
naoaki okazaki

R E S E A R C H O N I N F O R M AT I O N A G G R E G AT I O N A N D
I N T E G R AT I O N F O R M U LT I - D O C U M E N T

S U M M A R I Z AT I O N

R E S E A R C H O N I N F O R M AT I O N
A G G R E G AT I O N A N D I N T E G R AT I O N F O R

M U LT I - D O C U M E N T S U M M A R I Z AT I O N

naoaki okazaki

複数文書自動要約における
情報の集約と統合に関する研究

岡崎 直観

Doctor of Philosophy (Information Science and Technology)

Graduate School of Information Science and Technology
Information and Communication Engineering

The University of Tokyo

Naoaki Okazaki: Research on Information Aggregation and Integration
for Multi-Document Summarization, Doctor of Philosophy (Information
Science and Technology).

supervisors:
Prof. Mitsuru Ishizuka

location:
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, JAPAN

A B S T R A C T

This thesis addresses methodologies for aggregating information and
knowledge across documents, particularly addressing three research
topics that are essential to an MDS system: sentence extraction, sentence
ordering, and abbreviation recognition. This thesis consists of seven
chapters. The first chapter presents the background, motivation, and
goal of this study. The subsequent chapter provides a review of auto-
matic text summarization. Chapter 3 presents the task definition and
evaluation methodology of the Third Text Summarization Challenge
(TSC-3). Chapter 4 describes a method for sentence extraction in an
MDS system. Chapter 5 addresses two approaches to text structuring
for extracts from multiple documents: a novel method to refine the
conventional method for arranging sentences; and a machine-learning
approach to aggregate the multiple criteria for further improvement.
Chapter 6 presents a methodology for building an abbreviation dictio-
nary from a large corpus. Chapter 7 includes remarks about the future
directions of this work and concludes the thesis.

Chapter 4 of this thesis presents a methodology for sentence extrac-
tion. This study is based on the assumptions that: a human reader
breaks a sentence into a set of information fragments to which the
sentence is referring; information fragments are mutually independent;
and an information fragment has an importance score. Among vari-
ous sentence representations such as bag-of-words, bi-gram, tri-gram,
n-gram, and FrameNet, this study proposes the use of the dependency
relations of terms in a sentence. Based on the sentence representation,
the problem of sentence extraction is formalized as a combinational
optimization problem that determines a set of sentences containing as
many important information fragments as possible. Source documents
often contain redundant information. Therefore, the algorithm reduces
the importance of information fragments that have been included in
the sentences chosen previously. The presented system achieved a good
result using the TSC-3 evaluation corpus. The comparison among sen-
tence representations demonstrated that the proposed representation
using pair-wise dependency relations performed better than either
bag-of-words or co-occurrence representations.

Chapter 5 examines a method to arrange sentences that are extracted
using important sentence extraction. The most common strategy for
sentence ordering is chronological ordering, which arranges sentences
in the order of their publication dates. However, some sentences might
lose presuppositions of their original documents. The proposed method
improves chronological ordering by resolving precedent information
of arranging sentences to deal with problem cases that arise in chrono-
logical ordering. This study also proposes an evaluation metric that
measures sentence continuity and an amendment-based evaluation
task. The proposed method achieved good results in a rating task,
raising poor chronological orderings by 20% to an acceptable level.
Amendment-based evaluation outperformed an evaluation that com-
pares an ordering with an answer produced by a human. The sentence

v

continuity metric, when applied to the amendment-based task, showed
good agreement with the rating result. Although several strategies to
decide sentence ordering have been proposed in previous studies, the
appropriate manner in which to combine these strategies to achieve
more coherent summaries remains unsolved. This chapter also formal-
izes four criteria to capture the association of sentences. These criteria
are integrated into a single criterion using a supervised learning ap-
proach. The experimental results showed a significant improvement
over existing sentence ordering strategies.

Chapter 6 addresses abbreviation recognition for MDS. In practice,
no generic rules or exact patterns have been established for dealing
with abbreviation creation. Consequently, abbreviation recognition is
intended to extract pairs of short forms (acronyms or abbreviations)
and long forms (their expanded forms or definitions) that occur in text.
Except for a few studies, the literature emphasizes the examination of
parenthetical expressions and location of a textual fragment with an
abbreviation definition using a letter-matching algorithm. However, the
letter matching approach cannot deal with a long form whose short
form is arranged in a different word order, e.g., water activity (AW). For
this study, we assume that a word sequence is a possible long-form if
the word sequence co-occurs frequently with a specific abbreviation and
not with other surrounding words. Satisfying a validation rule for being
a long form, the word sequence is stored in the abbreviation dictionary.
This approach detects the starting point of the long form without using
letter matching. This study uses a refined letter-matching algorithm that
can recognize shuffled abbreviations to validate a short/long-form pair
in English. The proposed method outperformed the base-line systems,
achieving 99% precision and 82–95% recall on a MEDLINE evaluation
corpus (biomedical English text). Even though the statistical approach is
independent from the target language, the creation process of Japanese
abbreviations is much more complicated than that of English ones. The
strong co-occurrence does not imply that the long form is paraphrasable
to its short form and vice versa. Consequently, this study also proposes
a method to classify parenthetical expressions into paraphrasable and
non-paraphrasable groups. The proposed method achieved a 60.6%
f-measure on an evaluation corpus constructed from Japanese articles
published by the Mainichi Newspapers and the Yomiuri Shimbun in
1998 and 1999.

vi

P U B L I C AT I O N S

journal papers

1. Naoaki Okazaki and Sophia Ananiadou. Building an abbrevia-
tion dictionary using a term recognition approach. Bioinformatics,
22(24):3089–3095, December 2006.

2. Naoaki Okazaki, Santi Saeyor, Hiroshi Dohi, and Mitsuru Ishizuka.
An extension of the multimodal presentation markup language
(MPML) to a three-dimensinal VRML space. Systems and Comput-
ers in Japan, 36(14):69-80, October 2005.

3. Naoaki Okazaki, Yutaka Matsuo, and Mitsuru Ishizuka. Improv-
ing chronological ordering of sentences extracted from multiple
newspaper articles. ACM Transactions on Asian Language Informa-
tion Processing (TALIP) (Special Issue on NTCIR-4: Inforamtion Access
towards Asian Languages), 4(3):321-339, September 2005.

4. Sohei Aya, Yutaka Matsuo, Naoaki Okazaki, Koiti Hashida, and
Mitsuru Ishizuka. Summarization of multiple documents with
rhetorical annotation. Transactions of the Japanese Sciety for Artificial
Intelligence (in Japanese), 20(3):149-158, May 2005.

5. Helmut Prendinger, Junichiro Mori, Santi Saeyor, Kyoshi Mori,
Naoaki Okazaki, Yustinus Juli, Sonja Mayer, Hiroshi Dohi, and
Mitsuru Ishizuka. Scripting and evaluating affective interactions
with embodied conversational agents. KI Zeitschrift (German Jour-
nal of Artificial Intelligence), 1:4-10, February 2004.

6. Naoaki Okazaki, Yutaka Matsuo, Naohiro Matsumura, and Mit-
suru Ishizuka. Sentence extraction by spreading activation with
similarity measure. IEICE Transactions on Information and Systems
(Special Issue on Text Processing for Information Access), E86-D(9):915-
926, September 2003.

7. Naoaki Okazaki, Santi Saeyor, Hiroshi Dohi, and Mitsuru Ishizuka.
An extension of multimodal presentation markup language MPML
to a 3D VRML space. Transactions of Institute of Electronics, In-
formation and Communication Engineers (IEICE) (in Japanese), J85-
D(9):1687-1694, September 2002.

international conferences

1. Yutaka Matsuo, Naoaki Okazaki, Kiyoshi Izumi, Yoshiyuki Naka-
mura, Takuichi Nishimura, Koiti Hasida, and Hideyuki Nakashima.
Inferring long-term user property based on users’ location his-
tory. In Proceeding 20th International Joint Conference on Artificial
Intelligence (IJCAI 2007), to appear in January 2007.

vii

2. Naoaki Okazaki and Sophia Ananiadou. A term recognition ap-
proach to acronym recognition. In Proceedings of the COLING/ACL
2006 Main Conference Poster Sessions, pages 643-650, Sydney, Aus-
tralia, July 2006. Association for Computational Linguistics.

3. Danushka Bollegala, Naoaki Okazaki, and Mitsuru Ishizuka. A
bottom-up approach to sentence ordering for multi-document
summarization. In Proceedings of the 21st International Conference
on Computational Linguistics and 44th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 385-392, Sydney, Australia,
July 2006. Association for Computational Linguistics.

4. Naoaki Okazaki and Sophia Ananiadou. Clustering acronyms in
biomedical text for disambiguation. In Proceedings of fifth interna-
tional conference on Language Resources and Evaluation (LREC 2006),
Genoa, Italy, May 2006.

5. Goran Nenadic, Naoki Okazaki, and Sophia Ananiadou. Towards
a terminological resource for biomedical text mining. In Proceed-
ings of fifth international conference on Language Resources and Evalu-
ation (LREC 2006), Genoa, Italy, May 2006.

6. Yukio Ohsawa, Naohiro Matsumura, and Naoaki Okazaki. Under-
standing scenarios of individual patients of hepatitis in double
helical process involving KeyGraph and DSV. In Proceedings of the
Fourth IEEE International Workshop on Soft Computing as Transdisci-
plinary Science and Technology (WSTST05), pages 456-469, Muroran,
Japan, May 2005, Springer.

7. Danushka Bollegala, Naoaki Okazaki, and Mitsuru Ishizuka. A
machine learning approach to sentence ordering for multidoc-
ument summarization and its evaluation. In Proceedings of 2nd
Internaional Joint Conference on Natural Language Processing (IJC-
NLP), Lecture Notes in Artificial Intelligence, LNAI 3651, pages
624-635, Jeju Island, Korea, October 2005. Springer.

8. Naoaki Okazaki, Yutaka Matsuo, and Mitsuru Ishizuka. Improv-
ing chronological sentence ordering by precedence relation. In
Proceedings 20th Internaional Conference on Computational Linguistics
(COLING 04), pages 750-756, Geneva, Swiss, August 2004.

9. Naoaki Okazaki, Yutaka Matsuo, and Mitsuru Ishizuka. Coherent
arrangement of sentences extracted from multiple newspaper
articles. In PRICAI 2004: Trends in Artificial Intelligence: 8th Pacific
Rim International Conference on Artificial Intelligence, Lecture Notes
in Computer Science, LNCS 3157 / 2004, pages 882-891, Auckland,
New Zealand, August 2004. Springer.

10. Naoaki Okazaki, Yutaka Matsuo, and Mitsuru Ishizuka. Coherent
arrangement of sentences extracted from multiple newspaper
articles. In PRICAI 2004 Pre-Conference Workshop Notes (Workshop
of Language Sense on Computer), Auckland, New Zealand, August
2004.

viii

11. Naoaki Okazaki, Yutaka Matsuo, and Mitsuru Ishizuka. TISS: An
integrated summarization system for TSC-3. In Working Notes of
the Fourth NTCIR Workshop Meeting (NTCIR-4), Tokyo, Japan, June
2004.

12. Gakuto Kurata, Naoaki Okazaki, and Mitsuru Ishizuka. GDQA:
Graph driven question answering system - NTCIR-4 QAC2 exper-
iments -. In Working Notes of the Fourth NTCIR Workshop Meeting
(NTCIR-4), Tokyo, Japan, June 2004.

13. Yukio Ohsawa, Naoaki Okazaki, Naohiro Matsumura, Aiko Saiura,
and Hajime Fujie. A scenario development on hepatitis b and c.
In Second International Workshop on Active Mining (AM-2003), Mae-
bashi, Japan, October 2003.

14. Naoaki Okazaki and Yukio Ohsawa. Polaris: An integrated data
miner for chance discovery. In Workshop of Chance Discovery and
Its Management (in conjunction with International Human Conputer
Interaction Conference (HCI2003)), pages 27-30, Crete, Greece, June
2003.

15. Naoaki Okazaki, Yutaka Matsuo, Naohiro Matsumura, and Mit-
suru Ishizuka. Sentence extraction by spreading activation with
refined similarity measure. In the 16th International FLAIRS Confer-
ence, St Augustine, USA, May 2003.

16. Naoaki Okazaki, Sohei Aya, Santi Saeyor, and Mitsuru Ishizuka.
A multimodal presentation markup language MPML-VR for a
3D virtual space. In Workshop Proc. (CD-ROM) on Virtual Conversa-
tional Characters: Applications, Methods, and Research Challenges (in
conjunction with HF2002 and OZCHI2002), Melbourne, Australia,
November 2002.

17. Naoaki Okazaki, Yutaka Matsuo, Naohiro Matsumura, Hironori
Tomobe, and Mitsuru Ishizuka. Two different methods at NTCIR3-
TSC2: Coverage oriented and focus oriented. In Keizo Oyama, Emi
Ishida, and Noriko Kando, editors, NTCIR Workshop 3: Proceedings
of the Third NTCIR Workshop on Research in Information Retrieval, Au-
tomatic Text Summarization and Question Answering, Tokyo, Japan,
October 2002. National Institute of Informatics (NII).

18. Naoaki Okazaki, Yutaka Matsuo, Naohiro Matsumura, Hironori
Tomobe, and Mitsuru Ishizuka. Extracting characteristic sentences
from related documents. In 6th International Conference on Knowledge-
based Intelligent Information Engineering Systems and Applied Tech-
nologies (KES2002), pages 1257-1261, Crema, Italy, September 2002.
IOS Press/Ohmsha.

book chapter

1. Naoaki Okazaki and Yukio Ohsawa. Polaris: an integrated data
miner for chance discovery. In Akinori Abe and Yukio Ohsawa
(eds), Readings in Chance Discovery, Advanced Knowledge Interna-
tional, 2005.

ix

2. Yukio Ohsawa, Naoaki Okazaki, Naohiro Matsumura, Akio Saiura,
and Hajime Fujie. Mining scenarios for hepatitis B and C. In Ray
Paton and Laura A. McNamara (eds), Multidisciplinary Approaches
to Theory in Medicine (Studies in Multidisciplinarity), pp. 209–231,
Elsevier Science, January 2006.

x

We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth [32]

A C K N O W L E D G M E N T S

This thesis would not have been possible without the support of many
people. I would like to thank them for your continued advice and
guidance.

First of all, I would like to express my sincere thanks and appreci-
ations to my adviser, Prof. Mitsuru Ishizuka, Department of Creative
Informatics, the University of Tokyo. He have been guiding my work,
providing the excellent facilities, and ensuring various support through-
out my studies since I was an undergraduate student.

I wish to express my warm thanks to Prof. Yukio Ohsawa, Depart-
ment of Quantum Engineering and Systems Science, School of Engi-
neering, the University of Tokyo. He introduced me to the field of
Chance Discovery, which has remarkable ideals and concepts for bridg-
ing activities in a real world and information mining. I would like
to acknowledge his colleagues, especially, Prof. Hiroko Shoji, Dr. Eiji
Murakami, Mr. Yuki Usui, and Ms. Miwa Takayama.

Many thanks go to Prof. Jun’ichi Tsujii and Dr. Sophia Ananiadou for
giving the great opportunity of my research activity at the University
of Manchester, UK. I spent a quality time discussing with researchers
in the National Centre for Text Mining, developing text-mining applica-
tions, extending my research topics to terminological management. I
also acknowledge Prof. Hideki Mima of the University of Tokyo, Mr.
John McNaught, Dr. Yoshimasa Tsuruoka, and Phillip Cotter of the
National Centre for Text Mining.

I thank Dr. Yutaka Matsuo for accommodating the discussion group
Matsuo-gumi in our laboratory specialized in studies on World Wide
Web and Natural Language Processing. The discussion group has sup-
ported me with technical discussion, counseling, recreational activities,
etc. I wish to acknowledge the following researchers and colleagues
who have provided useful comments and suggestions on this work: Dr.
Naohiro Matsumura, Jun’ichiro Mori, Gakuto Kurata, Sohei Aya, Yohei
Asada, Shigeru Fujimura, YingZi Jin, Danushka Bollegala, and Kenji
Hirohata of the Matsuo-gumi.

This study uses electronic articles published by the Mainichi News-
papers and the Yomiuri Shimbun. I wish to thank the organizers of Text
Summarization Challenge (TSC) for providing good evaluation corpora
for text summarization.

And finally, special thanks to my wife Satomi, parents, brothers, and
friends who endured this long process with me, always offering support
and love.

xi

C O N T E N T S

part i preliminaries 1

1 introduction 3

1.1 Background 3

1.2 Outline of this thesis 7

2 automatic text summarization 9

2.1 Introduction 9

2.2 Basic notions 9

2.3 Professional summarizing 11

2.4 Multi-document summarization 13

2.5 Application examples 14

3 text summarization challenge (tsc) 17

3.1 Text Summarization Challenge (TSC) 17

3.1.1 Evaluation metrics for extracts 17

3.1.2 Evaluation metrics for abstracts 19

3.2 Our summarization system 20

part ii extraction 23

4 sentence extraction 25

4.1 Introduction 25

4.2 Related work 26

4.3 Sentence representation 29

4.4 Sentence extraction for MDS 31

4.5 Evaluation 34

4.6 Summary 37

5 structuring extracts 39

5.1 Introduction 39

5.2 Sentence ordering problem 40

5.3 Evaluation methodology 42

5.3.1 Subjective grading 42

5.3.2 Semi-automatic evaluation 43

5.4 Chronological ordering 46

5.5 Leveraging precedence relations 47

5.5.1 Precedence relation 47

5.5.2 Implementation 49

5.5.3 Experiment 50

5.5.4 Results 50

5.6 Machine-learning approach 55

5.6.1 Bottom-up approach for text structuring 55

5.6.2 Criteria for arranging sentences 57

5.6.3 SVM classifier to assess the integrated criterion 59

5.6.4 Evaluation 61

5.6.5 Results 62

5.7 Summary 63

part iii compaction 65

6 abbreviation 67

6.1 Introduction 67

xiii

xiv contents

6.2 Related work 68

6.3 Extracting English abbreviations 70

6.3.1 Recognizing abbreviations based on co-occurrence 70

6.3.2 Term recognition approach to long-form recogni-
tion 72

6.3.3 Extracting authentic long-forms for abbreviations 74

6.3.4 Implementation 77

6.4 Experiments with English abbreviations 79

6.5 Japanese parenthetical expressions 84

6.6 Validating Japanese long forms 87

6.7 Experiments with Japanese abbreviations 91

6.8 Summary 93

part iv conclusion 95

7 conclusion 97

part v appendix 99

bibliography 101

L I S T O F F I G U R E S

Figure 1 Total sites across all domains 4

Figure 2 Multi-Document Summarization (MDS) 5

Figure 3 NewsInEssence 15

Figure 4 Architecture of the summarization system 21

Figure 5 Anaphoric reference using Japanese term ‘dou’ 21

Figure 6 Redundant clauses 22

Figure 7 Typical sentence-extraction architecture 26

Figure 8 Generation of information fragments 30

Figure 9 An example of sentence-fragment matrix 32

Figure 10 Results for content evaluation 35

Figure 11 Number of redundant or unnecessary sentences 35

Figure 12 Effect of information-fragments for shorter sum-
maries 36

Figure 13 Effect of information-fragments for longer sum-
maries 37

Figure 14 An extraction-based MDS system 40

Figure 15 Arrange these sentences in the optimal order 41

Figure 16 Subjective grading for sentence orderings 43

Figure 17 Automatic evaluation of sentence ordering 43

Figure 18 An ordering and its reference ordering 44

Figure 19 Chronological ordering 47

Figure 20 A problem case of chronological ordering 47

Figure 21 Ordering refinement by precedence relation 48

Figure 22 Improving chronological ordering using antecedent
sentences 53

Figure 23 Outline of the ordering algorithm 54

Figure 24 Distribution of the rating score of orderings 54

Figure 25 Arranging four sentences A, B, C, and D 56

Figure 26 Precedence criterion 58

Figure 27 Succession criterion 59

Figure 28 Partitioning a human-ordered extract into pairs
of segments 60

Figure 29 Two vectors in a training data generated from two
ordered segments A � B 60

Figure 30 Subjective grading 62

Figure 31 Expressions appearing before the abbreviation
TTF-1 in parentheses. 71

Figure 32 The long-form validation algorithm applied to
abbreviation ADRB2. 76

Figure 33 Pseudo-code for extracting authentic long-forms. 77

Figure 34 Number of unique short-forms over their fre-
quency of occurrence. 78

Figure 35 Processing time for different numbers of contex-
tual sentences. 79

Figure 36 Precision-recall calculated by the distinct numbers
of long forms. 82

xv

Figure 37 Precision-recall calculated by the numbers of long-
form occurrences. 83

Figure 38 Japanese acronyms. 86

Figure 39 Japanese acronyms with translation. 87

Figure 40 Occurrences of paraphrasing. 89

Figure 41 Stoplist for Japanese abbreviation recognition. 92

L I S T O F TA B L E S

Table 1 An example of correct data of an extract 18

Table 2 An example of correct data divided into mini-
mum sets 19

Table 3 Quality questions for readability evaluation 20

Table 4 Comparison with human-made orderings 51

Table 5 Comparison with corrected orderings 52

Table 6 Correlation between two sets of human-ordered
extracts 61

Table 7 Comparison to human-made ordering 63

Table 8 Long-form candidates for ADM. 75

Table 9 Statistics on the evaluation corpus. 81

Table 10 Japanese parenthetical expressions. 85

Table 11 Top 10 short/long-form pairs in Japanese news-
papers. 88

Table 12 Comparison of different validation approaches 92

xvi

Part I

P R E L I M I N A R I E S

1I N T R O D U C T I O N

1.1 background

Numerous computerized documents are accessible on-line. In Novem-
ber 2006, the Netcraft Web Server Survey1 reported that more than 100

million web sites with distinct domain names were accessible using the
Internet. The Internet has doubled in size since May 2004, when the
survey hit 50 million (Fig. 1). The total number of pages on the Web is
estimated to be much greater than this figure because the number of
pages of a web site depends on the service it provides (e.g., information
portal, weblog hosting). These facts suggest an information explosion, a information

explosiontremendous increase in the number of published documents.
Meanwhile, search engines on the Web achieve moderate success

in keeping up with the growth of computerized documents. Major
search engines (e.g., Google and Yahoo!) claim to have indexed more
than several billion pages on the Web. The verb ‘google’ has been
added to the Merriam Webster Collegiate Dictionary, meaning “to use
the Google search engine to obtain information about (as a person) on
the World Wide Web”. Using a search engine on the Web has become a
pervasive means to obtain information at a reasonable cost and time.

