ半波整流管の役目をしており、グリッドに加えられ た信号電圧によって、その等価内部抵抗が変化する. し たがって、負荷 R_1, C_1 の両端に生ずる整流電圧の波高値 がこれに応じて変化し、一方、 R_1, C_1 の時定数はほぼ 電源の半周期にひとしく選んであるので、第 11 図にし めすように、鋸歯状波に近い形に変化する. この電圧

ドには負の偏荷電圧がかけてあるため、格子電圧変化の 裾をひく途中の点で、サイラトロンが通弧することにな り、流通角は R_1 , C_1 の両端の電圧の波高値により変化 する、すなわち、制御管 12A X7 の グリッドに加わる 信号電圧によって、サイラトロンの位相制御が行われる.

駆動電動機は分割界磁型の直巻電動機で,それぞれの サイラトロンに接続されている.いずれのサイラトロン が通弧するかによって,電動機の回転方向が反転するわ けである.電動機の定常定格は D. C. 60 V, 1.4A, 5,000 rpm, 1/20 HP で,高度角,水平角のいずれも, 電動機の回転を 4950:1 に gear down して駆動するよ うになっている.したがって機械部分の慣性モーメント はほとんどが電動機電機子 および ギャ系のそれで決ま り,負荷の空中線はあまり関係がなくなっている.

駆動電動機を含む回転部分の時定数を見掛け上小さく し,追随の応答度を改善する目的で,電動機の回転を 2:1 にgear down して速度発電機を駆動し,その出力 を制御管 12A X7 の陰極に接続して負帰還をかけてい る.速度発電機は永久磁石界磁の直流発電機で,空中線 部の回転速度に比例した出力を発生する.その比例係数 は,空中線回転速度から測って約 10 volt/°/sec である. 出力電圧は直列抵抗 *R*,を介して 12A X7 のカソード ←加えられており、これを調整することによって、負帰 還の度合を変えることができる.

12A X7 のグリッドに加わる 誤差信号が零の場合 で も、サイラトロンにはある程度電流を流すようにすると 感度 (12A X7 のグリッド電圧の変化に対する電動機端 子電圧,すなわち,近似的に電動機の定常回転速度の変 化の割合)を高くすることができる.調整抵抗 R_{e1} は その度合を決定するもので, R_{e1} が大きい程感度は増大 するが,ある程度以上になるとかえって感度は減少す る.またあまりサイラトロンに電流を流すと,両方のサ イラトロンに不平衡ができた場合,電動機が潜動を起す 恐れがあるので,適当な限度がある. R_{e2} は,無信号時 の両サイラトロンの平衡を調整する.

サイラトロンの陽極回路には過負荷防止のためのリレ ーが挿入してあって、過電流が継続して流れると陽極電 源が自動的に切断されるようになっている。また、サイ ラトロンに適当な偏倚電圧変化を与えて、空中線を任意 の方向に、手動調整で向けることができる。特に高度角 駆動部では、空中線軸が水平方向を基準として、-7°~ +92°の範囲の運動に限定されるようリミット・スイッ チがつけてあり、この限度に達すると、やはりサイラト ロンの陽極電源が切断される。水平角の運動は全方向に わたって自由に行える。

2・4 Far Auto および Near Auto

自動追跡状態として、どのような応答特性をもつべき かということは、若干論議の余地を残している問題であ るが、少くとも観測ロケットの場合には、次のような特 徴が考えられる・第1には、比較的近距離の場合には、 自標の移動を見込む角速度が大きく、一方、距離が遠く なるにつれて角速度が小さくなることである・第12 図 は カッパ 128 J 60° 発射の飛しょう軌跡を,発射点よ

う 45°後方 100 m の点から見たときの高度,水平両角 方向の角速度変化を計算したものである(飛しょう軌跡 計算は糸川研究室報告による).これで分るように,発 射直後の角速度は非常に大きいが,3秒程度たてば 5°/ sec 以下になり, 飛しょう中の大部分の角速度は 2°/sec 以下に収まっている.また, 第 13 図は 128 J+220 B (4月下旬に実験予定の2段式ロケット)について同様

第13図 128 J+220 B 角度変化

の条件による計算結果で(飛しょう軌跡の計算は糸川研 究室報告による) これでも5秒程度で 2°/sec 以下にな り, 飛しょうの主要部分では大部分 0.7°/sec 以下で, 落下点に近いときわずかに増大しているにすぎない. 発 射直後の著しく角速度の大きい部分は到底自動追尾が困 難であり、若干時間の経過したところから自動追尾の状 態にいれねばならないが,初めは多少の追尾誤差を許し てもできるだけ追尾の速度を高くして目標を見失うこと がないようにし、距離の増大によって角速度が小さくな った飛しょう径路の主要部分で、所要の追尾誤差以内で 追跡できることを考えねばならない.また,第2の点と して距離の変化に伴って、前述のように角度誤差に対す る誤差電圧の大きさが変り、サーボ系としての一巡利得 定数が変化する性質があるので、こうした点をも考え合 わせれば比較的近距離の場合と遠距離の場合とでは、当 然サーボ系の特性を若干違ったものとしなければならな いことが分る.現在の装置では、自動追跡の特性を2段 に切り替えうるようにしてあり、遠距離用の場合を Far Auto の状態, 近距離用の場合を Near Auto の状態と 称している.内容的には、この2状態に応じて、第10 図の直列補償回路の構成と,速度帰還量調整抵抗 R,の 大きさをスイッチで切り替えるようになっている.