Notwithstanding, users are often disappointed with the quantity of
retrieved documents despite having narrowed the range of documents
of interest. For instance, as many as 5,860,000 documents were retrieved
by Google with a query “hijacking” (as of November 2006). That figure
is understandable because numerous events related to hijacking have
occurred throughout the world. We can improve the query to “hijacking
All Nippon Airways 61” to narrow the search to a specific event of hi-
jacking. Nevertheless, 10,300 documents were retrieved by Google; with
144 documents found, with the same query, in the Mainichi Newspaper
articles published in 1999. A situation in which a person has too much
information to use is called information overload, and has been regarded information

overloadas a major problem of information access.
The information explosion has also engendered a big shift in struc-

turing information. The more information retrieval systems play an
important role in information society, the more often we must deal with
documents gathered dynamically without inter-document structures,
i.e. search results. Different from human-made document collections
such as books and journals, we must sort out the structure of retrieved
documents, e.g., what is common in the document set, what distin-
guishes one part of a document from another, what is the optimal order
to read the documents, etc. In addition, information is increasingly
being published in unstructured styles. We cannot expect a coherent
story in a series of blog entries because a blogger might ramble about
extraneous subjects such as products, news events, or local events. For
those reasons, a mechanism to aggregate information published by

1 Netcraft Website: http://news.netcraft.com/

3

http://news.netcraft.com/

4 introduction

Figure 1. Total sites across all domains August 1995 – November 2006 (Netcraft
Web Server Survey)

different sources is the key to a solution for the information overload
problem.

To date, various research topics in text mining have made contribu-Other research
topics in text
mining

tions to resolving the information overload problem.

text clustering constructs document groups, each of which con-
sists of documents with many words in common. The application
can show pertinent topics in a document collection.

text classification is the task of assigning a predefined label to a
given text. It is well known for its use in spam filter applications,
which detect unnecessary messages in e-mail traffic.

sentiment analysis detects and collects favorable/unfavorable opin-
ions for specific subjects (e.g., organizations, products, individ-
uals) in a text collection. Analysis results provide useful infor-
mation for marketing analysis, competitive analysis, and risk
management (i.e. detecting unfavorable rumors).

information extraction is the task of filling templates (or tables)
on specific items or events (e.g. terrorist events) from unstructured
texts.

question answering generates, from a text collection, a direct an-
swer to the question given in natural language.

Automatic text summarization [41] is another challenge to the informa-Automatic text
summarization tion overload problem, allowing users to control the amount of text to

be read. The goal of automatic summarization is, given an information
source, to present the most important content to the user in a condensed
form and in a manner that is sensitive to the user’s needs. We receive
benefits from forms of summarization in our daily life.

abstracts of scientific articles, which are usually written by authors
and are situated at the beginning of articles, are the most familiar

1.1 background 5

Figure 2. Multi-Document Summarization (MDS)

type of summary to researchers. Abstracts help us grasp the
contents of an article in rough terms and make a decision whether
further reading of the article would be fruitful.

titles or headlines of newspaper articles attract readers with
terse expressions that suggest the body of the article. We usually
choose articles in a newspaper by glancing at titles or headlines.

minutes of discussions or lectures are summaries to record the points
of a discussion for future use.

an rdf site summary (RSS) 2 is a format for exchange summaries
of web contents in a standardized XML specification. The ap-
plication (e.g., Mozilla FireFox, Microsoft Internet Explorer, etc.)
aggregates RSS feeds from web sites and displays any updated
articles.

Multi-Document Summarization (MDS) [66], which is a summariza- Multi-Document
Summarization
(MDS)

tion task that is specialized for dealing with related documents (e.g. a
collection of news stories on the same topic), has attracted much atten-
tion in recent years. The MDS research spread during the late 1990s,
when information overload first came to be recognized as a serious
problem that was exacerbated by the rapidly growing use of the Web.
Figure 2 illustrates an approach to the information overload problem
with an MDS system. In this use case, a user retrieves a set of docu-
ments that are relevant to a query expressing their information demand.
In addition to the conventional process of information retrieval, the
user forwards the document set to the MDS system instead of reading
all of the retrieved documents. The MDS system receives all documents
and presents the important contents, as a summary, to the user. The

2 RSS has different full-forms depending on its versions, RDF Site Summary (RSS 0.9 and
1.0), Rich Site Summary (RSS 0.91, RSS 1.0), or Really Simple Syndication (RSS 2.0).

6 introduction

user would save time and effort in reading the retrieved documents if
the summary were able to satisfy user’s information demand directly.
The summary might also help the user determine whether they should
undertake intensive reading of some of the documents.

Although the figure depicts the MDS system as one component, a
practical MDS system consists of several text-processing components,
e.g., document clustering, extraction, paraphrasing. Each component
in an MDS system also presents research challenges in text mining.
In this thesis, I specifically examine methodologies for aggregating
information and knowledge across documents. More specifically, this
study covers three research topics that are relevant to MDS systems.

sentence extraction Sentence extraction identifies important
sentences in source documents to prepare a ‘material’ of a summary.
Aside from a few cases, sentence extraction plays a central role in MDS
systems because it is impractical to produce a summary without some
kind of extraction technique. Therefore, the quality of this component
has a great impact on the overall MDS system performance. This study
formalizes the extraction process for MDS systems as an optimization
problem and shows the effectiveness of formalization.

sentence ordering Even though sentence extraction is essential
to MDS systems, it is also important to determine a coherent arrange-
ment of sentences that have been extracted from multiple documents.
A summary with improperly ordered sentences confuses a reader and
degrades the quality and reliability of the summary itself. Source doc-
uments for a summary might have been written by different authors,
with different writing styles, on different dates, and might also be
based on different background knowledge. We cannot expect that a set
of extracted sentences from such diverse documents is independently
coherent. This study proposes a methodology to reconstruct the text
structure for an MDS system.

abbreviation recognition Abbreviations result from a highly
productive type of term variation that substitutes fully expanded terms
(e.g. European Union) with shortened term-forms (e.g. EU). Abbrevi-
ations hinder automatic text summarization because an abbreviation
might be expressed in different forms across documents, e.g., European
Union (EU), European Union or EU. A good MDS system must be capa-
ble of addressing associations between shortened term forms and fully
expanded terms so that a summary chooses a consistent term-form to
describe the same concept or entity. In practice, no generic rules or exact
patterns have been established for dealing with abbreviation creation.
Consequently, an abbreviation dictionary must be used to normalize
term-forms of abbreviations. This study presents a methodology for
building a good quality abbreviation dictionary of abbreviations and
their expanded forms by collecting definitions from numerous texts.

1.2 outline of this thesis 7

1.2 outline of this thesis

This thesis comprises six chapters (including this section). The subse-
quent chapter (Chapter 2) provides a review for automatic text summa-
rization: basic notions of summarization; observation from professional
summarizing; task specialization for multiple document sources; and
some applications of summarization. Chapter 3 presents the task defi-
nition and evaluation methodology of the Third Text Summarization
Challenge (TSC). Chapter 4 describes a methodology to sentence ex-
traction in an MDS system. This chapter discusses a formalization of
sentence extraction as an optimization problem on representations of
source documents, followed by evaluation results on a test corpus.
Chapter 5 addresses an approach to text structuring for extracts from
multiple documents. The chapter proposes a novel method to refine the
conventional method for arranging sentences and a machine-learning
approach to aggregate such multiple criteria for further improvement.
Chapter 6 presents a methodology for building an abbreviation dic-
tionary from a large corpus. Chapter 7 includes remarks about future
directions of this work and concludes the thesis.

2A U T O M AT I C T E X T S U M M A R I Z AT I O N

2.1 introduction

This chapter reviews automatic text summarization as a whole. Even
though a typical summarization system consists of several text-processing
components, this chapter does not elaborate on a specific sub-component
but instead provides a comprehensive overview of text summarization.
Refer to each chapter for more detailed reviews of sub-components.

This chapter is organized as follows. Section 2.2 introduces the fun-
damental notions that are indispensable in discussing summarization.
Because human experts carry out text summarization as a professional
activity, Section 2.3 explores the essence of professional summarizing to
acquire useful ideas for automatic summarization. Section 2.4 dwells on
Multi-Document Summarization (MDS), emphasizing the examination
of additional aspects to MDS. Section 2.5 surveys existing systems that
use automatic text summarization technology.

2.2 basic notions

The goal of
automatic
summarization

Mani [41] gives an excellent review of automatic text summarization.
As defined in his book, the goal of automatic summarization is to take
an information source, extract content from it, and present the most important
content to the user in a condensed form and in a manner sensitive to the user’s
or application’s needs. Summarization is an intellectual activity of human
natural language processing. In fact, a number of expressions imply
the activity of summarization: extract, abstract, review, synopsis, outline,
headline, digest, preview, minute, abridgment, compaction, history, etc.

We must consider factors that specify an automatic summarization
system to produce a concrete problem establishment and application.
For example, Sparck-Jones [74] argues that context factors must be con-
sidered for development of a summarization system : Context factors

input What information is available as input?

output What are the requirements for the output?

purpose What is the purpose of the summaries?

In addition to these factors, various authors, e.g., Mani [41]; Hovy [29],
have investigated various parameters of summarization systems.

summarization rate In general, a summary is produced accord-
ing to a user’s length requirement. The desirable length of a summary
is specifiable in several measures: the number of letters, words, sen-
tences, or a summarization rate. For example, an academic conference
sometimes requires an abstract no longer than 200 words for submitting
a paper. A summarization rate (or compression rate) is defined as the ra- Summarization

ratetio of summary length to the source length. Summarization ratios range

9

10 automatic text summarization

from 0% (empty summary) to 100% (source duplication). Terms high
and low are ambiguous to specify a summarization rate because a “high
summarization rate” might suggest a highly condensed summary or a
greater figure of the ratio. In this thesis, I express a 1% summarization
rate as ‘higher’ than a lower rate (e.g. 99%).

function It is important to make a clear distinction between extracts
and abstracts in the context of summarization research. An extract isExtracts and

abstracts a summary consisting entirely of material copied from the source; an
abstract is a summary containing some material that is not present
in the source. In other words, when generating a summary, we allow
some paraphrasing or editing from the source for abstracts, but not for
extracts. A common model for an extraction process is to choose textual
fragments (e.g., paragraphs, sentences, clauses, and phrases) in the
source that should be included in a summary. Therefore, a computer
always returns a readable and grammatical summary as long as the
source text is grammatically correct. In contrast, more advanced text-
processing tasks (e.g., paraphrasing, compaction, fusion) are necessary
for generating high-quality abstracts.

relation to source Indicative and informative abstracts [11] present
another important distinction for summaries. An indicative abstractIndicative and

informative provides a reference function for making a decision for further reading
of the original document. For example, title and sender fields of an
e-mail perform a similar function to that of indicative abstracts: discard
an email with a title that is likely to be an advertisement; read an email
carefully if the sender is one’s own supervisor. Even though indica-
tive abstracts might present insufficient information for the original
document, a user can infer the importance of the original document.
In contrast, an informative abstract is expected to cover all salient
information that is presented in the source. A reader should receive
sufficient information of original documents from informative abstracts.
For instance, an academic article usually cites a previous study along
with an informative summary so that readers can continue reading a
study without reading the referred article for immediately. Subtitles of
TV programs and movies are also categorized as informative abstracts
because the viewer can enjoy the contents only with the subtitles.

coherence The term ‘incoherent’ might evoke unwelcome out-
comes from applications of natural language processing (NLP). An
incoherent text does not flow because of unresolved anaphoric ex-
pressions, logical gaps, repeated information, or poor organization
of the presentation. In some applications (e.g., informative abstracts,Structured text or

itemization reviews), a summarization system should establish a coherence for
‘polished’ summaries. However, some applications might accept ‘inco-
herent’ summaries, e.g., an itemized list of words, phrases, or sentences.
The coherence parameter in summarization rather refers to the method
or format with which a summary is structured.

audience Each user or application has an expectation when giving a
source text to a summarization system. Some users might obtain source
documents from an information retrieval system with a query, e.g., “fish

2.3 professional summarizing 11

chips”, or express their demand for a summary in natural language
text, “How can we cook fish and chips?” User-focused summaries are tai- User-focused

summarylored to the requirements of a particular user. Some applications might
receive a query used for retrieving the input text as a representation of
users’ information demand and produce a query-focused summary . On Query-focused

summarythe other hand, some summarization systems might not receive such
additional representation and instead produce generic summaries. Generic summary

media A summarizer can use, as a source material, different media
types such as text, audio, pictures, and movies as input, and produce a
summary in these different media. This study deals only with the text
medium.

Monolingual,
multilingual, and
cross-lingual

language A summarization system for text media can be monolin-
gual (receiving a text described in one specific language and producing
a summary in the same language), multilingual (receiving a text de-
scribed in one of several languages and producing a summary in that
same language), or cross-lingual (receiving a text described in several
languages and producing a summary in a different language using
information about the same event but described in different languages).
This study deals only with monolingual summarization.

genre It is difficult to construct a summarization system that is
applicable to any type of text. A summarization system should leverage
the type of target text to achieve good performance and quality. For
example, an extraction strategy for academic articles might differ from
those for email messages. We might want to train a POS tagger with
a corpus in the target domain to reduce its error. A summarization
system for web pages might use a hyperlink structure on the Web and
the structure of HTML elements in the target page.

Single document or
multiple documentspan A summarizer might take a single document (i.e., single-document

summarization) or multiple documents (i.e., multi-document summa-
rization) as input. Multi-document summarization is described in detail
later (Section 2.4).

2.3 professional summarizing

Summarization is an important achievement of human cognition for
natural language texts. Everyone performs summarization very often
in everyday communications, e.g., telling funny experiences that hap-
pened yesterday. However, professional abstractors , who carry out Professional

abstractorssummarization as their professional occupation have more developed
techniques to produce summaries. Studying professional abstracting
might provide a useful reference to automatic summarization.

Cremmins [16] determined four “approximately” defined stages for
the abstracting process. Cremmins’ four

stages for
abstractingemphasis on the document structure . This stage examines ba-

sic features of the target document, e.g., genre, headings, overall
structure. These features support subsequent stages to locate
relevant information in the document.

12 automatic text summarization

identifying relevant information. In this stage, the abstractor
identifies the relevant information in the source. Abstractors might
search for cue phrases, e.g., “In conclusion, ...”; “The results
suggest ...”. Sentence position also provides a good clue: the
first sentence is often a topic sentence; the last sentence often
summarizes a paragraph.

extracting, organizing, and reducing the information.
Once the relevant information is identified, the abstractor extracts
the important contents from the original document, reduces the
contents if necessary, and arranges them in a standard order, e.g.,
purpose, methods, results, and conclusion.

refining the information. The last stage edits and reviews the
rough abstract produced in the previous stage.

Endres-
Niggemeyer’s three
stages for
abstracting

Endres-Niggemeyer [19] reported an in-depth study of six expert
summarizers at work, comprising a general description of their tech-
niques and their process organization. Based on the study of empirical
evidence of real-world situations, she decomposed the abstracting pro-
cess into three stages as follows.

document exploration The first stage of the abstracting process
is to collect meta-information of the target document, for example,
to identify title, outline, layout, formatting, genre, and structure
of the document. The knowledge obtained in this stage is used by
the abstractor in later stages.

relevance assessment In this stage, the abstractor recognizes the
thematic structure of the document. The theme, which is a struc-
tured representation of discourse meaning in Endres-Niggemeyer’s
definition, characterizes the content of the document and helps
the abstractor identify the core statements in the source document.

summary production This stage produces a summary mainly through
cutting and pasting operations. Endres-Niggemeyer [19] explains
this stage, “Their professional role tells abstractors to avoid in-
venting anything. They follow the author as closely as possible
and reintegrate the most important points of a document in a
shorter text. For this reason, we can roughly characterize their text
production style as copying relevant text items from the original
document, and reorganizing them to fit into a new structure, often
with the help of standard sentence patterns.”

Let us discuss a computational approach of summarization based on
the abstracting process modeled by Endres-Niggemeyer [19]. Which
kind of meta-information is available for a summarization system
depends on the application. For instance, a summarization system
designed for a specific news source can detect the title, genre, and struc-
ture of an article easily using simple rules. However, a summarization
system for web pages might require analysis of the structure of HTML
annotations to obtain the page title, or to infer the genre of the page
using its content.

As for the second stage, computers also require an internal rep-
resentation to interpret the source document. Although the current

2.4 multi-document summarization 13

NLP technology has not yet incorporated internal representation in the
human mind, we might approximate it with bag-of-words, n-grams,
syntactic trees, rhetorical structures, etc. Suitable representations for
summarization are discussed in Chapter 4.

In the third stage, it is preferable for human abstractors to avoid any
alteration of the source document. Human abstractors should not com-
pose a sentence from scratch but rather reuse passages of the original
document to the greatest degree possible. We infer from the strategy
of human abstractors that a summarization system should center on
extraction of relevant passages from the original document and reor-
ganizing them to fit into a new text. Studies in this thesis contribute
to these operations directly: Chapter 4 describes a formalization of
extraction problem; Chapters 5 and 6 deal with text reorganization
respectively at sentence and term levels.

2.4 multi-document summarization

Multi-Document
Summarization
(MDS)

Multi-Document Summarization (MDS) is, by definition, the specialization
of document summarization to collection of related documents (e.g., a col-
lection of news stories about the same topic). Research on MDS has
attracted much attention in recent years since information overload
has come to be recognized as a serious problem, concomitant with the
rapid growth of the Web. The information explosion has increased the
importance of information retrieval systems. We have more occasion
to deal with unstructured documents gathered dynamically using an
information retrieval system. In addition, information is increasingly
being published in unstructured styles: email communications, blogs,
bulletin boards, etc. For that reason, a technology to view a document
collection at a glance would be very useful. Special aspects for

MDSIn addition to research issues in single document summarization
(SDS), several important aspects are noteworthy for MDS research.
Summaries of three important aspects for MDS research are given in
this section.

relation type across documents . An MDS system should re-
flect how source documents are gathered. For example, some col-
lections of newspaper articles might consist of a series of articles
about an event, i.e., an article about the event and its follow-up
articles. A summary for such articles would give a comprehensi-
ble overview of the event, and track the event occurrence. On the
other hand, some collections of articles might consist of descrip-
tions of the same event from several news sources with different
perspectives. In this case, an MDS system is expected to include
common information across documents but to exclude redundant
information.

extraction from different sources . An MDS system might
employ the same extraction algorithm as those developed for
SDS. However, the algorithm might extract the same information
repeatedly because a document collection that is relevant to a
query might contain overlapping information. Consequently, an
MDS system is expected to extract relevant text passages but

14 automatic text summarization

to exclude redundant contents, detecting common information
among the source documents and prominent information in each
document.

aggregation from different sources . A single document writ-
ten by one author is expected to have consistent usages of proper
nouns and technical terms (aside from a few special tasks such
as compilation). In contrast, multiple documents might use dif-
ferent expressions for referring to the same concept or entity,
usually for documents written by different authors. For example,
multiple documents often have terminological variants: spelling
(e.g. color and colour), synonyms (e.g. avian flu and bird flu), and
acronyms (e.g. European Union and EU), etc. Therefore, an MDS
system should be able to process terminological variants so that a
summary represents the selection of a consistent set of terms.

2.5 application examples

Automatic summarization has created numerous practical applications
as products or services. For example, recent word processor products
such as Microsoft Word1, JustSystems Ichitaro2, and Fujitsu OASYS3

have summarization features. The IBM Intelligent Miner for Text4 also
has a summarization component integrated to the data-mining software
suite.

Major search engines such as Google5 show snippets of web pages
as a part of search results. Google snippets resemble query-focused
summaries of web pages because the service extracts text passages
containing the query term. Snippets provide indicative summaries fromGoogle snippets
which we can judge the relevance of web pages.Google News

service Google News6 is a computer-generated news site that aggregates
headlines from more than 4,500 English-language news sources world-
wide, groups similar stories together, and displays them according
to each reader’s personalized interests. The articles are selected and
ranked by computers that evaluate, among other things, how often and
on what sites a story appears online. Stories are sorted without regard
to political viewpoint or ideology so that we can choose from a wide
variety of perspectives on any given story. The service seems to employ
some summarization techniques such as headline extraction, document
clustering, and lead-paragraph extraction, although Google has not
revealed technical details of the service.NewsInEssence

news delivery
service

NewsInEssence (NIE)7 [65] is a news delivery and summarization sys-
tem developed at the University of Michigan. Given a user’s topic spec-
ification (indicated via an example article or keywords), NIE searches
across dozens of news sites to collect a cluster of related stories. It gen-
erates a summary of the entire cluster, highlighting its most important

1 Microsoft Office Website: http://office.microsoft.com/
2 JustSystems Ichitaro Website: http://www.ichitaro.com/
3 Fujitsu Co. Ltd. OASYS Website: http://software.fujitsu.com/jp/oasys/
4 IBM Intelligent Miner Website: http://www.software.ibm.com/data/iminer/
5 Google Website: http://www.google.com/
6 Google News Website: http://news.google.com/
7 NewsInEssence Website: http://www.newsinessence.com/

http://office.microsoft.com/
http://www.ichitaro.com/
http://software.fujitsu.com/jp/oasys/
http://www.software.ibm.com/data/iminer/
http://www.google.com/
http://news.google.com/
http://www.newsinessence.com/

2.5 application examples 15

Figure 3. NewsInEssence

contents. In fact, NIE employs MEAD [64], which is a publicly avail-
able toolkit for multilingual summarization and evaluation. The toolkit
implements multiple summarization algorithms such as position-based,
TF*IDF, and query-based methods. Methods for evaluating the quality
of the summaries include co-selection (precision/recall, kappa, and rel-
ative utility) and content-based measures (cosine, word overlap, bigram
overlap). Figure 3 shows a screenshot of NIE as of 1 December 2006,
showing clusters of news articles and their summaries.

3T E X T S U M M A R I Z AT I O N C H A L L E N G E (T S C)

3.1 text summarization challenge (tsc)

Many evaluation workshops are intended for building and evaluating
powerful multi-purpose information systems. For example, DARPA’s
Translingual Information Detection Extraction and Summarization
(TIDES), ARDA’s Advanced Question & Answering (AQUAINT), and
NIST’s Text Retrieval Conferences (TREC) cover a range of programs
that specifically examine different tasks requiring their evaluation de-
signs. In Fall 2000, TIDES sponsored a workshop to explore different Document

Understanding
Conferences
(DUC)

ways of summarizing a common set of documents. That effort fostered
continuing evaluation in the area of text summarization, as typified by
the Document Understanding Conferences (DUC), sponsored by the
Advanced Research and Development Activity (ARDA) and run by
the National Institute of Standards and Technology (NIST). In Japan, Text

Summarization
Challenge (TSC)

the Text Summarization Challenge (TSC) was held as a part of the
NII-NACSIS Test Collection for the IR Systems (NTCIR) project from
2001 to 2004. This section describes the task definition and evaluation
methodology of TSC-3 [25] (held in NTCIR-4) because the study makes
use of its evaluation corpus.

For TSC-3, 30 sets of documents were prepared. Each document set is
relevant to a specific query (topic) in Mainichi and Yomiuri newspaper
articles published in 1998 and 1999. The numbers of documents in a
set are 5–19; the average number of documents in a set is 11.7. The
topics include “a bidding war for International Digital Communications
(IDC) between Nippon Telegraph and Telephone (NTT) and Cable and
Wireless (C&W),” “Night Landing Practice (NLP) of ship-based aircraft
of the Independence,” “the cloned sheep Dolly,” and “release of AIBO.”
Two kinds of summarization tasks were designed by TSC-3: important
sentence extraction, in which a system extracts important sentences no
longer than the specified number of sentences from a given document
set; abstracting, in which a system produces a summary that is no longer
than a specified number of characters.

3.1.1 Evaluation metrics for extracts

For extracts, TSC-3 used automatic evaluation metrics. They assumed Automatic
evaluationthat the role of sentence extraction in MDS is to prepare a set of

sentences that is suitable for producing an abstract. Multiple sentences
in source documents might refer to identical information. Therefore,
they noted the process of how an extract yields a sentence a in an
abstract A. If a sentence in an abstract a1 derives from a sentence in an
extract s1, we denote that

a1 ← s1. (3.1)

In addition, the sentence in the abstract a1 might be produced as an
integration of sentences in an abstract, e.g., s2, s3, and s4. We denote

17

18 text summarization challenge (tsc)

abstract extract

a1 s1 ∨ (s6 ∧ s7)

a2 (s3 ∧ s13 ∧ s14)

a3 (s27 ∧ s28 ∧ s29) ∨ (s1 ∧ s21 ∧ s54)

Table 1. An example of correct data of an extract

this situation with the ∧ operator,

a1 ← s2 ∧ s3 ∧ s4. (3.2)

The sentence a1 might be produced as the combination of the abstract-
ing processes in Formulas 3.1 and 3.2. We represent this situation with
the ∨ operator, as

a1 ← s1 ∨ (s2 ∧ s3 ∧ s4) . (3.3)

In this way, they prepared correct data of an extract for each topic. Table
1 shows an example of correct data for a topic.

Hirao et al. [26] defined precision and coverage on the TSC-3 corpus.
Precision is the ratio of the number of true-positive sentences over the
total sentences extracted by a system. The following formula definesPrecision
the precision:

Precision =
m

h
. (3.4)

In formula 3.4, h denotes the number of sentences in the minimum
correct set S∗, where an abstract is produced by a minimum number
of sentences in the evaluation corpus. The minimum-correct set S∗ is
obtained by solving the constraint satisfaction problem (CSP). For the
example shown in Table 1, the minimum-correct set S∗ will be

S∗ = {s1, s3, s13, s14, s21, s54}. (3.5)

Therefore, if a system outputs an extract S = {s6, s7, s10, s13, s29, s35},
the precision is computed as

Precision =
4

6
= 0.667. (3.6)

Coverage
Coverage is an evaluation metric assessing the ratio of the number

of true-positive sentences over sentences in the reference set. To define
the coverage, they introduced the notation of Ei: each element e ∈ Ei

presents a minimum set of sentences that can completely produce an
abstract ai. In other words, if an extract contains all sentences in any
element of Ei, they deem that the extract covers the sentence in the
corresponding abstract ai. Table 2 represents an example of a Table 1

with the notation of minimum sets.
Formulas 3.7 and 3.8 define the coverage of an extract,

Coverage =
1

|A|

|A|∑
i=1

cover(ai), (3.7)

3.1 text summarization challenge (tsc) 19

abstract extract

E1 = {e11, e12} e11 = {s1}, e12 = {s6, s7}

E2 = {e21} e21 = {s3, s13, s14}

E3 = {e31, e32} e31 = {(s27, s28, s29}, e32 = {s1, s21, s54}

Table 2. An example of correct data divided into minimum sets

cover(ai) = max
e∈Ei

{
match(e, S)

|e|

}
. (3.8)

In Formulas 3.7 and 3.8, A is a set of sentences in an abstract, |A|

presents the number of sentences in the abstract A, ai ∈ A is an
element of an abstract, Ei presents a set of minimum sentence sets for
an abstract ai, e ∈ Ei is an element of Ei representing a minimum
sentence set, |e| denotes the number of sentences in the minimum set
e, and function match(e, S) presents the number of sentences in an
extract S that also exist in the minimum set e. Coverage of an extract,
S = {s6, s7, s10, s13, s29, s35}, against the abstract of Table 2 is calculated
as follows.

Coverage =
1

3

3∑
i=1

cover(ai)

=
1

3
{cover(a1) + cover(a2) + cover(a3)}

=
1

3

{
max(0, 1) + max(

1

3
) + max(

1

3
, 0)

}
= 0.533. (3.9)

3.1.2 Evaluation metrics for abstracts

For abstracts, TSC-3 designed three evaluation tasks: content coverage;
quality questions; and pseudo question answering. In content coverage eval- Content coverage
uation, human judges match a reference abstract with a system abstract
at the sentence level, and rate each sentence in the reference abstract
based on the degree of agreement between sentences in the system ab-
stract and reference abstract. The evaluation values are between 0.0 (no
coverage) to 1.0 (full coverage) inclusively. Quality questions evaluate Quality questions
an abstract in terms of readability by asking a set of concrete questions
(Table 3) to the judges. Pseudo question answering is an extrinsic eval- Pseudo question

answeringuation metric to test whether an abstract provides information that is
sufficient to answer given questions.

20 text summarization challenge (tsc)

qid question

q0 How many sentences are redundant or unnecessary?

q1 How many places are there where (zero) pronouns or referring expressions are used?

q2 How many pronouns have missing antecedents?

q3 How many proper nouns appear in an unsuitable position?

q4 How many expressions have identical meanings but use different terms?

q5 How many sentences are missing important constituents?

q6 How many places are there where conjunctions should be supplied or conjunctions
should be deleted?

q7 How many unnecessary words (adverbs, adjectives, etc.) are there?

q8 Does the summary have incorrect chronological ordering?

q9 How many sentences require unification of the writing style (polite style or ordinary
style)?

q10 How many redundant verbs are there?

q11 How many sentences have wrong concordant expressions are there?

q12 How many sentences have incorrect word order?

q13 How many incorrect inflection words are there?

q14 How many complex sentences are there that had better be divided?

q15 How many sentences are there that had better be unified?

Table 3. Quality questions for readability evaluation

3.2 our summarization system

Our team constructed an MDS system for Japanese newspaper articles
and participated in the TSC-3 workshop. This section presents a de-
scription of the overview of the MDS system, which implemented the
outcomes of this study. In addition to the three main components (i.e.,
sentence extraction, sentence ordering, and abbreviation extraction),
other components in the system are explained briefly.

Figure 4 illustrates the architecture of the MDS system. In an off-line
process, an abbreviation recognition method (presented in Chapter
6) extracts definitions of abbreviations in the whole database. This
builds an abbreviation dictionary that stores the associations between
abbreviations (e.g. EU) and their full forms (e.g. European Union).

This study assumes that source documents are given to the system by,
for example, a document retrieval system. In the first step, CaboCha [33],
an integrated tool for Japanese morphological analyzer, shallow parser,
and named-entity extractor, preprocesses source documents. This step
yields dependency structures of source sentences, which are to be sent
to other components.Abbreviation

normalizer Through reference to the abbreviation dictionary, the abbreviation
normalizer replaces occurrences of abbreviations in the source doc-
uments with their normal forms, “a full form (its abbreviation)”. The
system leaves the first occurrence of an abbreviation as its normal form
and uses the abbreviation after the first occurrence when generating
an abstract. The system recognized 0.45 kinds of abbreviations and
replaced 1.2 full forms with their abbreviation per a summary.

A newspaper article often substitutes a named entity with an anaphoric
expression when the named entity occurs more than twice in the article.
Figure 5 presents a typical anaphoric reference with a Japanese termAnaphora

resolution of ‘dou’

3.2 our summarization system 21

Anaphora analysis
for specific expressions

Sentence extraction
on information fragments

Information
retrieval

Sentence ordering
with precedence relation

Analysis for
sentence compression

Source articles

Document database

Summary

D
ependency structure analysis

w
ith nam

ed entity analysis (C
aboC

ha)

S
um

m
ary generation

(synthesizing analysis results)
Abbreviation
normalizer

Abbreviation
extraction

Abbreviation dictionary

Figure 4. Architecture of the summarization system

国立天文台が反射望遠鏡「すばる」をハワイに建設した．

同天文台はすばるの性能に自信を見せている．

National Astronomical Observatory constructed
 a reflecting telescope Subaru in Hawaii.

The observatory has confidence in Subaru's performance.

[日本語]

[English]

Figure 5. A typical anaphoric reference using the Japanese term ‘dou’

dou 1. A term dou is a common expression of anaphoric reference used
in Japanese newspaper articles. Therefore, the system replaces it with
the named entity to which the dou refers. The analysis component
uses two constraints to find a referred named entity: the identity of
the succeeding term (i.e., finding a noun phrase immediately before
the term ‘observatory’ in the example); and the type of named entity
(i.e., finding a named entity tagged as a country name when resolving
an expression the country). The system replaced 90% of the anaphoric
terms dou in our summary.

Sentence extraction and sentence ordering components in Fig. 4 are
described respectively in Chapters 4 and 5. These components produce
an ordered extract for the source documents. Redundant clause

eliminationFigure 6 illustrates redundant clause elimination. Extracting long

1 The meaning of dou is close to the in English, although the uses of dou and the differ
greatly.

22 text summarization challenge (tsc)

Sony will accept reservations for AIBO the Entertainment
Robot on the Internet on June 1st.

AIBO the Entertainment Robot for which Sony started to
accept reservations at 9 a.m. on the 1st was sold out
within 20 minutes.

[日本語]

[English]

ソニーは６月１日よりペットロボットＡＩＢＯの予約を
インターネット上で受け付ける．

ソニーが１日午前９時から予約を始めたペット型ロボット
ＡＩＢＯが，受け付け開始から２０分後に完売した．

Figure 6. Redundant clauses

(longer than 25 letters) clauses modifying a noun phrase, the component
performs DP matching for all extracted clauses. It regards a pair of
clauses that are closer than a given distance as similar clauses. In
the summary generation phase, we delete clauses that are similar to
previously included clauses on the basis of redundancy analysis: the
system removed 3.4% letters from extracted sentences.

Part II

E X T R A C T I O N

4S E N T E N C E E X T R A C T I O N

4.1 introduction

Passage extraction is the most basic technology for building an auto- Passage extraction
matic summarization system. With few exceptions (e.g., Banko et al. [4],
Berger and Mittal [9], Daumé and Marcu [17]), summarization systems
employ some kind of extractive technique. Passage extraction finds
important passages in source documents to produce a summary. In gen-
eral, the extraction problem is formalized as a computer-friendly task
of assigning relevance scores to textual passages in source documents. Relevance scores
Moreover, as described in the previous chapter, the production process
of professional summaries can be characterized as copy-and-paste oper-
ations. Therefore, passage extraction is the low-cost but main solution
to summarization research.

Passage extraction can be performed at any level of textual element:
paragraph, sentence, clause, phrase, etc. Of those, the sentence is the
most practical unit for summarization because: a sentence conveys a
minimum semantic relation presented by the author; a paragraph will
often contain unnecessary sentences that are not suitable for a summary;
and a clause or phrase might be too fragmentary to convey an idea.
Consequently, this study particularly addresses passage extraction in
sentence level, i.e. sentence extraction . Sentence extraction

Figure 7 illustrates the typical structure of a sentence extraction
method for MDS. Given a set of source documents and a desirable
length for the summary, the extraction method marks sentences that
are considered important to readers. As the process of professional
abstracting modeled by Endres-Niggemeyer [19], the extraction process
is divisible into two stages: text analysis and extraction algorithm. Text
analysis converts the source text, which is written in natural language,
to its internal notation, with which computers can approximate the
meaning. The extraction algorithm is expected to choose sentences
with as much important information as possible. A reader wishes to
gain an understanding of source documents in the specified length.
Therefore, an extract should also refuse redundant information. The
extraction algorithm determines that information is important for in-
clusion and that information is unimportant or redundant, given the
internal representation.

This chapter presents a novel method for extracting important sen-
tences from multiple documents. This chapter is organized as follows.
The following section (Section 4.2) reviews the sentence extraction prob-
lem and previous studies to the problem. Section 4.3 describes various
sentence representations for sentence extraction and their weighting
methods. Section 4.4 presents a formalization of the sentence extraction
task as an optimization problem. The performances of the representa-
tions for sentence extraction are compared and the tests of effectiveness
of the formalization are performed in Section 4.5. This chapter ends
with Section 4.6, which gives a summary of the outcomes.

25

26 sentence extraction

Article #1 Article #2 Article #3 Article #n

Repr. #1 Repr. #2 Repr. #3 Repr. #n

Source document (articles)

Extracts

Sentences

Article #1 Article #2 Article #3 Article #n

Extracted
sentences

Text analysis (POST, parsing, etc)

Extraction algorithm

0 1 0 2 0
1 0 1 0 0
0 0 0 0 1
0 3 2 0 0
1 0 0 1 0

1 0 0 0 0
1 0 0 1 0
0 2 1 0 0
0 1 2 0 0
0 0 1 1 1

2 0 1 0 0
0 2 1 1 0
0 0 0 1 1
0 1 0 0 1
1 1 1 0 1

0 0 1 0 2
0 1 0 0 1
1 0 1 1 0
1 0 0 1 0
1 2 3 0 1

Figure 7. Typical sentence-extraction architecture

4.2 related work

Humans can interpret the meaning of a text and find important spans
in the text based on their interpretation. Understanding what each
sentence is saying, a human discerns the types of information that are
important for inclusion in a summary. However, the current NLP tech-
nology cannot deal with the meaning of a text as flexibly and efficiently
as humans can. For this reason, automated extraction is fulfilled by the
easier task of assessing an importance score to a sentence based on some
surface clues in the text. In other words, an extraction method is charac-
terized by the clue used for computing the importance score. Paice [58]
examined the previous studies of automatic text summarization and
classified the surface clues into seven types. Okumura and Nanba [56]
rearranged that distinction with newer studies published in the 1990s.
The remainder of this section summarizes the seven types of clues for
sentence extraction, with some revisions.Clues for sentence

extraction
frequency-keyword approach The origin of automatic text sum-
marization is considered to be the study undertaken by Luhn [40] in
1958. He measured the importance of words according to their fre-
quency of use, assuming that a writer normally repeats certain words
as he or she elaborates on an aspect of a subject. The proposed algo-
rithm prepares a list of terms in a source document by removing stop

4.2 related work 27

words such as pronouns, prepositions, and articles and by unifying
terms that have small orthographic differences (e.g., ‘similar’ and ‘sim-
ilarity’). The algorithm counts up the frequency of occurrence of the
terms and identifies important terms by removing less frequent and
overly frequent terms. The score of each sentence was computed as the Term frequency
distinct number of important terms in the sentence.

Luhn also addressed the extensions of the algorithm: controlling
summary length; weighting some terms that characterize a specific
domain; application to other languages; etc. In addition, he proposed
the utilization of the important terms as indexing terms for information
retrieval systems: his idea also had a great influence on information
retrieval. Above all, the most important extension of his statistical
approach is TF*IDF [69] measure, which combines Term Frequency (TF)
with Inverse Document Frequency (IDF) [31]. Inverse document

frequency
title-keyword method The format or meta-information of a doc-
ument often indicates the important content. For example, a title (head-
line) of a newspaper article presents an abstract written by its author.
Edmundson [18] proposed a strategy to assign a higher weight to key- Title heuristic
words from the title (headline) than to those found only in the body of
the document.

location method A document often follows the regularity of
structure determined by its genre. For example, a newspaper article
starts with a sentence that gives the brief description about an event,
followed by detailed descriptions of the event. Some articles might
conclude with a sentence describing the core argument. An academic
article consists of the standard series of sections such as background, aim,
previous work, methodology, result, and conclusion. An extraction method Location heuristic
can leverage locational clues in a source document, assuming a fixed
genre for source texts. Baxendale [8] noted that the first sentence in a
paragraph remarks the most central points to the theme than the rest.
Edmundson [18] also proposed the use of locational clues because topic
sentences tend to occur very early or very late in the text of a document
and in its paragraphs. With regard to summarization for newspaper Lead heuristic
articles, a lead strategy extracts a few sentences from the top of each
article and provides the baseline method. Brandow et al. [12] reported
the superiority of the lead strategy over frequency and title criteria on
newspaper and magazine corpora. Cue phrase

cue method A cue phrase is one indicating the importance/unim-
portance of the sentence explicitly, e.g., “.. is significant”, “the purpose
of this study is ...”, “in conclusion, ...”, “for example, ...”. An extraction
method can examine the existence of such expressions in a sentence
to estimate its importance. Edmundson [18] used a list of 783 ‘bonus’
words (e.g., ‘great’, ‘significant’), whose occurrence increases the sen-
tence score, and 73 ‘stigma’ words (e.g., ‘hardly’, ‘impossible’), whose
occurrence decreases the score. Paice [57] discussed the usefulness of
text patterns (e.g., “Our investigation has shown that ...”) for extraction.

term-relation approach Surface clues described so far repre-
sent a sentence with a set of terms (words or phrases) in the sentence.

28 sentence extraction

However, these types of surface clues cannot reflect the relations of
terms revealed by a sentence (e.g., subject-verb relation, predicate-
argument relation) or across sentence boundaries (e.g. lexical cohesion).
The term-relation approach specifically examines various relations of
terms that are stated explicitly or inexplicitly in a text. Barzilay and
Elhadad [5] investigated the use of lexical chains to model the topic
progression in the text. They presented an algorithm to compute lexicalLexical chains
chains in a text using a part-of-speech tagger, a shallow parser, WordNet
thesaurus. The algorithm extracts sentences with strong lexical chains
as an extract. Mani and Bloedorn [42] represented a source text as aGraph

representation graph in which a node denotes a term and an edge presents adjacency,
syntactic, synonym/hypernymy, or coreference relation. Applying a
spreading activation method on the graph, the presented algorithm
determines salient textual units such as words, phrases, and sentences.

document-structure approach We can extend the unit of re-
lation in the term-relation approach to broader textual spans such as
clauses and sentences. Marcu [49] proposed an extraction method that
captures the flow of text based on Rhetorical Structure Theory (RST).Rhetorical

Structure Theory
(RST)

The core idea of the theory is the notion of rhetorical relation, which is
a relation that holds between two non-overlapping text spans called
nucleus and satellite, and the assumption of text coherence, which arises
from a set of constraints and an overall effect that is associated with
the relations. A rhetorical structure tree (RS-tree) is assembled by re-
cursively applying individual rhetorical relations to spans that range
from clause-like units to inclusion of the whole document [48]. He pro-
posed an extraction method that assigns priority to nucleus spans over
satellite and showed that nuclei in the RS-tree produce an adequate
summary. Salton et al. [71] suggested paragraph extraction based onSentence similarity
intra-document links between paragraphs. The presented algorithm
yields a text relationship map from intra-document links, which indi-
cate that the linked texts are related semantically. They proposed an
extraction algorithm that starts at an important (highly bushy) node
and migrates to the next most similar node at each step, with the inten-
tion of producing a readable extract. Okazaki et al. [55] also proposedSpreading

activation sentence extraction based on similarity links between sentences. They
ranked sentences by spreading activation with an assumption to pro-
duce an extract: sentences that are relevant to many other sentences of
importance are also important.

combined approach An extraction method might combine multi-
ple clues to achieve higher performance. For example, Edmundson [18]
compared the performance of frequency-keyword, title-keyword, lo-
cation, and cue methods and suggested an optimal combination of
these clues. An optimal combination can also be determined by super-
vised machine-learning approaches such as Naive Bayes (e.g. Kupiec
et al. [34]), Decision Tree (e.g. Mani and Bloedorn [43]), and Support
Vector Machines (SVM) (e.g. Hirao et al. [24]).