2.5 角度記録装置

高度,水平両角は,セルシンによって記録装置に伝え

られ記録紙上に 時刻信号ととも に記録する.主 要部分は螺旋ける. 円面起をつけた 円がシンで回転 しカーボン紙を 挿んだ記録紙上

に角度の変化を曲線として描くようになっている(第

14 図). 読取り精度をあげるため, 高度角記録部はこの ような円筒が3本10:1および9:1の ギャで連結して あり、それぞれが 0~1°, 0~10°, 0~90° の範囲に分 割して記録するように仕組まれていて、±0.05°の読取 り精度となっている. 同様に水平角記録部は4本の円筒 によって、0~1°、0~10°、0~100°、0~400°の記録が えられる.

時刻信号は記録紙の両端に,標準の水晶発振器から周 波数を逓降して作った 10 c/s および 1 c/s のパルスが 打点される. その一方あるいは双方が継電器によって制 御できるようになっており、これを利用して、ロケット 発射のためのイグナイタ・スイッチ投入の時刻を識別す るようにしている. なお,記録紙の送りは同期電動機で あるから、たとえ時刻信号が故障するようなことがあっ ても、相当の精度で時間経過を算定しうる計画となって いる。

3. 各部の特性

3.1 空中線

パラボラ反射板は,直径 2,130 %,深さ 340 % で,

その焦点位置に1 巻のヘリカル空中 線がおかれてい る. ヘリカル空中 線および偏心半球 反射器は, ともに ポリエステルの国 防装置内に格納さ れており,外部か らは見えない(第 15 図).

空中線系の最大 感度方向における 利得は約 25 db, 受信機入力端から

見たインピーダン スは 50 Ω で、 電圧定圧波比は 1,680 Mc/s において約 1.2 である.

3·2 受信機

受信機は crystal mixer のスーパー・ヘテロダインで 中間周波段の帯域幅は約2.5 Mc/s(中心周波数30 Mc/s), 全利得 (AGC 無し) は 105 db である. 増幅段数は7 段で, そのうち3段目から7段目まで AGC にをかけ, 第8図のような特性としている.

受信機入力端より中間周波出力段に至る総合利得は約 92 db, 受信機の雑音指数は 13 db という性能になって いる.

また,中間周波出力の一部を分岐し,振幅制限ののち 周波数弁別回路によって周波数変動を検出し, AFC を 局部発振器にかけている. すなわち, 周波数弁別回路の 直流出力を平衡変調器に加えて 50 c/s の 搬送波を振幅 変調し、これを増幅して2相誘導電動機(ドラッグ・カ

ップ型)の1相に加え、局部発振器陽極回路の可変蓄電 器を制御するようになっている.

3・3 サーボ系

空中線操作部は前述のように、角度誤差信号によって サイラトロンを位相制御し,分割界磁直巻電動機の印加 電圧を変化するようになっている. したがってサーボ系 は I 型に属しており、定常特性として、目標が一定角速 度で位置変化を行う場合,定常位置誤差が生ずることに ts Z.

高度角,水平角両方向とも,サーボ系の構成はほとん ど同じで、そのブロック線図は、第16図でしめされ る. サーボ系の動特性(過渡特性)は、速度発電機の饋

回路の構成によ って変化し,ま た非線型の部分 があるので,角 度誤差の値によ

第16図 サーボ系の総合ブロック図

っても異った応答をしめす。その詳細は別に報告する予 定であるが、Far Auto の状態では、目標の移動角速度 2°/sec に対して, 定常角度誤差 0.1° 以下, Near Auto の状態では、目標の移動角速度 6°/sec に対して定常角 度誤差 1°以下に収まるようになっている. 過渡特性は いずれも2次振動系のそれに近似され、減衰率(5)は 0.5~0.7 程度である.

サーボ系は I 型であるから, 固定目標に対しては角度 誤差がないはずであるが,実際には固体摩擦およびギャ のガタなどにより若干の誤差がでる.本装置では現在両 者総合して 0.05° 程度に収まっている. なお, サイラ トロン回路の調整が悪いと、この回路の特性に著しい死 地帯ができ, 定常位置誤差が著しく増大することがある ので,注意が必要である.

4. レーダ用送信機

前述のように今回の実験では,自動追跡レーダ装置の うち,自動方向探知の部分のみが試験された,すなわち, ロケットに 1,680 Mc/s の送信機を搭載し、これからの 電波を自動追跡したのである.

使用送信機はペンシル管 5675 による 自励発振器で, 電源には乾電池を使用しており、スイッチ投入後 25 分 以上にわたり出力 0.25 W 以上を維持し,今回の目的に は十分使用できる性能である. ネオン管の弛張振動を利 用し、約 500 c/s の振幅変調をかけ、直接音によっても 受信状況がチェックできるようになっている.

5. 結 言

自動追跡レーダ装置のうち、自動方探部の構成と特性 について説明をした.本装置はロケットを対象に利用し たことは我国では初めての試みで、筆者等一同、その成 果については若干の危惧をもっていたが、幸いに別稿の ように,一応所期の目的を果しえたことは喜びにたえな い. 勿論将来に改良を要すべき多くの点も明らかになっ たが、こうした成果も、開発全期間を通じて変らぬ御鞭 **撻と御指導を頂いた星合前所長,高木先生のおかげであ** り,厚く謝意を表する次第である.