4.3 sentence representation 29

4.3 sentence representation

It remains a difficult challenge for NLP research to represent the mean-
ing of a sentence. This study assumes that: a human reader breaks a Information

fragmentssentence into a set of information fragments to which the sentence is
referring; information fragments are mutually independent; and an
information fragment has its importance score. Therefore, a sentence is
approximated by a set of information fragments, each of which conveys
atomic information in a sentence. I discuss sentence representation
as a set of information fragments in this section and will address a
formalization of sentence extraction in the next section. Bag-of-words

The simplest solution for sentence representation is undoubtedly the
bag-of-words or vector space model [70], which approximates the informa-
tion in a sentence with a set of terms (words or phrases) contained in
the sentence. For example, a number of extraction methods calculate the
sentence score as the sum of term weights to estimate the importance
of a sentence and the sentence similarity as the number of overlap-
ping terms shared by the two sentences to prevent the inclusion of
redundant information (e.g., Radev et al. [67]; Goldstein et al. [23]). The
frequency-keyword and title-keyword approaches described in Section
4.2 also represent this type of solution.

A natural extension of the bag-of-words representation would be
bi-gram, tri-gram, and n-gram, which respectively combine two, three, n-grams
and n adjacent terms in a sentence to yield an unit. For example, Lin
and Hovy [38] used topic signatures, which are uni-gram, bi-gram, and
tri-gram terms clustered under related sub-topics, to score sentences.
Okazaki et al. [54] proposed an extraction method that represents a
sentence with co-occurrences of its terms. Previous studies based on the Co-occurrence
term-relation approach (Section 4.2) also belong to this category. More
“semantically rich” representations also exist, such as FrameNet [20,
3] and Script [72]. Nagao and Hasida [53] proposed a method that
generates summary sentences directly from the semantic network of
Global Document Annotation (GDA). This type of representation might
be useful if a tool were capable of converting a source document to
these representations accurately.

Against the background of the previous work, this study proposes
the use of the dependency relations of terms in a sentence. Figure Dependency

relation8 demonstrates a procedure for converting a sentence into a set of
information fragments. A Japanese shallow parser CaboCha [33] obtains
a dependency structure from a sentence. Note that the English version
of a dependency tree (right side of the figure) does not reflect the
syntactic structure of English source sentence because it is a word-by-
word translation from the Japanese dependency tree. Deleting function
words and stop words, we extract pairwise terms that have dependency
relations. We obtain six pairs of terms in the Fig. 8 example.

These information fragments can be transcribed respectively into
comprehensible sentences: “neutrino is an elementary particle”; “neu-
trino was verified”; “mass was verified”; “ICRR is a part of Japan-US
Cooperative Research Group”; and “(neutrino was) verified last week”.
The information fragment representation of a sentence partially refers
to what the original sentence is stating (with a certain degree of human
interpretation). Therefore, this representation is useful to keep track of

30 sentence extraction

素粒子

「ニュートリノ」に

質量が

ある

ことを

東大宇宙線研究所などの

日米共同観測グループが

先週

確認した

elementary particle

neutrino

mass

has

that

including ICRR

The Japan-US Cooperative Research Group

last week

verified

素粒子「ニュートリノ」に質量があるこ
とを東大宇宙線研究所などの日米共同観
測グループが先週確認した．

(
　(素粒子　ニュートリノ　4.35)
　(ニュートリノ　確認　3.31)
　(質量　確認　2.75)
　(東大宇宙線研究所　日米共同観測グループ　2.42)
　(日米共同観測グループ　確認　1.94)
　(先週　確認　1.44)
)

(
　(elementary_particle neutrino 4.35)
　(neutrino verify 3.31)
　(mass verify 2.75)
　(ICRR Japan-US_Cooperative_Research_Group 2.42)
 (Japan-US_Cooperative_Research_Group verify 1.94)
　(last_week verify 1.44)
)

1. Dependency structure analysis

2. Converting into information fragments

The Japan-US Cooperative Research Group
including the Institute for Cosmic Ray Research
of the University Tokyo verified last week that
the elementary particle neutrino has mass.

原文（日本語） Source sentence (English literal translation)

Figure 8. Generation of information fragments from a sentence

information conveyed by the extracted sentences.
Attaching a weight (importance) to each information fragment gives

an indicator of which sentence contains important information and
eventually that sentence we should choose for a summary. This study
uses a weighting scheme based on frequency-keyword and title-keyword
criteria. We introduce a function to assign higher weights for terms
appearing in a headline:

hl(x) =

{
h (x is a headline term)

1 (x is not a headline term)
(4.1)

We set the constant h = 2 experimentally to double weights for head-
line terms, assuming that headline terms are useful as representative
keywords of an article.

For an information fragment that consists of terms x and y, we
prepare three kinds of weighting functions on an experimental basis:Weighting

information
fragments ifwavg(x, y) =

hl(x)tf(x) + hl(y)tf(y)

2
; (4.2)

ifwdepfreq(x, y) = hl(x)hl(y)freq(x, y); and (4.3)

ifwcombined(x, y) = ifwavg(x, y) · ifwdepfreq(x, y). (4.4)

Therein, tf(x) denotes the occurrence frequency of term x in source
documents; and freq(x, y) represents the occurrence frequency of the

4.4 sentence extraction for mds 31

dependency relation between terms x and y in source documents.
ifwavg(x, y) calculates the weight of each information fragment by aver-
age TF scores of the two terms x and y. Also, ifwdepfreq(x, y) estimates
the weight of each information fragment by dependency frequency (i.e.,
the number of times in which terms x and y have a dependency rela-
tion in source documents). Finally, ifwcombined(x, y) assigns combined
weights of ifwavg(x, y) and ifwdepfreq(x, y).

4.4 sentence extraction for mds

This section describes formalization of important sentence extraction as
a combinational optimization problem that determines a set of sentences
containing as many important information fragments as possible. Given Combinational

optimizationa set of n source sentences C, we consider a method to determine a
subset of sentences S∗ that yields an extract. Formula 4.5 obtains a
permutation of k sentences S∗ that consists of a subset of the source
sentences C, so that the score of the permutation S∗ is maximal of
possible permutations of k sentences.

S∗ = argmax
s1�s2�...�sk

score(s1 � ... � sk), (4.5)

where

{s1, s2, ..., sk} ⊂ C. (4.6)

We describe the definition of the function score(s1 � ... � sk) later.
The number of extracted sentences k is determined by either a direct Summarization

constraintconstraint specified by the maximum number of sentences K,

k 6 K, (4.7)

or a length constraint specified by the maximum length of extracted
sentences L,

l =

k∑
j=1

length(sj) 6 L, (4.8)

where length(s) denotes the length of sentence s. Formula 4.8 constrains
that the sum of the lengths is no longer than L. Formula 4.5 applied
with 4.7 extracts no more than K important sentences. Formula 4.5 with
4.8 extracts important sentences no longer than L words or characters
(depending on the unit of the function length).

In the above discussion, we did not provide the definition of score(s1 �
... � sk), which assesses the appropriateness of the permutation of sen-
tences s1 � ... � sk extracted from the source sentences C. Several
models for measuring the appropriateness exist because this function
dominates the qualification of ‘important’ sentences. Because formula
4.5 can be interpreted as a search problem, it is a natural assumption
that the ‘importance’ of a sentence si is determined by the sentences
that are extracted and arranged before the sentence si. We calculate the Summary score
permutation score as the sum of individual scores of sentences:

score(s1 � ... � sk) =

k∑
i=1

score(si|s1 � ... � si−1). (4.9)

32 sentence extraction

elementary particle
neutrino

mystery
neutrino

mass
existence

mystery
unravel

...

...
conclusion

publish

Sentence 1

Sentence 2

Sentence 3

......

Sentence n

0. 871 0. 387 0. 187 0. 088 0. 000

0. 277 0. 000 0. 000 0. 054 0. 322

1. 215 0. 000 0. 473 0. 000 0. 000

0. 000 0. 000 0. 000 0. 000 0. 000

n rows

m columns

Figure 9. An example of sentence-fragment matrix

In Formula 4.9, the function score(si|s1 � ... � si−1) presents the appro-
priateness of sentence si to be extracted and arranged after sentences
s1 � ... � si−1.

To discuss the formalization of score(si|s1 � ... � si−1), we introduce
the (n×m) sentence–fragment matrix W whose elements wij represent
the weights of an information fragments tj in sentences si. If sentenceSentence-fragment

matrix si does not contain an information fragment tj, then wij is set to
zero. Figure 9 illustrates an example of the sentence-fragment matrix:
an information fragment consists of pairwise terms (e.g., ‘elementary
particle’ – ’neutrino’, ‘mystery’ – ‘neutrino’); and sentence 1 has an
information fragment ‘elementary particle’ – ’neutrino’ with a weight
of 0.871, but does not have the information fragment ‘conclusion’ –
‘publish’.

A sentence with numerous important information fragments car-
ries important information. Therefore, it is natural that we formalize
score(si|s1 � ... � si−1) as the weight summation of information frag-
ments contained by sentence si, as

score∗(si|s1 � ... � si−1) =

m∑
j=1

wij. (4.10)

However, this extraction strategy is likely to select sentences with
similar information because it does not consider redundancies of infor-
mation fragments conveyed by the previous sentences s1, ..., si−1. This
behavior is inadequate to MDS, where source documents often contain
a great deal of redundant information. Once an information fragment is
presented to a reader, the importance of the fragment should decrease
as the reader receives the information.

Hence, we define the function score(si|s1 � ... � si−1) with a fea-
ture to lower weights that have already been mentioned in summary
sentences:Sentence score

score(si|s1 � ... � si−1) =

m∑
j=1

αcount(tj|s1,...,si−1) ·wij. (4.11)

In formula 4.11, the function count(tj|s1 � ... � si−1) presents the
number of sentences in the preceding sentences s1,� ... � si−1 that

4.4 sentence extraction for mds 33

contain the word tj,

count(tj|s1 � ... � si−1) =
∑

i

nonzero(wij), (4.12)

nonzero(x) =

{
1 (x 6= 0)

0 (x = 0)
(4.13)

The parameter α (0 6 α 6 1) in Formula 4.11 controls the latitude of
redundant fragments in extracted sentences. We call this parameter
the duplicate information rate. Setting α to 0, Formula 4.11 ignores the Duplicate

information rateweights of words that are covered by the preceding sentences. Setting
α to 1, Formula 4.11 does not discount the weights of duplicated words
in extracted sentences, in other words, it is identical to the Formula
4.10. Setting 0 < α < 1, Formula 4.5 preferentially selects sentences
with novel words instead of redundant ones.

Let us take an example of sentence-fragment matrix (Formula 4.14)
that consists of three sentences (row: s1, s2, s3) and four information
fragments (column: t1, t2, t3, t4):

W =

 0.5 0.3 0 0.2
0.5 0.6 0 0.2

0 0.2 0.4 0.3

 . (4.14)

Let us choose two sentences one by one from the matrix as an extract.
The algorithm first extracts sentence s2 (for any α) by calculating
sentence scores as

score(s1) = 0.5 + 0.3 + 0 + 0.2 = 1.0
score(s2) = 0.5 + 0.6 + 0 + 0.2 = 1.3
score(s3) = 0 + 0.2 + 0.4 + 0.3 = 0.9. (4.15)

Then the algorithm chooses the second sentence. Setting α = 1 extracts
sentence s1, which has the second highest score, but which contains
many similar information fragments to those of s2. In contrast, setting
α = 0.5 discounts the importance of information fragments covered by
sentence s2. The algorithm will extract sentence s3, which has the novel
information fragment t3, by computing sentence scores:

score(s1|s2) = 0.51 · 0.5 + 0.51 · 0.3 + 0.50 · 0 + 0.51 · 0.2 = 0.5
score(s3|s2) = 0.51 · 0 + 0.51 · 0.2 + 0.50 · 0.4 + 0.51 · 0.3 = 0.65.

(4.16)

The effects of the duplicate information rate are summarized as
follows. Setting α = 0 gives no weight to the value of information
fragments covered by previous sentences; and setting α = 1 allows
the algorithm to include redundant information. Setting 0 6 α < 1,
the extraction algorithm favors a sentence having many novel (i.e., not
included in previous sentences) information fragments because the
importance of covered information fragments is lowered by Formula
4.11.

34 sentence extraction

It is difficult to find an extract S∗, an optimal permutation of sen-
tences s1 � s2 � ... � sk, directly in Formula 4.5. Therefore, we try to
find an approximate solution using a search tree: a node represents a
sentence; expanding a node corresponds to a trial to choose a subse-
quent sentence; and summation of sentence scores from a root node to
a leaf node presents the overall score of an extract.

The size of the search space would be nPk = o(nk) if we were to
find an optimal extract S∗ that comprises k sentences from n source
sentences. However, we can reduce neither n nor k in a real application:
parameter n is dependent on the amount of source documents, of
which there might be hundreds or thousands; also, the parameter l

is specified directly or indirectly by a user as a summarization ratio.
To find a quasi-optimal solution in a reduced search cost, we employ
beam search method, which limits the number of branches of a node
to the beam width. The implemented system controls the beam widthBeam search
b(1 < b 6 n) automatically based on summary length L so that the
search space (bl) is virtually constant. In our evaluation using the TSC-3
corpus (described later), the beam width b was 3–10.

4.5 evaluation

The extraction method was implemented and integrated into the sum-
marization system for TSC-3. Refer to Section 3.1 and the TSC-3 task
overview [25] for the details about the evaluation. Figure 10 reports
the evaluation result of content coverage by human subjects, which
assesses the quality of important sentence extraction in terms of con-
tent coverage, i.e., the extent to which a summary contains necessary
information. A summary containing all necessary information will have
content coverage of 1.0. The following parameter was used to set this
evaluation.

• Information fragment: dependency relation of two terms

• Weighting function: average TF scores (Formula 4.2)

• Duplicate information rate: α = 0 (deprivation of the value of
covered information fragments during sentence extraction

The presented system (denoted as ‘MOGS’) achieved a good result
on this evaluation. For both short and long summaries, the system took
third place among the participating systems. The result was far better
than that of a baseline system (LEAD), which features a lead extraction
strategy. Our system was intended as a generic summarization system
for Japanese news articles and did not employ a question-answering
engine to examine questions attached to the topics specifically, e.g.,
“Who was engaged in the bidding war for the acquisition of IDC against
NTT?” The system performed the best, ‘forest’, leveraged the questions
with a built-in question-answering engine.

Figure 11 shows the number of redundant or unnecessary sentences
per summary. The greater the degree to which a summary includes
redundant information, the higher the number of redundant sentences
will be. Our system (MOGS) slightly includes redundant sentences
(0.067 redundant sentences for a short summary and 0.167 sentences

4.5 evaluation 35

0.0

0.1

0.2

0.3

0.4

0.5

LEAD
SOUKEN

CRLNYU
smlab

MOGS
forest

KLEIR
DBLAB

UEC
UYDI

HUMAN

SHORT LONG

Figure 10. Results for content evaluation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

MOGS HUMAN LEAD System
average

Best
system

Worst
system

SHORT
LONG

Figure 11. Number of redundant or unnecessary sentences per summary

for a long summary on average). This result shows the excellent effects
of the sentence extraction.

We examined the effect of information-fragment representation by
comparing six kinds of representations: bag-of-terms (BOT); co-occurrence
with combined score (CO); pairwise dependency with average term score
(2Davg); pairwise dependency with dependency frequency (2Ddepfreq); pair-
wise dependency with combined score (2Dcombined); and and three-pairwise
dependency (3D). Before addressing the experiment and its result, we
describe these representation briefly. Bag-of-terms (BOT) represents a
sentence with a set of indexing terms contained in the source sentence.
For example, BOT converts the sentence in Fig. 8 into seven information
fragments: ‘neutrino’, ‘elementary particle”, ‘verify’, ‘mass’, ‘ICRR’,
‘Japan-US Cooperative Research Group’, and ‘last week’. We calculate
the weight of an information fragment with term x using the following
formula:

BOTW(x) = hl(x)tf(x). (4.17)

Formulas 4.5 and 4.17 choose sentences as the common extraction meth-
ods that estimate sentence importance as a sum of term weights and
sentence redundancy as vector similarity. Co-occurrence (CO) repre-
sents a sentence with a set of pairwise terms that co-occur in each

36 sentence extraction

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.2 0.25 0.3 0.35 0.4

A
cc

ur
ac

y

Coverage

Term vector
Cooccurrence

Pairwise dependency (avg)
Pairwise dependency (depfreq)

Pairwise dependency (combined)
Three pairwise dependency

Figure 12. The effect of information-fragment representations for shorter sum-
maries

sentence. In addition, CO converts the sentence in Fig. 8 into 7C2 = 21

information fragments. We calculate the weight of an information frag-
ment with terms x and y using the following formula:

COW(x, y) =
hl(x)tf(x) + hl(y)tf(y)

2
· co_freq(x, y). (4.18)

In Formula 4.18, co_freq(x, y) denotes the frequency of the co-occurrence
relation between terms x and y in source documents.

Pairwise dependency (2D) is the representation described in Sec-
tion 4.3. Also, 2Davg, 2Ddepfreq, and 2Dcombined calculate the respective
weights of information fragments by functions ifwavg(x, y), ifwdepfreq(x, y),
and ifwcombined(x, y). Three-pairwise dependency (3D) represents a sen-
tence with three terms that have dependency relation. Three-pairwise
dependency (3D) creates trios that consist of three terms, a term, a child
of the term, and a grandchild of the term in a dependency tree. This
converts the sentence in Fig. 8 example into four information fragments:
‘elementary particle’–‘neutrino’–‘verify’: ‘mass’–‘verify’; ‘ICRR’–‘Japan-
US Cooperative Research Group’–‘verify’; and ‘last week’–‘verify’. The
weight of a 3D information fragment is computed using the average
term score.

The author produced extracts from the TSC-3 test collection for each
information-fragment representation, sequentially changing the dupli-
cate information ratio α to 0.0, 0.33, 0.50, and 1.00. The extracts are eval-
uated in terms of precision and coverage using the metrics described
in Section 3.1.1. Figure 12 shows the effect of different information-
fragment representations in a high compression rate (shorter sum-
maries). When the duplicate information ratio α is 1, accuracy takes
the greatest value; coverage takes the smallest value. Coverage and ac-
curacy roughly increase and decrease as the ratio α decreases because
the extraction method rejects redundant sentences. The result showed
that 2Ddepfreq and 2Dcombined perform better than other representations.

4.6 summary 37

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
cc

ur
ac

y

Coverage

Term vector
Cooccurrence

Pairwise dependency (avg)
Pairwise dependency (depfreq)

Pairwise dependency (combined)
Three pairwise dependency

Figure 13. The effect of information-fragment representations for longer sum-
maries

Interestingly, the bag-of-terms (BOT) performed worse than pairwise
dependency (2D) but yields maximal coverage through the experiment.
This result shows that representations by pairwise terms are less flexi-
ble in detection of similar information because these representations
require exact matching of multiple terms. Figure 13 shows the effect of
different information-fragment representations for longer summaries.
All representations (except for three-pairwise dependency) perform
equally well for this summarization ratio.

4.6 summary

This chapter described sentence representation using a set of informa-
tion fragments and sentence extraction as information fragment cover-
ing. According to the TSC-3 evaluation results, the method of important
sentence extraction performed well for both short and long summaries
and slightly included redundant sentences. The results illustrated the
excellent effects of sentence extraction. This chapter also examined the
effect of information-fragment representation and described a compari-
son of six kinds of representation through a sentence extraction task.
The experimental results suggest that the use of dependency relation
improved overall quality, especially for shorter extracts.

Future research on the extraction scheme is intended to improve
sentence representation. We only discounted information fragments
that are included into a summary. Knowing what kinds of events tend
to occur after an event, the extraction scheme can promote peripheral
information fragments after inclusion of the fragments. The knowledge
of natural courses of events also benefits other NLP tasks such as
information extraction and sentence ordering.

5S T R U C T U R I N G E X T R A C T S

5.1 introduction

Figure 14 illustrates an example of a typical MDS system. Given a
number of documents, an MDS system yields a summary by gathering
information from original documents. The summary should include as
much important information as possible when a user wishes to gain
an understanding of retrieved documents. Therefore, to produce an
effective summary, a good MDS system must identify information in
source documents to determine what sort of information is important
for inclusion and which information is unimportant or redundant. As
described in the preceding chapter, most existing MDS systems make
use of such extraction techniques to assemble relevant textual segments
in source documents. Numerous studies have examined extraction since
the early stage of natural language processing (e.g. Luhn [40]) because
the quality of extraction greatly affects overall performance of MDS
systems.

However, post-processing of extraction is also important to secure
summary readability. We should determine a proper arrangement of
extracted sentences to generate a well-structured summary. We should Sentence ordering
eliminate unnecessary segments of extracted sentences to gain a higher
compression ratio or insert necessary expressions to complement miss-
ing information. We should also break long sentences into several Sentence

compressionsentences or combine several sentences into one sentence. Above all,
Sentence splitting
and fusion

an MDS system must properly address sentence ordering. Barzilay
et al. [7] conducted experiments to examine the impact of sentence
ordering on summary readability. That study showed that sentence
ordering markedly affects readers’ text comprehension. A sentence’s
position in the original document, which yields a good clue to sen-
tence arrangement for single-document summarization, is insufficient
for multi-document summarization because we must simultaneously
consider inter-document order. Therefore, it is necessary to establish a
good ordering strategy for MDS.

This chapter examines a method to arrange sentences that are ex-
tracted by important sentence extraction. This chapter is organized
as follows. The following section (Section 5.2) reviews the sentence-
ordering problem in MDS and previous studies to the problem. Section
5.3 discusses an evaluation methodology for sentence ordering and
proposes new metrics, sentence continuity and average continuity, to mea-
sure the closeness between an ordering and its reference. Section 5.4
reviews the strategy of chronological ordering, which has been the
baseline method in MDS systems for newspaper articles. Section 5.5
presents an approach to generate an acceptable ordering by resolving
precedence relations. Section 5.6 extends the approach by integrating
several criteria for sentence ordering with a machine-learning approach.
This chapter is concluded in Section 5.7.

39

40 structuring extracts

Article #1 Article #2 Article #3 Article #n

Summary as a text

Source document (articles)

Sentences

Extracted sentences

Sentence extraction

Sentence ordering

Figure 14. An extraction-based MDS system

5.2 sentence ordering problem

Our goal is to determine a most probable permutation of sentences, in
other words, to reconstruct a discourse structure of sentences gathered
from multiple sources. Figure 15 is an example of sentence ordering
problem. A possible answer to this problem would be arranging sen-
tence a at the beginning, followed by sentences c and b in this order.
Using notation a � b to represent that sentence a precedes sentence b,
we could express the order a � c � b.

When asked to arrange sentences, a human may perform this task
without difficulty just as we write out thoughts in a text. However,
we must consider what accomplishes this task because computers are,
by their nature, unaware of ordering. Discourse coherence, typified by
rhetorical relation [46] and coherence relation [28], are helpful to resolve
this question. Hume [30] claimed that qualities from which associationDiscourse

coherence arises and by which the mind is conveyed from one idea to another are
three: resemblance; contiguity in time or place; and cause and effect. That isAssociation

qualities to say, we should organize a text from fragmented information on the
basis of topical relevancy, chronological sequence, and a cause-effect
relation. The fact is especially true for sentence ordering of newspaper
articles because we must typically arrange a large number of time-series
events that are related to several topics.Chronological

ordering The strategy for sentence ordering that most MDS systems use is
chronological ordering [50, 37], which arranges sentences in the order
of their publication dates. Barzilay et al. [7] addressed the problem of
sentence ordering in the context of multi-document summarization.
Through their experiment, they demonstrated the remarkable impact

5.2 sentence ordering problem 41

a) Dolly the clone sheep was born in 1996.

b) The father of Dolly's children is of a differnt kind.

c) Dolly gave birth to children in her life.

Figure 15. Arrange these sentences in the optimal order

of sentence ordering on summary readability. They proposed two naive
sentence-ordering techniques such as majority ordering (examines or-
dering according to relative frequency in the original documents) and
chronological ordering (orders sentences by publication date). Illus-
trating that naive ordering algorithms do not produce satisfactory
orderings, Barzilay and colleagues also used human experiments to
identify orderings of patterns that can improve the algorithm. Based
on those experiments, they proposed another algorithm that utilizes
topical segmentation and chronological ordering. They asked human Topical

segmentationjudges to grade summaries produced by majority ordering, chronolog-
ical ordering, and the proposed method. Results showed remarkably
improved quality of orderings from the chronological ordering to the
proposed method.

Lapata [35] proposed an approach to information ordering. She Probabilistic
structuringintroduced three assumptions for learning constraints on sentence order

from a corpus of domain specific texts: the probability of any sentence
is dependent on its previously arranged sentences; the probability of
any given sentence is determined only by its previous sentence; and
transition probability from a sentence to its subsequent sentence is
estimated by the Cartesian product defined over the features expressing
the sentences. For describing sentences by their features, she used verbs
(precedent relationships of verbs in the corpus), nouns (entity-based
coherence by keeping track of the nouns), and dependencies (structure
of sentences). Lapata also proposed the use of Kendall’s rank coefficient
for an automatic evaluation that quantifies the difference between
orderings produced by the proposed method and a human. Although Kendall’s rank

coefficientshe did not describe performance comparison of the proposed method
with chronological ordering, her approach is applicable to documents
without publication dates. Content model

based on HMMBarzilay and Lee [6] investigated the utility of domain specific content
structure for representing topics and topic shifts. They applied content
models to sentence ordering and extractive summarization. Content
models are Hidden Markov Models (HMMs) wherein states correspond
to types of information characteristics to the domain of interest (e.g.,
earthquake magnitude or previous earthquake occurrences) and state
transitions capture possible information-presentation orderings within
the domain. They employed an EM-like Viterbi re-estimation proce-
dure that repeats: creating topical clusters of text spans; and computing
models of word distributions and topic changes from the clusters. Creating
initial topical clusters by complete-link clustering via sentence simi-
larity (cosine coefficient of word bigrams), they constructed a content
model: a state represents a topical cluster; the state’s sentence-emission

42 structuring extracts

probabilities are estimated as the product of word-bigram probabilities;
and state-transition probabilities are estimated by how sentences from
the same article are distributed across clusters. Barzilay and colleagues
conducted an experiment of ordering sentences that were unseen in
test texts and arranged in the actual text. They proposed the use of an
original-source-order (OSO) prediction rate, which measures the percent-
age of test cases in which the model under consideration yields the
highest probability to the OSO from among all possible permutations,
along with Kendall’s metric. The evaluation result showed that their
method outperformed Lapata’s method [35] by a wide margin. They
did not address performance comparison with chronological ordering
because they did not apply their approach to sentence ordering for
MDS.

These previous attempts are classifiable into two groups: use of
chronological information [50, 37, 7]; and learning natural ordering
of sentences from large corpora [35, 6]. Advantages of the former
group are that such methods are fast, easy-to-implement, and suitable
for newspaper articles. Methods in the latter group are applicable to
various source documents.

5.3 evaluation methodology

This section discusses evaluation methods for sentence ordering. Evalu-
ation methods for various NLP tasks are classifiable to human-intensive
and semi-automatic approaches. Human-intensive approach, e.g., sub-
jective grading, can measure the quality of sentence orderings accurately,
but requires human efforts every time we evaluate a sample. In contrast,
semi-automatic evaluation can reuse the effort involved in preparing
the initial evaluation corpus. In this section, I describe human-intensive
approach followed by semi-automatic approach.

5.3.1 Subjective grading

Subjective grading is an evaluation task in which human judges mark
an ordering of summary sentences. This study employs four-scaleSubjective grading
grading (Figure 16) with a clear criteria as follows. A perfect (score = 4)
summary is a text that we cannot improve any further by re-ordering.
An acceptable (score = 3) summary is one that makes sense and is
unnecessary to revise even though there is some room for improvement
in terms of readability. A poor summary (score = 2) is one that loses
a thread of the story at some places and requires minor amendment
to bring it up to an acceptable level. An unacceptable summary (score
= 1) is one that leaves much to be improved and requires overall
restructuring rather than partial revision. Judges are informed that
summaries were made of a same set of extracted sentences and only
sentence ordering made differences between the summaries to avoid
any disturbance in rating.

5.3 evaluation methodology 43

a)
b)

f)

1
c)
e)

a)

2
c)
e)

a)

2
c)
a)

b)

3
c)
a)

b)

3
c)
a)

d)

4

Ordering 1 Ordering 2 Ordering 3 Ordering 4 Ordering 5 Ordering 6

Figure 16. Subjective grading for sentence orderings

e)........
f)..........
a)...
b)........
g).......
c).........
d)......

b)........
g).......
a)...
d).........
c)......
e)........
f)..........

Ordering to
be evaluated

Human-made
ordering

(a) Comparison with human-made ordering

e)........
f)..........
a)...
b)........
g).......
c).........
d)......

e)........
f)..........
b)........
g).......
a)...
d).........
c)......

Ordering to
be evaluated

Virtually introduced
correct answer

(b) Comparison with corrected ordering

comparison comparison

revise by
move operation

Figure 17. Automatic evaluation of sentence ordering

5.3.2 Semi-automatic evaluation

Comparison with a
referenceIn addition to the subjective grading, it is useful that we examine how

close an ordering is to an optimal one. For example, we prepare a
correct ordering and measure closeness of an ordering to the reference
one (Figure 17-(a)). We can repeat this evaluation process once an
evaluation corpus is prepared. Comparison with

an amendmentHowever, this task may be too simplistic to accept several sentence-
ordering patterns for a given summary. We infer that it is valuable
to measure the degree of correction required for an ordering since
the task virtually requires a human corrector to mentally prepare a
correct answer for each ordering. Thus, an alternative approach for
semi-automatic evaluation is to ask human judges to illustrate how to
improve an ordering of a summary when he or she marks the summary
as poor in the subjective grading. Applicable operations for corrections
are restricted to move operations to maintain minimum correction of
the ordering. We define a move operation here as removing a sentence
and inserting the sentence into an appropriate place (Figure 17-(b)). Comparison

metricsThe remainder of the semi-automatic evaluation entails the compar-
ison of an ordering with its reference ordering. Figure 18 shows an
ordering of nine sentences (denoted by {a, b, ..., i}) and its reference
(correct) ordering. Supposing a sentence ordering to be a rank, we can Rank

representation of
an ordering

convert a sentence ordering into a permutation which represents the
rank of each sentence. Let π be a permutation of an ordering to be
evaluated and σ be its reference ordering. Expressing sentences a in 1,
b in 2, ..., i in 9 respectively, we obtain permutations π and σ for Figure
18:

π =

(
1 2 3 4 5 6 7 8 9

6 7 2 3 4 5 8 9 1

)
, (5.1)

44 structuring extracts

i)
c)
d)
e)
f)
a)
b)
g)
h)

i)
a)
b)
g)
h)
c)
d)
e)
f)continuous points

An ordering Its reference ordering

Figure 18. An ordering and its reference ordering

σ =

(
1 2 3 4 5 6 7 8 9

2 3 6 7 8 9 4 5 1

)
. (5.2)

The above formulation transforms closeness measurement of two
orderings into calculation of rank correlation of two permutations π and
σ. Spearman’s rank correlation τs(π, σ) and Kendall’s rank correlationSpearman’s and

Kendall’s rank
correlations

τk(π, σ) are known as famous rank correlation metrics:

τs(π, σ) = 1 −
6

n(n + 1)(n − 1)

n∑
i=1

(π(i) − σ(i))2 (5.3)

τk(π, σ) =
1

n(n − 1)/2

n−1∑
i=1

n∑
j=i+1

sgn(π(j) − π(i)) · sgn(σ(j) − σ(i)).

(5.4)

Therein: n represents the number of sentences; and sgn(x) = 1 for x > 0

and −1 otherwise. These metrics range from −1 (an inverse rank) to
1 (an identical rank) via 0 (a non-correlated rank). For Formulas 5.1
and 5.2, we obtain τs(π, σ) = −0.07 and τk(π, σ) = 0.11 (i.e., the two
ranks are approximately non-correlated). Spearman’s rank correlation
considers the absolute relation of ranking (i.e., absolute position of
sentences), and Kendall’s rank correlation considers the relative relation
of ranking (i.e., relative position of pairs of sentences). Lapata [35]
and Barzilay and Lee [6] adopted Kendall’s rank correlation for their
evaluations, considering that it can be interpreted as the minimum
number of adjacent transpositions needed to bring an order to the
reference order.

Let us examine the orderings in Figure 18 carefully. Spearman’s rank
correlation and Kendall’s rank correlation indicate that they are non-
correlated ranks. However, we notice that the reference ordering can
be generated from the ordering by moving a group of sentences c, d,
e, f to the position just after sentence h. Although a reader may find
the group of sentences c, d, e, f to be incorrectly positioned, he or she

5.3 evaluation methodology 45

does not lose the thread of the summary because sentences within two
groups, {c, d, e, f, } and {a, b, g, h}, are arranged properly.

Sentences in a document are aligned one-dimensionally: a reader
brings together continuous sentences in a text into his or her mind and
interprets their meaning. In other words, when reading a text, a reader
prefers local cohesion or sentence continuity as a relative relation of
discontinuous sentences. Kendall’s rank correlation equally penalizes
inverse ranks of sentence pairs that are mutually distant in rank (e.g.,
sentences c and a, c and b, etc). Therefore, we propose another metric Sentence

continuityto assess the degree of sentence continuity in reading. We define sentence
continuity as the number of continuous sentence pairs divided by the
number of sentences:

sentence_continuity =

{
(c + 1)/n (if the first sentences are identical)
c/n (otherwise)

.

(5.5)

Therein, c represents the number of continuous sentence pairs. Al-
though there is no sentence prior to the first sentences, we want to
measure the appropriateness of the first sentence as a leading sentence.
Hence, we define sentence continuity of the first sentence as an agree-
ment of the first sentences between an ordering and its reference. This
metric ranges from 0 (no continuity) to 1 (identical). The summary in
Figure 18 may interrupt a human’s reading after sentences i, f as the
human searches for the next sentence to read. We observe six conti-
nuities and an agreement of the first sentences and calculate sentence
continuity: 7/9 = 0.78.

Sentence continuity can be expressed through permutations:

τc(π, σ) =
1

n

n∑
i=1

equals
(
πσ−1(i), πσ−1(i − 1) + 1

)
. (5.6)

Therein, π(0) = σ(0) = 0; equals(x, y) = 1 when x equals y and 0

otherwise. σ−1(i) represents a sentence (or index number) of the i-th
order in the reference; and πσ−1(i) = π(σ−1(i)) represents a rank in an
ordering to be evaluated of the sentence arranged in the i-th order in the
reference. Hence, equals(πσ−1(i), πσ−1(i − 1) + 1) = 1 when sentences
of (i − 1)-th and i-th order in the reference are also continuous in an
ordering.

We can extend the sentence continuity metric to n-continuous sen-
tences: the quality of a sentence ordering can be estimated by the
number of continuous sentences that are also reproduced in the ref-
erence sentence ordering. This is equivalent to measuring a precision
of continuous sentences in an ordering against its reference ordering.
We define Pn to measure the precision of n continuous sentences in an
ordering to be evaluated,

Pn =
m

N − n + 1
. (5.7)

Therein, N is the number of sentences in a text; n is the length of
countinous sentence on which we are evaluating; m is the number

46 structuring extracts

of continuous sentences that appear in both evaluation and reference
orderings. In Figure 18 example, the precision of 3 continuous sentences
P3 is calculated as:

P3 =
2

5 − 3 + 1
= 0.67. (5.8)

The Average Continuity (AC) is defined as the logarithmic average
of Pn over 2 to k:Average continuity

AC = exp

(
1

k − 1

k∑
n=2

log(Pn + α)

)
. (5.9)

Therein, k is a parameter to control the range of the logarithmic average;
and α is a small value in case Pn is zero. We set k = 4 (i.e., more
than five continuous sentences are not measured for evaluation) and
α = 0.01. Average Continuity becomes 0 when evaluating and reference
orderings share no countinous sentences and 1 when the two orderings
are identical. BLEU metric proposed by Papineni et al. [60] for theBLEU metric
semi-automatic evaluation of machine translations bears an analogous
format to equation 5.9; in BLEU, a reference translation is compared
against a machine translation using n-grams of words. In Figure 18

example, Average Continuity is calculated as 0.63.

5.4 chronological ordering

It is difficult for computers to find a resemblance or cause-effect relation
between two phenomena: numerous possible relations must be classi-
fied in detail; moreover, we do not have conclusive evidence whether a
pair of sentences that we arbitrarily gather from multiple documents
have some relation. A newspaper usually broadcasts descriptions of
novel events that have occurred since the last publication. Hence, the
publication date (time) of each article turns out to be a good estimator
of the resemblance relation (i.e. we observe a trend or series of relevant
events in a time period), contiguity in time, and a cause-effect relation
(i.e. an event occurs as a result of previous events).

Figure 19 illustrates the idea of chronological ordering. Let us sup-Chronological
ordering pose that a sentence extraction method chose seven sentences in the

source articles, {a, b, c, d, e, f}, and that we would like to determine a co-
herent arrangement of these sentences. The chronological ordering algo-
rithm arranges the articles in temporal order of their publication dates.
For sentences having the same publication date, the algorithm deter-
mines the order based on the sentence position, restoring original order-
ings in the source articles. The final ordering determined by the chrono-
logical ordering algorithm would be, (c � d � e) � (f) � (a � b).

Lin and Hovy [37, 38] constructed an MDS system (NeATS) and
arranged sentences in chronological order. Using some rules for ac-
tual date estimation, they also resolved relative temporal expressions
(e.g. “Monday” or “yesterday”) that point to a specific date/time in
newspaper articles. If these expressions were not replaced with actual
dates, the summary might mislead the reader because they might lose
absolute time references during sentence extraction. Although resolving

5.5 leveraging precedence relations 47

2004-05-04

a c

fd
e

b

2004-02-14 2004-02-24

c, d, e a, bf

Figure 19. Chronological ordering

a) Dolly the clone sheep was born in 1996.

Extracted sentences in chronological order

Chronological ordering

Preferred ordering

[a-b-c]

[a-c-b]

b) The father of Dolly's children is of a differnt kind.

c) Dolly gave birth to children in her life.

Figure 20. A problem case of chronological sentence ordering

temporal expressions in sentences (e.g. Mani and Wilson [44]; Mani
et al. [45]) may allow more precise estimation of sentence relations, it
still remains a difficult task. Problem of

chronological
ordering

Let us consider the example shown in Figure 20. There are three
sentences, a, b, c, that are extracted from different documents and refer
to the clone sheep Dolly. Suppose that we infer an order a � b � c

by chronological ordering. When we read these sentences in this order,
we find that sentence b is positioned incorrectly because sentence
b is written on the presupposition that the reader may know that
Dolly had children. An interpretation of this situation is that there
were some precedent sentences prior to sentence b in the original
document, but sentence extraction did not choose such sentences as
summary candidates. Lack of presupposition obscures what a sentence
is intended to convey, thereby confusing readers. Although we may
hit upon a possible solution by which we include such preceding
sentences into summary candidates as an exceptional case, the solution
is not appropriate in terms of stability (i.e., preceding sentences are
not always required) and redundancy (i.e., including sentences may
generate redundant summaries). Hence, it is not a practical solution to
expand the output of the sentence extraction, which is presumed to be
tuned independently.

5.5 leveraging precedence relations

5.5.1 Precedence relation

In order to deal with the problem case with chronological ordering,
this section proposes the use of precedence relations for coherent ar-

48 structuring extracts

a
.
.

c'
.
b

c
.

Article #1 Article #2 Article #3

chronological order

Figure 21. Background idea of ordering refinement by precedence relation

rangement of sentences. Take the chronological ordering with topical
segmentation proposed by Barzilay et al. [7], this approach considers
its practical refinement using in-document precedence relations. Let us
observe the example of Figure 20 again. When reading sentence c, we
note that it can include presuppositional information of sentence b. In
addition, the sentence c requires no presupposition other than Dolly’s
existence, which was already mentioned in sentence a. Based on the
analysis, we can refine the chronological order and revise the order to
a � c � b, putting sentence c before sentence b. This revision enables
us to assume sentence b to be an elaboration of sentence c; thereby, we
improve summary readability.

Figure 21 shows the basic idea of ordering refinement using a prece-
dence relation. Just as in the example shown in Figure 20, we have three
sentences a, b, and c in chronological order. First, we select sentence
a out of the sentences and check its antecedent sentences. Seeing that
there are no sentences prior to sentence a in article #1, we deem it
acceptable to put sentence a here. Then we select sentence b from the
remaining sentences and check its antecedent sentences. This time, we
find several sentences before sentence b in article #2. Grasping what
the antecedent sentences are saying by means of cosine similarity of
sentence vectors, we confirm first of all whether their subject content is
mentioned in previously arranged sentences (i.e., sentence a). If it is
mentioned, we put sentence b here and extend the ordering to a � b.
Otherwise, we search for a substitution for what the precedent sen-
tences are saying from the remaining sentences (i.e., sentence c in this
example). In the Figure 21 example, we find that sentence a is not refer-
ring to what sentence c ′ is saying, but that sentence c is approximately
referring to that content. Putting sentence c before b, we finally achieve
the refined ordering a � c � b.

As the criterion for selecting the sentence to be inserted, we introduce
distance to put a sentence after previously arranged sentences. We define
the distance as dissimilarity derived from cosine similarity between a
vector of the arranging sentence and a vector of its preceding sentences.
When a sentence has preceding sentences and their content is not
mentioned by previously arranged sentences, this distance will be high.
When a sentence has no precedent sentences, we define the distance to
be 0.

Figure 22 illustrates how our algorithm refines a given chronological
ordering a � b � c � d � e � f. In the Figure 22 example, we do
not change the position of sentences a and b because they do not

5.5 leveraging precedence relations 49

have precedent sentences in their original article (i.e., they are lead
sentences, which appear at the beginning of an article). On the other
hand, sentence c has some preceding sentences in its original document.
This fact presents us with a choice: we should check whether it is safe to
put sentence c just after sentences a and b; or we should arrange some
sentences before sentence c as a substitute for the precedent sentences.
Preparing a term vector of the precedent sentences, we seek a sentence
or a set of sentences that is the closest to the precedent content in
sentences {a, b}, d, e, and f by the distance measure defined above. In
other words, we assume sentence ordering to be a � b � X � c and find
appropriate sentence(s) X, if any. Supposing that sentence e in Figure
22 describes similar content as the precedent sentences for sentence
c, we substitute X with Y � e. We then check whether we should put
some sentences before sentence e or not. Given that sentence e is a lead
sentence, we leave Y as empty (i.e., distance is 0) and fix the resultant
ordering to a � b � e � c.

Then we consider sentence d, which is not a lead sentence, again.
Preparing a term vector of the precedent sentences of sentence d, we
search for a sentence or a set of sentences which is closest to the prece-
dent content in sentences {a, b, e, c}, f. Supposing that either sentence
a, b, e, or c refers to the precedent content closer than sentence f, we
make a decision to put sentence d here. In this way, we get the final
ordering: a � b � e � c � d � f.

I describe briefly how our ordering algorithm functions jointly with
MDS. Let us reconsider the example shown in Figure 21. In this example,
sentence extraction does not select sentence c ′; sentence c is very similar
to sentence c ′. This may appear to be a rare case for explanation,
but it could happen as we optimize a sentence-extraction method for
MDS. The method described in Chapter 4 makes an effort to acquire
information coverage under the condition that a number of sentences
exist as summary candidates. This is to say that an extraction method
should be capable of refusing redundant information.

When we collect articles that describe a series of events, we may find
that lead sentences convey similar information throughout the articles
because the major task of lead sentences is to give a subject. Therefore,
it is quite natural that: lead sentences c and c ′ refer to similar content;
an extraction method for MDS does not choose both sentence c ′ and c

in terms of redundancy; and the method also prefers either sentence c

or c ′ in terms of information coverage.

5.5.2 Implementation

Figure 23 depicts a block diagram of the sentence ordering algorithm.
Given nine sentences denoted by {a, b, ..., i}, the algorithm eventually
produces an ordering: a � b � f � c � i � g � d � h � e.

We categorize sentences by their topics in the first phase. The aim
of this phase is to group topically related sentences together. It was
applied to sentence ordering by Barzilay et al. [7]. We use the vector
space model [70] for sentence representation and apply the nearest
neighbor method [15] to obtain topical clusters. Because sentences
in newspaper articles are not always long enough to represent their

50 structuring extracts

contents in sentence vectors, we assume that a newspaper article is
written for one topic and thereby classify document vectors. Given l

articles and m kinds of terms in the articles, we define a document-term
matrix D (l×m), whose element Dij represents the frequency of term
j in document i,

Dij = (number of occurrences of term j in document i). (5.10)

Letting Di denote a term vector (i-component row vector) of document
i, we measure the distance or dissimilarity between two articles x and
y using a cosine coefficient:

distance(Dx, Dy) = 1 −
Dx ·Dy

|Dx||Dy|
. (5.11)

We apply the nearest neighbor method to merge a pair of articles
when their minimum distance is lower than a given parameter α =
0.3 (determined empirically). In this manner, we classify sentences
according to topical clusters of articles. We determine an order of
clusters based on the chronological order of the first publication date
of articles in each cluster.

The rest phases of the algorithm, chronological ordering and improving
chronological ordering that we described before, treat the partitioned
sentences independently. We arrange sentences within respective topi-
cal clusters. In the Figure 23 example, we obtain two topical clusters,
{a, b, c, f, g, i} and {d, e, h}, as the output from the topical clustering. The
second phase orders sentences in each topical group by the chrono-
logical order and sends two orderings, a � b � c � i � g � f and
h � e � d, to the third phase. The third phase refines each chronologi-
cal ordering by the proposed method and outputs the final ordering:
a � b � f � c � i � g � d � h � e.

5.5.3 Experiment

We conducted an experiment of sentence ordering through multi-
document summarization to test the effectiveness of the proposed
method. Performing an important sentence extraction by a method
described in Chapter 4 up to the specified number of sentences (ca. 10%
summarization rate), we produced a material for a summary, extracted
sentences, for each task. We order the sentences by six methods: human-
made ordering (HO) as the highest anchor; random ordering (RO) as the
lowest anchor; chronological ordering (CO) as a conventional method;
chronological ordering with topical segmentation (COT) (similar to Barzi-
lay’s method [7]); the proposed method without topical segmentation (PO);
and the proposed method with topical segmentation (POT). Using 28 topics
(summarization assignments) 1 in the TSC-3 test collection.

5.5.4 Results

Figure 24 shows distribution of rating scores of each method as a
percentage of 84 (28 × 3) summaries. Judges marked about 75% of

1 We exclude 2 of 30 summaries because they are so long (ca. 30 sentences) that it is hard
for judges to evaluate and revise them.

5.5 leveraging precedence relations 51

Table 4. Comparison with human-made orderings

Spearman Kendall Continuity
Method AVG SD AVG SD AVG SD

RO -0.117 0.265 -0.073 0.202 0.054 0.064

CO 0.838 0.185 0.778 0.198 0.578 0.218

COT 0.847 0.164 0.782 0.186 0.571 0.229

PO 0.843 0.180 0.792 0.184 0.606 0.225

POT 0.851 0.158 0.797 0.171 0.599 0.237

HO 1.000 0.000 1.000 0.000 1.000 0.000

human-made orderings (HOs) as either perfect or acceptable; they
rejected as many as 95% of random orderings (ROs). Chronological
ordering (CO) did not yield satisfactory results, losing a thread of 63%
summaries, although CO performed much better than RO. Topical
segmentation did not contribute to ordering improvement of CO either:
COT was slightly worse than CO. After taking an in-depth look at the
failure orderings, we found that topical clustering did not perform well
during this test. We infer that topical clustering did not prove its merits
with this test collection because the collection comprises relevant articles
that were retrieved by some query and polished well by a human: they
exclude articles that are unrelated to a topic. On the other hand, the
proposed method (PO) improved chronological ordering much better
than topical segmentation: the sum of the perfect and acceptable ratio
jumped from 36% (CO) to 55% (PO). This fact shows that ordering
refinement by precedence relation improves chronological ordering by
pushing poor ordering to an acceptable level.

Table 4 shows the resemblance of orderings to those made by humans.
Although we found that RO is clearly the worst, as in other results, we
found no significant differences among CO, PO, and HO. This result
revealed the difficulty of automatic evaluation by preparing a correct
ordering.

Table 5 reports the resemblance of orderings to the corrected ones
with average scores (AVG) and standard deviations (SD) of the three
metrics τs, τk, and τc. Apparently, average figures have a similar
tendency to the rating task with three measures: HO is the best; PO is
better than CO; and RO is definitely the worst. We applied one-way
analysis of variance (ANOVA) to test the effect of these four different
methods (RO, CO, PO, and HO). ANOVA verified the effects of the
different methods (p < 0.01) for the three metrics. We also applied
the Tukey test to compare the differences among these methods. The
Tukey test revealed that RO was definitely the worst with all metrics.
However, Spearman’s rank correlation τS and Kendall’s rank correlation
τk failed to show significant differences among CO, PO, and HO. Only
sentence continuity τc demonstrated that PO is superior to CO; and
that HO is better than CO (α = 0.05). The Tukey test proved that
sentence continuity has better conformity to the rating results and
higher discrimination to make a comparison.

52 structuring extracts

Table 5. Comparison with corrected orderings

Spearman Kendall Continuity
Method AVG SD AVG SD AVG SD

RO 0.041 0.170 0.035 0.152 0.018 0.091

CO 0.838 0.185 0.870 0.270 0.775 0.210

COT 0.847 0.164 0.791 0.440 0.741 0.252

PO 0.843 0.180 0.921 0.144 0.856 0.180

POT 0.851 0.158 0.842 0.387 0.820 0.240

HO 0.949 0.157 0.947 0.138 0.922 0.138

As just described, the proposed method shows a significant improve-
ment. However, evaluation by rating (Figure 24) and comparison with
corrected ordering (Table 5) also present a great difference between PO
and HO. The main reason they made such a difference is the way of
arranging lead sentences. The proposed method is intended to preserve
chronological order of lead sentences as long as the refinement algo-
rithm does not choose them as a substitution of preceding information
for an arranging sentence. A human can devise a presentation order
from scratch without recognition of a lead sentence, but we did not
consider preceding information of it, which is necessary to arrange a
lead sentence.

In addition, several cases were found in which the proposed method
inserted an unnecessary or inappropriate sentence as presuppositional
information of a sentence. Because we do not apply a deep analysis of
discourse structure and instead use precedent relation, a sentence does
not always require all or any preceding sentences as presuppositional
information. If the proposed method employs unnecessary preceding
sentences as presuppositional information, it may choose a sentence
that has little relation to the arranging sentence. The proposed method
roughly estimates presuppositional information in this manner, but
shows practical improvement for most summaries.

5.5 leveraging precedence relations 53

[a-b-c-d-e-f]

[a]

Remaining:

Ordered:

Original article

(1) Extract sentence a. Sentence a is a
lead sentence: there is no precedent
sentence before sentence a in its original
article. Put sentence a here.

[b-c-d-e-f]

[a-b]

Remaining:

Ordered:

Original article

(2) Bring out sentence b. Sentence b is a
lead sentence: there is no precedent
sentence before sentence b in its original
article. Put sentence b here.

[c-d-e-f]

[X-c]: ?X [Y-e]: ?Y

[a-b-Y-e-c]

Remaining:

Ordered:

Original article
Precedent sentences

(3) Bring out sentence c. Sentence c is not a
lead sentence: we should arrange some
sentences X before sentence c if sentences a
and b do not mention the content of precedent
sentences for sentence c. We find that
sentence e refers to similar content to the
precedent sentences the most.

{a,b}, d, e, f

~ X

[d-f]

[Z-d]: ?Z

[a-b-e-c-d]

Remaining:

Ordered:

Original article
Precedent sentences

(5) Bring out sentence d. Sentence d is not a
lead sentence. We should arrange some
sentences Z before sentence d if sentences
a,b,e and c do not mention the content of
precedent sentences for sentence d. We find
sentences a,b,e,and c refer to similar content
to the precedent sentences the most and put
sentence d here.

{a,b,e,c}, f

~ Z

[d-f]

[a-b-e-c]

Remaining:

Ordered:

Original article

(4) Check whether we should arrange
sentences before sentence e. Sentence e
is a lead sentence. We do not have to
arrange sentences before sentence e.
Delete unsolved variable Y (or let Y be
empty).

[f]

[a-b-e-c-d-f]

Remaining:

Ordered:

(6) Put the remaining sentence f.

Figure 22. Improving chronological ordering using antecedent sentences

54 structuring extracts

a
a

b b

c c

d

d

e

e

f

f

g

g

h
h

i

i

a
b
c
i
g

f

Topical clustering by articles

C
hronological ordering

Im
proving C

hronological O
rdering

C
luster #1

Unordered
sentences

Ordered
sentences

C
luster #2

(

[(
[[

- -
-

-

h
e
d

[
]

-
-

-
-

-

]]

(

)

]

a
b
f
c
i
g

[
[

-
-

-

d
h
e

[
]

-
-

-
-

-
]

])
)

Figure 23. Outline of the ordering algorithm

0 20 40 60 80 100
(%)

RO

CO

PO

POT

HO

COT

6.0

13.1

10.7

16.7

15.5

52.4

38.1

36.9

21.4 26.2

45.2

44.0

22.6 61.9

22.6 63.1 1.2

4.8

3.6

94.0

Perfect Acceptable Poor Unacceptable

Figure 24. Distribution of the rating score of orderings (percent)

5.6 machine-learning approach 55

5.6 machine-learning approach

5.6.1 Bottom-up approach for text structuring

The preceding section proposes a novel strategy for text structuring.
Although several strategies to determine sentence ordering have been
proposed, the appropriate way to combine these strategies to achieve
more coherent summaries remains unresolved. As a collaborative study
with my colleague Danushka Bollegala, the approach of the previous
section was extended to formalize four criteria to capture the association
of sentences in the context of multi-document summarization for news-
paper articles. These criteria are integrated into a single criterion using
a supervised learning approach. This section also proposes a bottom-
up approach to arrange sentences; it repeatedly concatenates textual
segments to obtain an overall segment with all sentences arranged.

We use the notation a � b to represent that sentence a precedes
sentence b. We define term segment to describe a sequence of ordered
sentences. When segment A consists of sentences a1, a2, ..., am in that Segment
order, we denote the situation as:

A = (a1 � a2 � ... � am). (5.12)

Two segments A and B can be ordered as either B after A or A after
B. We define notation A � B to represent that segment A precedes
segment B.

Let us consider a bottom-up approach to arrangement of sentences.
Starting with a set of segments initialized with a sentence for each,
we concatenate two segments into one segment that has the strongest
association (discussed later) of all possible segment pairs. Repeating
that concatenation will eventually yield a segment with all sentences
arranged. The algorithm is considered as a variation of an agglomerative
hierarchical clustering with the ordering information retained at each
concatenating process.

The underlying idea of the algorithm, a bottom-up approach to text
planning, was proposed by Marcu [47]. Assuming that semantic units
(sentences) and their rhetorical relations (e.g., given that sentence a is an
elaboration of sentence d) in a system, he transcribed a text structuring
task into the problem of finding the best discourse tree that satisfies
the set of rhetorical relations. He stated that global coherence can be
achieved by satisfying local coherence constraints on ordering and
clustering, thereby ensuring that the resultant discourse tree is well
formed.

Unfortunately, identifying the rhetorical relation between two sen-
tences has remained a difficult task for computers. Nevertheless, the
bottom-up algorithm for arranging sentences can still be applied only
if the association direction and strength of two segments (sentences)
are defined. Hence, we introduce function f(A � B) to represent the Association

direction and
strength

association direction and strength of segments A and B,

f(A � B) =

p (if A precedes B)

0 (if B precedes A)
, (5.13)

56 structuring extracts

a

A B C D

b c d

E = (b a)

G = (b a c d)

F = (c d)

Segments

Sentences

f (
as

so
ci

at
io

n
st

re
ng

th
)

Figure 25. Arranging four sentences A, B, C, and D with a bottom-up approach

where p (0 6 p 6 1) denotes the association strength of the segments
A and B. The association strengths of two segments with different
directions, e.g., f(A � B) and f(B � A), are not always identical in our
definition, as

f(A � B) 6= f(B � A). (5.14)

Figure 25 shows the process of arranging four sentences a, b, c, and
d. First, we initialize four segments with a sentence for each,

A = (a), B = (b), C = (c), D = (d). (5.15)

Presuming that f(B � A) has the highest value of all possible pairs, e.g.,
f(A � B), f(C � D), we concatenate B and A to obtain a new segment:

E = (b � a). (5.16)

Then we search for the segment pair with the strongest association.
Supposing that f(C � D) has the highest value, we concatenate C and
D to obtain a new element:

F = (c � d). (5.17)

Finally, comparing f(E � F) and f(F � E), we obtain the global sentence
ordering of

G = (b � a � c � d). (5.18)

In the above description, we have not defined the association of
two segments. The previous work has addressed the association of
textual segments (sentences) to obtain the coherent orderings. We define
four criteria to capture the association of two segments: chronology
criterion; topical-closeness criterion; precedence criterion; and succession
criterion. These criteria are integrated into a function f(A � B) using aFour criteria for

association machine-learning approach.

5.6 machine-learning approach 57

5.6.2 Criteria for arranging sentences

Chronology
criterionChronology criterion reflects the chronological ordering [37, 50], which

arranges sentences in a chronological order of the publication date.
We define the association strength of arranging segments B after A

measured using chronology criterion fchro(A � B) as the following
formula.

fchro(A � B)

=



1 T(am) < T(b1)

1 [D(am) = D(b1)] ∧ [N(am) < N(b1)]

0.5 [T(am) = T(b1)] ∧ [D(am) 6= D(b1)]

0 otherwise

(5.19)

Therein: am represents the last sentence in segment A; b1 represents
the first sentence in segment B; T(s) is the publication date of sentence
s; D(s) is the unique identifier of the document to which sentence s

belongs: and N(s) denotes the line number of sentence s in the original
document. The chronological order of arranging segment B after A

is determined using the comparison between the last sentence in the
segment A and the first sentence in the segment B.

The chronology criterion assesses the appropriateness of arranging
segment B after A if: sentence am is published earlier than b1; or sen-
tence am appears before b1 in the same article. The criterion assumes
the order to be undefined if sentences am and b1 are published on
the same day, but appear in different articles. If none of the above
conditions are satisfied, the criterion estimates segment B to precede A. Topical-closeness

criterionThe topical-closeness criterion deals with the association based on the
topical similarity of two segments. The criterion reflects the ordering
strategy proposed by Barzilay et al. [7], which groups the sentences that
refer to the same topic. To measure topical closeness of two sentences,
we represent each sentence with a vector whose elements correspond
to the occurrence of the nouns and verbs in the sentence. The vector
values are represented as Boolean values: 1 if the sentence contains the
word, otherwise 0.

We define the topical closeness of two segments A and B as

ftopic(A � B) =
1

|B|

∑
b∈B

max
a∈A

sim(a, b). (5.20)

Therein, sim(a, b) denotes the similarity of sentences a and b calculated
using the cosine similarity of two vectors corresponding to sentences a

and b. For sentence b ∈ B, maxa∈A sim(a, b) chooses the most similar
sentence a ∈ A to sentence b and yields the similarity. The topical-
closeness criterion ftopic(A � B) assigns a higher value when the topic
referred by segment B is the same as that of segment A.

We consider the case in which we arrange segment A before B.
Each sentence in segment B has the presuppositional information that
should be conveyed to a reader in advance. Given sentence b ∈ B,

58 structuring extracts

Figure 26. Precedence criterion

such presuppositional information might be presented by the sentences
appearing before sentence b in the original article. However, we cannot
guarantee whether a sentence-extraction method for multi-document
summarization chooses any sentences before b for a summary because
the extraction method usually determines a set of sentences within
the constraint of summary length that maximize information coverage
and exclude redundant information. The precedence criterion measures
the substitutability of the presuppositional information of segment B

(e.g., the sentences appearing before sentence b) as segment A. This
criterion is a formalization of the sentence-ordering algorithm proposed
in Section 5.5.Precedence

criterion We define the precedence criterion as the following formula:

fpre(A � B) =
1

|B|

∑
b∈B

max
a∈A,p∈Pb

sim(a, p). (5.21)

Therein, Pb is a set of sentences appearing before sentence b in the
original article, and sim(a, b) denotes the cosine similarity of sentences
a and b (defined just as in the topical-closeness criterion). Figure 26

shows an example of calculating the precedence criterion for arranging
segment B after A. We approximate presuppositional information for
sentence b by sentences Pb, i.e., sentences appearing before the sentence
b in the original article. Calculating the similarity among sentences
in Pb and A using the maximum similarity of the possible sentence
combinations, Formula 5.21 is interpreted as the average similarity of
the precedent sentences Pb(b ∈ B) to the segment A.Succession

criterion The idea of a succession criterion is exactly opposite from the prece-
dence criterion. Given that we arrange segments B after A, the suc-

5.6 machine-learning approach 59

Figure 27. Succession criterion

cession criterion assesses how much the succeeding information for
segment A is covered by segment B:

fsucc(A � B) =
1

|A|

∑
a∈A

max
s∈Sa,b∈B

sim(s, b). (5.22)

Therein, Sa is a set of sentences appearing after sentence a in the orig-
inal article, and sim(a, b) denotes the cosine similarity of sentences
a and b (defined merely as the topical-closeness criterion). Figure 27

shows an example of calculating the succession criterion to arrange seg-
ments B after A. The succession criterion measures the substitutability
of the succeeding information (e.g., the sentences appearing after the
sentence a ∈ A) as segment B.

5.6.3 SVM classifier to assess the integrated criterion

We integrate the four criteria described above to define the function
f(A � B) to represent the association direction and strength of the
two segments A and B (Formula 5.13). More specifically, given the two
segments A and B, function f(A � B) is defined to yield the integrated
association strength from four values: fchro(A � B), ftopic(A � B),
fpre(A � B), and fsucc(A � B). We formalize the integration task as a
binary classification problem and employ a support vector machine
(SVM) as the classifier. We conducted supervised learning as follows. Preparing training

dataWe partition a human-ordered extract into pairs, each of which
consists of two non-overlapping segments. Let us explain the parti-
tioning process taking four human-ordered sentences, a � b � c � d

shown in Fig. 28. First, we place the partitioning point immediately

60 structuring extracts

a

b

c

d

Partitioning
window

Partitioning
point

Segment before the
partitioning point

Segment after the
partitioning point

Figure 28. Partitioning a human-ordered extract into pairs of segments

+ 1 : [fchro(A � B), ftopic(A � B), fpre(A � B), fsucc(A � B)]

−1 : [fchro(B � A), ftopic(B � A), fpre(B � A), fsucc(B � A)]

Figure 29. Two vectors in a training data generated from two ordered segments
A � B

after the first sentence a. Specifically addressing sentence a arranged
immediately before the partition point and sentence b arranged im-
mediately after, we identify the pair {(a), (b)} of two segments (a)
and (b). Enumerating all possible pairs of two segments facing im-
mediately before/after the partitioning point, we obtain the following
pairs, {(a), (b � c)} and {(a), (b � c � d)}. Similarly, segment pairs,
{(b), (c)}, {(a � b), (c)}, {(b), (c � d)}, {(a � b), (c � d)}, are obtained
from the partitioning point between sentences b and c. Collecting the
segment pairs from the partitioning point between sentences c and d

(i.e., {(c), (d)}, {(b � c), (d)} and {(a � b � c), (d)}), we identify ten
pairs in all from the four ordered sentences. In general, this process
yields n(n2 − 1)/6 pairs from n ordered sentences. From each pair of
segments, we generate one positive and one negative training instance
as follows.

Given a pair of two segments A and B arranged in an order A � B,
we calculate four values, fchro(A � B), ftopic(A � B), fpre(A � B), and
fsucc(A � B) to obtain the instance with the four-dimensional vector
(Fig. 29). We label the instance (corresponding to A � B) as a positive
class (i.e., +1). Simultaneously, we obtain another instance with a four-
dimensional vector corresponding to B � A. We label it as a negative
class (i.e., −1). Accumulating these instances as training data, we obtain
a binary classifier using an SVM with a quadratic kernel. The SVM
classifier yields the association direction of two segments (e.g., A � B

or B � A) with the class information (i.e., +1 or −1). We assign the
association strength of two segments using the class probability estimate
that the instance belongs to a positive (+1) class. We set the association
strength as zero when an instance is classified into a negative (−1) class
(see the definition of formula 5.13).

5.6 machine-learning approach 61

Table 6. Correlation between two sets of human-ordered extracts

Metric Mean S td. Dev Min Max

Spearman 0.739 0.304 -0.2 1

Kendall 0.694 0.290 0 1

Average Continuity 0.401 0.404 0.001 1

5.6.4 Evaluation

We evaluated the proposed method using the Third Text Summariza-
tion Challenge (TSC-3) corpus2. The TSC-3 corpus contains 30 sets of
extracts, each of which consists of unordered sentences extracted from
Japanese newspaper articles relevant to a topic (query). Each extract
comprises ca. 15 sentences. We arrange the extracts using different
algorithms and evaluate the readability of the ordered extracts using
subjective grading and semi-automatic evaluation.

To construct a training dataset applicable to the proposed method,
we asked two human subjects to arrange the extracts and obtained
30(topics)× 2(humans) = 60 sets of ordered extracts. Table 6 shows the
agreement of the ordered extracts between the two subjects. The cor-
relation is measured using three metrics: Spearman’s rank correlation,
Kendall’s rank correlation, and average continuity (described later). The
mean correlation values (0.74 for Spearman’s rank correlation and 0.69

for Kendall’s rank correlation) indicate a certain level of agreement in
sentence orderings made using the two subjects. In fact, 8 out of 30

extracts were identical.
We applied the leave-one-out method for the proposed method to

produce a set of sentence orderings. In this experiment, the leave-one-
out method arranges an extract using an SVM model trained from the
remainder of the 29 extracts. Repeating this process 30 times with a
different topic for each iteration, we generated a set of 30 extracts for
evaluation. In addition to the proposed method, we prepared seven
sets of sentence orderings produced by different algorithms for compar-
ison. We describe briefly the eight algorithms (including the proposed
method).

agglomerative ordering (agl) is an ordering arranged using
the proposed method.

random ordering (rnd) is an ordering as the lowest anchor in
which sentences are arranged randomly.

human-made ordering (hum) is the highest anchor in which sen-
tences are arranged by a human subject.

probabilistic ordering (pro) arranges sentences using the prob-
abilistic text structuring method proposed by Lapata [35]. We
used CaboCha3 (a parser for Japanese text) to obtain part-of-
speech information and dependency structure of sentences. Using

2 TSC-3 Website: http://lr-www.pi.titech.ac.jp/tsc/tsc3-en.html
3 http://chasen.org/ taku/software/cabocha/

http://lr-www.pi.titech.ac.jp/tsc/tsc3-en.html

62 structuring extracts

0 20 40 60 80 100

Human-made ordering

Proposed method

Chronological ordering

Random ordering

Perfect

(%)

Acceptable Poor Unacceptable

Figure 30. Subjective grading

nouns, verbs, and verb-noun dependencies, we trained the lan-
guage model with a corpus of 100,000 articles in Mainichi and
Yomiuri news papers.

chronological ordering (chr) arranges sentences with the chronol-
ogy criterion defined in Formula 5.19. Sentences are arranged in
the chronological order of their publication date.

topical-closeness ordering (top) arranges sentences with the
topical-closeness criterion defined in Formula 5.20.

precedence ordering (pre) arranges sentences with the prece-
dence criterion defined in Formula 5.21.

suceedence ordering (suc) arranges sentences with the succes-
sion criterion defined in Formula 5.22.

The last four algorithms (CHR, TOP, PRE, and SUC) arrange sentences
solely according to the corresponding criteria, each of which uses the
association strength directly to arrange sentences without the inte-
gration of other criteria. These orderings are expected to reflect the
performance of each expert independently and to reflect their respective
contributions to solve the sentence-ordering problem.

5.6.5 Results

Figure 30 shows the distribution of the subjective grading made by
two judges to four sets of orderings, RND, PRO, CHR, and AGL. Each
set of orderings has 30(topics)× 2(judges) = 60 ratings. Most RND
orderings are rated as unacceptable. Although CHR and AGL order-
ings have roughly the same number of perfect orderings (ca. 25%), the
AGL algorithm gained more acceptable orderings (47%) than the CHR
algorithm (30%). This fact shows that integration of CHR experts with
other experts worked well by pushing poor ordering to an acceptable
level. However, a huge gap between AGL and HUM orderings was also
apparent. The judges rated 28% AGL orderings as perfect, but the figure
jumped to as many as 82% for HUM orderings.

5.7 summary 63

Table 7. Comparison to human-made ordering

Method Spearman Kendall Average
coefficient coefficient Continuity

RND -0.127 -0.069 0.011

PRO 0.076 0.068 0.037

TOP 0.414 0.400 0.197

PRE 0.415 0.428 0.293

SUC 0.473 0.476 0.291

CHR 0.583 0.587 0.356

AGL 0.603 0.612 0.459

We also evaluate sentence orderings by reusing two sets of gold-
standard ordering made for the training data. In general, the subjective
grading consumes much time and effort, even though we cannot re-
produce the evaluation afterward. Precedent studies [7, 35] have used
rank correlation coefficients such as Spearman’s rank correlation and
Kendall’s rank correlation, assuming a sentence ordering to be a rank.
Section 5.3 proposed a metric that assesses continuity of pairwise sen-
tences compared with the gold standard. In addition to Spearman’s
and Kendall’s rank correlations, we proposed an average continuity met-
ric, which extends the idea of the continuity metric to continuous k

sentences.
Table 7 reports the resemblance of orderings produced by seven

algorithms to the human-made ones with three metrics, Spearman’s
rank correlation, Kendall’s rank correlation, and Average Continuity.
The proposed method (AGL) outperforms the rest in all evaluation
metrics, but the chronological ordering (CHR) appeared to play the
major role. The one-way analysis of variance (ANOVA) verified the
effects of different algorithms for sentence orderings with all metrics
(p < 0.01). We used Tukey’s Honest Significant Differences (HSD)
test to compare differences among these algorithms. The Tukey test
revealed that AGL was significantly better than the rest. Also, PRO
performed poorly in our experiments. Lapata’s model assumes that the
position of a sentence in a summary depends only upon the sentence
that directly precedes it. However, a careful review of human-ordered
extracts reveals that the scope of the dependency of a sentence goes
well beyond its direct precedent. On the other hand, TOP, PRE and SUC
ordering heuristics operate upon blocks of sentences and reports higher
Spearman, Kendall and average continuity values than does PRO.

5.7 summary

This chapter addressed a drawback of chronological ordering, which is
widely used by conventional summarization systems: it arranges sen-
tences without considering presupposed information of each sentence.
Proposing a method to improve chronological ordering by resolving

64 structuring extracts

precedent information of arranging sentences, I conducted an experi-
ment of sentence ordering through MDS. We also proposed an evalua-
tion metric that measures sentence continuity and an amendment-based
evaluation task. The proposed method, which uses the precedence re-
lations of sentences, achieved good results, raising poor chronological
orderings to an acceptable level by 20%. Amendment-based evaluation
outperformed an evaluation that compares an ordering with an answer
made by a human. The sentence continuity metric, when applied to the
amendment-based task, showed good agreement with the rating result.

This chapter also presents a bottom-up approach to arrange sentences
extracted for multi-document summarization. Different strategies to
arrange sentences are integrated into a single framework with a su-
pervised learning approach. Our experimental results with sentences
extracted from multiple newspaper articles showed a significant im-
provement over existing sentence-ordering strategies. However, the
results also implied that chronological ordering played a major role
in arranging sentences. A future direction of this study would be to
explore application of the proposed framework to more generic texts,
i.e., a document collection without chronological information.

Part III

C O M PA C T I O N

6A B B R E V I AT I O N

6.1 introduction

Abbreviations result from a highly productive type of term variation
that substitutes fully expanded terms (e.g. European Union) with short- Abbreviations as a

term variationened term-forms (e.g. EU). Among biomedical studies, Chang and
Schütze [14] reported that 64,242 new abbreviations were introduced
in 2004 in MEDLINE abstracts. Terminological resources and scientific
databases for biomedical literature (such as UMLS1, Swiss-Prot2, SGD3,
FlyBase4, and UniProt5) cannot maintain up-to-date information to
match the growth of neologisms [63]. Wren et al. [78] reported that,
with the MEDLINE database, 5,477 documents were retrieved using the
abbreviation JNK while only 3,773 documents were retrievable using
its full term, c-jun N-terminal kinase.

Abbreviations also hinder automatic text summarization of news-
paper articles. Let us take an example of two articles about a bidding
war between Nippon Telegraph and Telephone (NTT) and Cable and
Wireless (C&W) in 1999.

Cable and Wireless (C&W) is stepping up its battle to win control
of Japanese phone group International Digital Communications
(IDC). It is facing a titanic struggle with NTT, Japan’s largest
phone company, to win control of IDC. C&W plans to up its bid
for IDC to 344 m GBP on Friday, as competition to grab a stake
in Japan’s deregulating phone business gathers pace.

— BBC News (excerpt), Thursday, May 6, 1999.

Cable and Wireless (C&W) raised its bid for Japanese phone group
International Digital Communications (IDC). Its move came a
day after rival bidder and Japanese market leader, Nippon Tele-
graph and Telephone (NTT), upped its own offer for IDC. C&W
launched the cross-border takeover battle, unprecedented in Japan,
last month with a 62.4 bn yen (321 m GBP) bid. The raised offer –
the third – now values IDC at 69 bn yen (356 m GBP).

— BBC News (excerpt), Tuesday, June 1, 1999.

These sentences contain three abbreviations with their expanded
form, Cable and Wireless (C&W), Nippon Telegraph and Telephone (NTT),
and International Digital Communications (IDC). We would deem the
summary redundant because the three abbreviations would be defined
multiple times if these sentences yielded a summary from multiple
articles. An ideal solution for a summarization system to deal with Normalizing

abbreviations
1 http://www.nlm.nih.gov/research/umls/
2 http://www.ebi.ac.uk/swissprot/
3 http://www.yeastgenome.org/
4 http://www.flybase.org/
5 http://www.ebi.ac.uk/GOA/

67

http://www.nlm.nih.gov/research/umls/
http://www.ebi.ac.uk/swissprot/
http://www.yeastgenome.org/
http://www.flybase.org/
http://www.ebi.ac.uk/GOA/

68 abbreviation

these abbreviations is:

1. To recognize abbreviations used in the source documents.

2. To define an abbreviation (i.e. abbreviation with its full form) at
its first occurrence in a summary.

3. To use the shortened form of the abbreviation in its latter occur-
rences.

Presuming that we used the first sentence in each article to produce an
extract, a summary would have normalized abbreviations:

Cable and Wireless (C&W) is stepping up its battle to win control
of Japanese phone group International Digital Communications
(IDC). C&W has raised its bid for Japanese phone group IDC.

Note that the second sentence uses only the shortened forms: C&W
and IDC.

A salient challenge of text mining is dealing with an enormous
amount of documents in a scalable and efficient manner. Simultane-
ously, we can utilize the amount of textual data to obtain accurate
and comprehensive results. We present a methodology for building
a good quality abbreviation dictionary of common abbreviations and
their expanded forms, making effective use of large amounts of text.
This chapter is organized as follows. The subsequent section (Section
6.2) reviews the previous work on abbreviation extraction. Section 6.3
presents a methodology for abbreviation recognition based on statistical
information in a large corpus. Section 6.4 reports the evaluation results
on English test collection.

Even though the statistical approach is independent from the target
language, the creation process of Japanese abbreviations is too com-
plicated to deal with the same method for English abbreviations. Sec-
tion 6.5 examines the usages of parenthetical expressions in Japanese
newspaper articles. The subsequent section (Section 6.6) presents a
method to classify parenthetical expressions into paraphrasable and
non-paraphrasable groups. Section 6.7 reports experiments on Japanese
text collection. I conclude this chapter in Section 6.8 with the summary
of the outcomes.

6.2 related work

Gaudan et al. [22] distinguished global abbreviations from local ab-
breviations based on the presence of their definitions in texts. GlobalGlobal and local

abbreviations abbreviations appear in documents without the expanded form explic-
itly stated, while local abbreviations accompany their expanded forms
in the document. Global abbreviations hinder text-mining tasks such
as information retrieval and information extraction, appearing in text
without explicit definitions of their expanded forms.

Thus, an abbreviation dictionary is necessary for advanced text-mining
tasks to establish associations between abbreviations and their ex-
panded forms. Adar [1] noted that previous work had mostly found
abbreviation definitions within a text in a similar manner to informa-
tion extraction. He saw the need for additional tasks for a practical

6.2 related work 69

abbreviation resource such as merging similar definitions and provid-
ing disambiguation information. Although we find such components
indispensable for text-mining applications, here we focus on the task of
finding abbreviation definitions, as the first step in building an accurate
abbreviation dictionary.

Another important aspect for building an abbreviation dictionary
is the distinction between dynamic and common abbreviations [80].
Dynamic abbreviations are one-time substitutions valid within a doc- Dynamic and

common
abbreviations

ument and therefore always local. In contrast, common abbreviations
are used over two or more publications, and may appear in documents
with or without their expanded forms. An abbreviation dictionary
should focus on common abbreviations since they are potential global
abbreviations, i.e., might be written without their definitions in some
documents. This study does not deal with the identification of dynamic
abbreviations which can be recognized by letter matching techniques,
but collects definitions of local and common abbreviations in source
documents.

In practice, no generic rules or exact patterns have been established
for dealing with abbreviation creation. Thus, abbreviation recognition Abbreviation

recognitionaims to extract pairs of short forms (acronyms or abbreviations) and
long forms (their expanded forms or definitions) occurring in text.
Except for a few studies (e.g. Sakai and Masuyama [68]), most studies
share pattern (6.1) to locate a textual fragment with an abbreviation
and its expanded form [73, 77]. Parenthetical

expression
long form ’(’ short form ’)’ (6.1)

For example, the sentence, “The exact route was determined by magnetic
resonance imaging (MRI)”, could yield the textual fragment marked with
the italic letters, assuming that we take (l + 4) words appearing before
the parenthetical expression [1], where l is the number of letters in
the short form. The task is to identify the “authentic” long-form in the
textual fragment if any. Existing methods for solving this problem can Classification of

existing methodsbe categorized into three groups: using heuristics and/or scoring rules
[1, 2, 73, 75, 77, 80]; machine learning [14, 52, 59]; and statistics [27, 39].

The first category uses predefined heuristic rules/algorithms to find a
long form in a textual fragment. For example, Schwartz and Hearst [73] Letter-matching

algorithmimplemented a letter-matching algorithm that maps all alpha-numerical
letters in the short form to the long form, starting from the end of
both the short and long forms and moving right to left. Even though
the core algorithm is very simple, the authors report 96% precision
and 82% recall on the Medstract gold standard6. Adar [1] proposes Medstract gold

standardscoring rules to find the most likely long-form, accepting multiple long-
form candidates, e.g., determined by magnetic resonance imaging (MRI) Scoring rules
and magnetic resonance imaging (MRI) in the fragment, yielding 95%
precision and 85% recall on the Medstract corpus.

The second category obtains such rules by using a machine learn-
ing technique. Chang and Schütze [14] applied a logistic regression
to calculate the likelihood of long-form candidates. They enumerate Logistic regression
possible long-form candidates with Longest Common Substring (LCS)
formalization [75]. The likelihood of the candidates is estimated as the Longest Common

Substring (LCS)
6 http://www.medstract.org/

http://www.medstract.org/

70 abbreviation

probability calculated from a logistic regression with nine features such
as the percentage of long-form letters aligned at the beginning of a
word, the percentage of short-form letters aligned to the long form, etc.
Their method achieved 80% precision and 83% recall on the Medstract
corpus.

The third category utilizes statistical clues in the source documents,
e.g., co-occurrence between short forms and long forms. Hisamitsu
and Niwa [27] proposed a method for extracting useful parenthetical
expressions from Japanese newspaper articles. Their method measuresCo-occurrence

strength the co-occurrence strength between the inner and outer phrases of a
parenthetical expression via mutual information, χ2 test with Yate’s
correction, Dice coefficient, log-likelihood ratio, etc. Unfortunately, their
method deals with generic parenthetical expressions (i.e., abbreviation,
non-abbreviation paraphrases, supplementary comments), not focusing
exclusively on abbreviation recognition.

Liu and Friedman [39] based their method on collocations occurringCollocation mining
before the parenthetical expressions. Enumerating long-form candidates
as collocations appearing more than once in a text collection, their
method eliminates unlikely candidates with rules such as “remove a
set of candidates Tw formed by adding a prefix word to a candidate
w if the number of such candidates Tw is greater than 3”; “remove a
candidate t ∈ Tw if the occurrence frequency of candidate t divided
by the occurrence frequency of candidate w is smaller than 0.25”; and
“remove a candidate w if the summation of occurrence frequency of Tw

divided by the occurrence frequency of candidate w is greater than 0.9”.
They report a precision of 96.3% and a recall of 88.5% for abbreviation
recognition on their test corpus.

In addition to abbreviation recognition, some studies aimed at model-Maximum Entropy
Markov Model
(MEMM)

ing the process of acronym generation. Tsuruoka et al. [76] modeled the
process of generating English acronyms as a sequence labeling problem.
Defining actions to generate acronyms from expanded forms with five
operations, skip, upper, lower, space, and hyphen, they applied the Maxi-
mum Entropy Markov Model (MEMM) [10] to obtain discrimination
probability between an expanded form and its acronyms. Murayama
and Okumura [51] also modeled the process of generating Japanese
acronyms by using a noisy-channel model [13, 17]. However, it is diffi-Noisy-channel

model cult for the generation approach to achieve a high accuracy because the
process of abbreviation generation is complicated. I will address the
generation processes of Japanese abbreviations in Section 6.5.

6.3 extracting english abbreviations

6.3.1 Recognizing abbreviations based on co-occurrence

We assume a word sequence is a possible long-form if the word se-
quence co-occurs frequently with a specific abbreviation and not with
other surrounding words. A sequence of words that co-occurs with an
abbreviation does not always imply the abbreviation-definition relation:
the abbreviation 5-HT co-occurs frequently with the term serotonin,
but their relation is interpreted as a synonymous relation. We deal
with this issue with a validation rule (described later). Satisfying the

6.3 extracting english abbreviations 71

factor 1 (TTF-1)transcription

transciption
transription

thyroid

thyroid
tissue

specific nkx2

thyroid
thyroid

expression of

co-expression of
regulation of the

containing
expressed
stained for

identification of

encodinggene

examined
explore

increased
studied

its
......

......
......
......
......

......
......
......
......
......
......
......
......
......
......

......

......

......

......

......

......
......

216 218213209

11

33

1

1

1

1

1

1

1

1

1

1

1

1

factor
5

one
1

protein
1

1

4 2
3

1 factor
2

1

nuclearthyroid...... 1

* These candidates are spelling mistakes
 found in the MEDLINE abstracts.

Figure 31. Expressions appearing before the abbreviation TTF-1 in parentheses.

validation rule for being a long form, the word sequence is stored
in the abbreviation dictionary. Figure 31 illustrates our assumption
with the abbreviation TTF-1. The tree consists of expressions collected Expressions before

abbreviation TTF-1from all sentences with the abbreviation TTF-1 in parentheses and
appearing before the abbreviation. A node represents a word, and a
path from any node to TTF-1 represents a long-form candidate. The
words with function words (e.g., expression

::
of, regulation

::
of

:::
the, etc.) are

merged into a node. This is due to the requirement for a long-form
candidate discussed later (Section 6.3.2). The figure above each node
shows the co-occurrence frequency of the corresponding long-form
candidate. For example, long-form candidates 1, factor 1, transcription
factor 1, and thyroid transcription factor 1 co-occur 218, 216, 213, and 209

times respectively with the abbreviation TTF-1 in the text collection.
Even though long-form candidates 1, factor 1 and transcription factor

1 co-occur frequently with TTF-1, they also co-occur frequently with
thyroid. Meanwhile, the candidate thyroid transcription factor 1 is used
in a number of contexts (e.g.,

:::::::::
expression

::
of thyroid transcription factor

1,
:::::::::
expressed thyroid transcription factor 1, etc). Therefore, we observe

the strongest relationship is between abbreviation TTF-1 and its long-
form candidate thyroid transcription factor 1 in the tree. We apply a
validation rule (described later) to the long-form candidate to make
sure an abbreviation-definition relation does occur. In this example, the
candidate pair is likely to be in an abbreviation-definition relation as
the long form thyroid transcription factor 1 contains all the alphanumeric
letters in the short form TTF-1. Long-form

detection based on
co-occurrence

This approach detects the starting point of the long form without
using letter matching. A simple method based on letter matching may
misrecognize the long form transcription factor 1 since it also contains
the necessary elements to produce the abbreviation TTF-1. Whereas
previous work dealt with this case by introducing, e.g., a set of com-

72 abbreviation

plicated rules, scoring, or machine-learning techniques, our approach
uses overlapping definitions of an abbreviation stated by a number of
authors. This characteristic of our approach also contributes to finding
a long form whose short form is arranged in a different word order
such as beta 2 adrenergic receptor (ADRB2) and water activity (AW).

6.3.2 Term recognition approach to long-form recognition

Having collected all sentences with a specific abbreviation (hereafter
contextual sentences), we deal with the problem of extracting long-formLong-form

recognition as a
term recognition

candidates from the contextual sentences in a similar manner to the
term recognition task which extracts terms from a given text. For this
purpose, we modified the C-value method [21], a domain-independent
method for automatic term recognition (ATR). The C-value approach isC-value method
characterized by the extraction of nested terms that gives preference to
terms appearing frequently in a given text but not as a part of specific
longer terms. This is a desirable feature for us as we wish to recognize
word sequences co-occurring frequently with a specific abbreviation
and not with other surrounding words.

The C-value method combines linguistic and primarily statistical
information. Linguistic analysis enumerates all possible terms in a
given text by applying part-of-speech tagging, candidate extraction,
and a stop-list. For example, pattern7 (6.2) has been used for extracting
term candidates:

[:ADJ:]*[:NOUN:]+ (6.2)

We know the position to search for a long form in a contextual sentence,
i.e., a word or word sequence just before an abbreviation in parentheses.
As it is preferable for long-form recognition to be independent of the
terminological knowledge for the target domain, we omit part-of-speech
tagging.

Given a contextual sentence, we tokenize it by non-alphanumeric
characters (e.g., space, hyphen, colon) and apply a stemming algo-
rithm [62] to obtain a sequence of normalized words. Pattern (6.3)8

extracts long-form candidates from the sequence:Extraction pattern

[:WORD:].*$ (6.3)

The extraction pattern accepts a word or word sequence if it begins
with any non-function word9, and ends with any word just before the
corresponding short form in the contextual sentence.

Consider the example of a contextual sentence, “we studied the
expression of thyroid transcription factor-1 (TTF-1)”. We extract the
following substrings as long-form candidates (words are stemmed):
1; factor 1; transcript factor 1; thyroid transcript factor 1; expression of
thyroid transcript factor 1; and studi the expression of thyroid transcript
factor 1. Substrings such as of thyroid transcript factor 1 (which begins

7 [:ADJ:] and [:NOUN:] match an adjective and noun respectively.
8 [:WORD:] matches a non-function word; .* matches an empty string or any word(s) of

any length; and $ matches a short form of the target abbreviation.
9 29 function words are held in an external dictionary: three articles (a, an, the); two

conjunctions (and, or); seventeen prepositions (of, to, in, etc); seven forms of the verb be.

6.3 extracting english abbreviations 73

with a function word) and thyroid transcript (which ends prematurely
before the short form) are not selected as long-form candidates. The
list of function words is not used for removing specific words in long-
form candidates (e.g., expression of thyroid transcript factor 1 contains a
function word of), but for preventing invalid candidates beginning with
a function word such as of thyroid transcript factor 1.

The original C-value method assigns a termhood (likelihood to be a
term) to a candidate term by using the features: frequency of occurrence
of the candidate term; frequency of the candidate term as part of other
longer candidate terms; number of these longer candidate terms; and
length of the candidate term. The original termhood function CV(c) is
defined in formula formula 6.4, Definition of the

C-value method

CV(c) = log [len(c)] · freq(c) −

∑
t∈Tc

freq(t)

|Tc|
. (6.4)

In formula 6.4, c is a candidate term; freq(c) denotes the frequency of
occurrence of term c; len(c) denotes the length (number of words) of
term c; Tc is a set of candidate terms which contain term c; t ∈ Tc is a
candidate term which contains term c; and |Tc| represents the number of
such candidate terms Tc. Multiplying log [len(c)] with freq(c) is based
on the consideration that a longer string appears less frequently than a
shorter string [21]. This is preferred for calculating termhood for term
candidates extracted by part-of-speech information. However, longer Problem of the

C-value methodterms are not useful as long forms, as the previous work excluded
candidates longer than the maximum length estimated by the number
of letters in a short form [61]. In addition, formula 6.4 always yields
zero for a one-word candidate.

Formula 6.5 amends the original formula of C-value (formula 6.4) to
define the long-form likelihood LH(c) for a candidate c: Long-form

likelihood

LH(c) = freq(c) −
∑
t∈Tc

freq(t)× freq(t)∑
t∈Tc

freq(t)
. (6.5)

In formula 6.5, c is a long-form candidate; freq(c) denotes the frequency
of occurrence of a candidate c in the contextual sentences (i.e., co-
occurrence frequency with a short form); and Tc is a set of nested
long-form candidates, each of which consists of a preceding word
followed by the candidate c.

The first term of the formula is equivalent to the co-occurrence
frequency of a long-form candidate with a short form. The second term
discounts the first term based on the frequency distribution of nested
candidates. Given a long-form candidate t ∈ Tc, freq(t)∑

t∈Tc
freq(t) presents

the occurrence probability of candidate t in the nested candidate set Tc.
Note that

∑
t∈Tc

freq(t) is not equal to freq(c) only if any contextual
sentence beginning with the long form c exists. The second term of the
formula calculates the weighted average of the frequency of occurrence
of nested candidates accounting for the frequency of candidate c. The
underlying idea of the subtraction is to disregard the candidate as
a part of specific longer candidates. If a long-form candidate c often
occurs selectively as a part of a nested candidate t ∈ Tc, LH(c) → 0

as the second term of the formula becomes close to the first term. If

74 abbreviation

a long-form candidate c does not occur as part of a nested candidate,
LH(c)→ freq(c) as the second term becomes close to zero.

The original C-value measure (Formula 6.4) subtracts the non-weightedComparison with
the C-value method average frequency of occurrence of nested candidates Tc (the second

term) from the frequency of occurrence of term w (the first term). We
have replaced the calculation of average frequency of terms Tc with
weighted average frequency of terms Tc. Just as the Zipf’s law [81], a few
candidates in Tc account for the most frequency in the total frequency
of candidates Tc, and the large number of the residual candidates
occur rarely. For this reason, if we apply the original definition of
the C-value measure to a large collection of text, the effect of the
subtraction will be quite diminished, i.e., the second term in Formula
6.4 becomes close to zero because most nested candidates in Tc have low
frequency. In contrast, Formula 6.5 subtracts the frequent candidates
in Tc from freq(w). In this way, the replacement of the second term
with the weighted-average frequency ensures the robustness for a large
collection of text with variations and spelling errors.

Let us examine the sample of Figure 31 again. Candidate factor 1 has
four expansions, transcription factor 1 (dominant one), nuclear factor 1 (ar-
bitrary variation), transcription factor 1, and transcription factor 1 (spelling
mistakes). Even though three out of four expansions are rare/trivial,
the original C-value measure deals with all expansions equally. As a
result, the original C-value score (without the multiplication of term
length) of candidate factor 1 remains quite high,

C-value(’factor 1’) = 216 −
213 + 1 + 1 + 1

4
= 162. (6.6)

The C-value score does not reflect the existing circumstances, implying
that the candidate factor 1 is virtually worth a term appearing 162

times independently of other longer terms. In contrast, the proposed
likelihood measure considerably lowers the score of the candidate factor
1,

LH(’factor 1’) = 216 −
213× 213

216
−

3× 1× 1

216
= 5.94. (6.7)

Considering that the candidate factor 1 is highly dependent on the
expansion transcription factor 1, the score calculated by LH(c) becomes
more reasonable.

6.3.3 Extracting authentic long-forms for abbreviations

Even if the long-form likelihood LH(c) assigns higher scores to a long-
form candidate c occurring frequently with a specific abbreviation, this
does not assert that the candidate c is the long form for an abbreviation.
Table 8 shows a list of long-form candidates for abbreviation ADM. The
table was generated from 1,314 contextual sentences (containing the
abbreviation ADM in parentheses) in MEDLINE abstracts. in descend-
ing order of their likelihood scores. Candidate adriamycin co-occurs the
most frequently with abbreviation ADM. Since the long-form candidate
adriamycin contains all letters in the same order as the abbreviation
ADM, it is considered as an authentic long-form (marked as ‘o’). ThisAuthentic

long-form

6.3 extracting english abbreviations 75

Table 8. Long-form candidates for ADM.

Candidate Len Freq Score Valid

adriamycin 1 727 721.4 o

adrenomedullin 1 247 241.7 o

abductor digiti minimi 3 78 74.9 o

doxorubicin 1 56 54.6 x (missing letters)

effect of adriamycin 3 25 23.6 x (expansion)

adrenodemedullated 1 19 17.7 o

acellular dermal matrix 3 17 15.9 o

peptide adrenomedullin 2 17 15.1 x (expansion)

effects of adrenomedullin 3 15 13.2 x (expansion)

resistance to adriamycin 3 15 13.2 x (expansion)

amyopathic dermatomyositis 2 14 12.8 o

brevis and abductor digiti minimi 5 11 9.8 x (expansion)

minimi 1 83 5.8 x (nested)

digiti minimi 2 80 3.9 x (nested)

is also true for the second and third candidates (adrenomedullin and
abductor digiti minimi).

The fourth candidate doxorubicin is interesting, i.e., its score is high
although it lacks the necessary letters a and m for ADM. This is be- Other relations

expressed by
parentheses

cause doxorubicin is a synonym of adriamcycin, and many authors give
ADM in parentheses following the word without the proper long form
(adriamcycin). In this case, although the strong co-occurrence between
doxorubicin and ADM implies a meaningful relation, we do not extract
such pairs, counting them as invalid (not a proper pair of short/long
form).

Most studies (e.g., [1, 73, 77]) introduce a rule to validate a long
form for a short form: “all (alphanumeric) letters in a short form must
appear in the corresponding long form in the same order.” However, Letter-matching
one advantage of our approach over the previous work based on letter
matching is that it can suggest, based on statistics, a long form whose
short form is arranged in a different word order, e.g., water activity (AW)
and beta 2 adrenergic receptor (ADRB2). Hence, we accept a long-form Letter-matching

with shuffling
letters

candidate if the words in the long-form candidate can be rearranged so
that all alphanumeric letters in the short form appear in the rearranged
long-form candidate in the same order. For example, the long-form
candidate beta 2 adrenergic receptor (ADRB2) is recognized as a valid
expression since the words in the candidate are rearranged as adrenergic
receptor beta 2 (ADRB2). In contrast, the long form candidate rate for
abbreviation ER is rejected because the letters ‘e’ and ‘r’ appear in the
same word so that changing the word order cannot resolve the order
discrepancy between the short form and long form.

To explain the validation algorithm, we define operation map: given
a letter s in a short form, to choose a letter l in the corresponding long
form which is the same as has not been chosen before.

The validation process can be formalized as a problem of mapping
deciding the original positions of letters in a short from as follows:

• From before backward, each alphanumeric letter in a short form
must be mapped to the same (case-insensitive) letter in the corre-

76 abbreviation

beta(2)-adrenergic receptor
A
D
R
B
2

beta(2)-adrenergic receptor
A
D
R
B
2

Failed

Pass

Figure 32. The long-form validation algorithm applied to abbreviation ADRB2.

sponding long form.

• After choosing the original location of a letter in a short form,
the succeeding letter in the short form must choose the original
location letter in the same word or a letter in a mapping a letter
in the short form to a letter in a word in the corresponding long
form, the succeeding letter in the short form must be mapped to
a letter in the same word

• If the algorithm cannot find a position to where the current letter
in the short form

• If the algorithm finds a position for the last letter in the short
form is mapped to a letter in the long form successfully, the long
form is considered as valid.

We call the fifth candidate effect of adriamycin an expansion of a long-
form since it consists of the authentic long-form adriamycin with someExpansion

candidate preceding words (i.e., effect of). As adriamycin has a higher score than
this candidate, we can disregard the expansion candidates such as

:::::
effect

::
of adriamycin and

:::::::::
resistance

::
to adriamycin (marked as ‘expansion’)

because they contain unnecessary elements (i.e., effect of and resistance to)
attached to the long form. Similarly, we also disregard nested candidates
such as minimi and digiti minimi (marked as ‘nested’) since they lackNested candidate
the necessary elements (i.e., abductor digiti and abductor) to create the
correct long-form abductor digiti minimi. The likelihood score LH(w)
determines the most appropriate long-form among similar candidates
sharing the same words or lacking some words.

We do not include candidates with scores below a given threshold.
Therefore, the proposed method cannot extract candidates appearing
rarely in the text collection. It depends on the application and con-
siderations of the trade-off between precision and recall, whether or
not an abbreviation recognition system should extract such rare long
forms. When integrating the proposed method with e.g., Schwartz
and Hearst’s algorithm, we treat candidates recognized by the external
method as if they pass the score cut-off. In Table 8, for example, candi-
date automated digital microscopy is inserted into the result set whereas

6.3 extracting english abbreviations 77

1 # [Variables]
sf: the short form for which long forms are recognized.

3 # candidates: the long -form candidates to be validated.
result: the list of authentic long -forms (output).

5

Sort long -form candidates in descending order of scores.
7 candidates . s o r t (key=lambda l f : l f . score , reverse=True)

9 # Initialize the result list as empty.
r e s u l t = []

11

Pick up a long form one by one from candidates.
13 f o r l f in candidates :

Apply a cut-off based on the score...(a)
15 i f l f . score < 2 . 0 :

continue
17 # Check the letters and their order...(b)

i f not valid_longform (sf , l f) :
19 continue

Apply pruning of redundant long form...(c)
21 i f redundant (r e s u l t , l f) :

continue
23 # Insert this long form to the result list.

r e s u l t . append (l f)
25

Output the authentic long -forms.
27 p r i n t r e s u l t �

Figure 33. Pseudo-code for extracting authentic long-forms.

candidate adrenomedullin concentration is skipped since it is nested by
candidate adrenomedullin.

Figure 33 contains the pseudo-code for extracting authentic long-
forms from the list of long-form candidates and their likelihood scores.
Long-form candidates are stored in a list (candidates) and are to be
validated one by one in descending likelihood order. A long-form
candidate is considered valid if the following conditions are met: (a) it Long-form

validation
algorithm

has a likelihood score > 2.0 (i.e., a long-form candidate must appear at
least twice); (b) the words in the long form can be rearranged so that all
alphanumeric letters in the short form appear in the same order; and
(c) it is not nested or an expansion of the previously chosen long forms.

6.3.4 Implementation

The implemented system first enumerates all short forms in a given
text which are likely to be abbreviations by focusing on parenthetical
expressions (see Pattern (6.1)). Following the heuristic rules [73], we
regard parenthetical expressions as short forms if they consist of at most
two words; their length is between two to ten characters; they contain
at least an alphabetic letter; and the first character is alphanumeric.
All sentences containing a short form are associated with their short
forms in a database for efficient access by later processes. For each short
form in the database, the system retrieves all contextual sentences for
that short form and generates a list of long-form candidates and their
likelihood scores. The algorithm described in Section 6.3.3 determines
the authentic long-forms in the list. Iterating this process for all short
forms, the system yields the list of abbreviations and their expanded
forms.

78 abbreviation

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

N
u

m
b

e
r

o
f

u
n

iq
u

e
 s

h
o

rt
-f

o
rm

s

Number of contextual sentences (frequency of occurrence)

Figure 34. Number of unique short-forms over their frequency of occurrence.

The system is implemented in C/C++ (mainly) and Python (for pre-
processing). Contextual sentences are compressed by zlib10 and stored
in a B-tree database implemented by Berkeley DB11. The system outputs
a list of abbreviations, their expanded forms, and their likelihood scores
in a plain text format, which is suitable for developing an abbreviation-
dictionary server with an SQL database engine.

Using a desktop computer running on an Intel Pentium 4 3.40GHz
processor with 2GB main memory, the author conducted a feasibility
experiment, applying the system to the whole MEDLINE database
which contained 7,811,582 abstracts (out of 16,069,250 citations)12. It
took about 12 hours to recognize 886,755 unique short-forms in the
abstracts and to insert 9,223,039 contextual sentences into the interme-
diate database. The short form occurring the most frequently in the
abstracts was II (50,923 times), followed by CT (32,507 times), III (30,184

times), P<0.05 (27,284 times), PCR (26,486 times), etc. Some of the can-
didates such as III and P<0.05 are not real short-forms even though
they often appear in parentheses in scientific articles. We do not pro-
vide any processing stage in short-form mining to exclude them since
they are unlikely to be accompanied by specific long-form candidates
and, therefore, to be qualified in the subsequent stages. Some short
forms (especially, III and P<0.05) here are rather common parenthetical
expressions in scientific articles than proper abbreviations. Although
we can remove such parenthetical expressions by introducing a stop-list
for abbreviations, they are also unlikely to have long-form candidates
with high likelihood scores, not co-occurring with a specific expression
appearing before the parentheses.

Figure 34 shows the relationship between the number of unique short-

10 http://www.zlib.net/
11 http://www.sleepycat.com/products/bdb.html
12 The MEDLINE database was up-to-date on March 2006. The size of the input data

amounted to 52GB (from medline06n0001.xml to medline05n0514.xml)

http://www.zlib.net/
http://www.sleepycat.com/products/bdb.html
medline06n0001.xml
medline05n0514.xml

6.4 experiments with english abbreviations 79

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5000 10000 15000 20000 25000 30000 35000

P
ro

ce
ss

in
g

tim
e

[s
ec

]

Number of contextual sentences

(CT)

(III)

(P<0.05)

(PCR)
(NO)

(RA)
(LPS)

(MRI)

(P<0.001)(P<0.01)

(IV)

(HIV)

Figure 35. Processing time for different numbers of contextual sentences.

forms and the number of their contextual sentences (i.e., frequency of
occurrence of short forms). As Ziph’s law [81] suggested, a great deal of
short forms identified by the short-form mining occur rarely, but a few
kinds of short forms occur frequently in the abstracts. The author con-
tinued the subsequent steps of the feasibility experiment with 300,954

unique short-forms appearing in two or more contextual sentences. It
took about 35 hours to generate 182,585 unique pairs of short/long
forms. Figure 35 shows the processing time for extracting authentic
long-forms from different numbers of contextual sentences. For in-
stance, the long forms for CT were extracted from 32,507 contextual
sentences in 93 seconds, III (30,184 sentences) in 1498 seconds, P<0.05
(27,284 sentences) in 321 seconds, PCR (26,486 sentences) in 110 seconds,
NO (24,369 sentences) in 46 seconds. In general, the processing time
depends on the number of long-form candidates generated from the
contextual sentences. For this reason, some parenthetical expressions
such as III, P<0.05, P<0.001, and IV consumed much more time than
other short forms due to the diverse expressions appearing before the
parentheses. In contrast, the system identified the long forms for the
proper abbreviations (e.g., CT, PCR, and NO) in a few minutes. These
experimental results reveal that it is feasible to construct an abbrevia-
tion dictionary from the whole MEDLINE abstracts with the proposed
method.

6.4 experiments with english abbreviations

The author compared our method with three baseline systems and two
variants of our method.

• Proposed method (AM): described in this paper.

80 abbreviation

• Schwartz and Hearst’s method (SH): Their implementation13

was used as is.

• Adar’s method (SaRAD)14: The author implemented the abbreviation-
recognition component in SaRAD described in the paper [1] and
its supplementary information15. The implementation is available
on our web site.

• Liu and Friedman’s method (LF)14: The author implemented an
abbreviation-recognition program described in the paper [39].
The program receives the long-form candidates obtained from the
method described in Section 6.3.2 and applies selecting, subsum-
ing, and separating to the long-form candidates. I did not use the
SPECIALIST Lexicon (suggested in their paper) for normalizing
term-forms, but Porter’s stemming algorithm. Having the same
set of long-form candidates as a set of potential collocations, we
compare the quality of collocation mining with the proposed
method. This implementation is also available on our web site.

• Proposed method with C-value termhood (CV): This is a variant
of the proposed method applying the C-value measure CV(c)
described in Formula 6.4. A comparison between AM and CV
will show the improvement of the likelihood measure.

• Proposed method with Frequency termhood (FREQ): This is a
variant of the proposed method replacing the likelihood LH(c)
with the frequency of occurrence of long-form candidate c.

Given a list of target short-forms and their contextual sentences, each
system identifies the long forms for the short forms. Porter’s stemming
algorithm was applied to the long forms in order to match them to
reference long-forms extracted by a bio-informatician. We emulate the
process of building an abbreviation dictionary by screening long forms
that occur θ or more times in the text collection. In other words, statisti-
cal information (frequency of occurrence of long forms) is incorporated
even in the letter-matching algorithms as a post-processing phase. For
example, setting θ to 2 implies removing short/long-form pairs occur-
ring once in the text collection, i.e., definitions of dynamic abbreviations.
The threshold θ controls the accuracy/coverage (or precision/recall)
tradeoff for an abbreviation dictionary. I drew a precision-recall curveThreshold θ

for each system by changing the threshold θ from 2 to 20.
The author evaluated our method on 637,957 contextual sentences

containing 4,024 short/long-form pairs for 100 short-forms16: half of
the short forms were constituted by the top 50 short forms17 appearing

13 http://biotext.berkeley.edu/software.html
14 The evaluation results for SaRAD and LF are based on our implementations and might

not reflect the actual performance.
15 http://www.hpl.hp.com/research/idl/papers/srad/websup-070703.pdf
16 The 637,957 contextual sentences containing 100 short forms were drawn from the

intermediate database described in Section 6.3.4.
17 We have excluded several parenthetical expressions such as II, III, P<0.05, etc. since they

do not introduce abbreviations. We have also excluded a few short-forms such as RA
(18,810 occurrences) and AD (17,240 occurrences) because there are too many variations
of their expanded forms to handle in manual preparation of our evaluation corpus.

http://biotext.berkeley.edu/software.html
http://www.hpl.hp.com/research/idl/papers/srad/websup-070703.pdf

6.4 experiments with english abbreviations 81

Rank Type Parenthetic phrase # contextual # distinct

sentence long-forms

1 c CT 32,507 257

2 c PCR 26,486 48

3 c HIV 19,032 12

4 c LPS 18,750 52

5 c MRI 18,396 10

.. c

50 c AMI 5,803 47

51 t ATP 4,993 39

52 t PKA 2,319 20

.. t

75 t AW 376 75

76 t TTF-1 231 1

.. t

99 t CNS1 4 1

100 t 3-NO2-TYR 2 1

— (overall 100 abbreviations) 637,957 4,024

Type = { c: top 50 frequent abbreviations, t: appeared in previous papers }

Table 9. Statistics on the evaluation corpus.

most frequently in MEDLINE abstracts; and the remaining 50 short-
forms were chosen from those discussed in papers on abbreviation
recognition. Note that the use of the frequent 50 short forms for the
evaluation does not favor our method, which is based on statistics. In
fact, a great number of long forms for the 50 short forms were found
rarely, e.g., as many as 1,076 pairs occur only twice. Although the most
frequent long-form for the short form CT (32,507 times) is computed
tomography (18512 times), a great number of less frequent long-forms
also exist in the corpus, e.g., cavernous tissue (2 times), complex tone (2
times), cortical threshold (2 times). It is difficult for the proposed method
to recognize such rare short/long-form pairs.

When preparing the evaluation collection, criteria for including long
forms were established: a long form with minimum necessary elements Criteria for

including long
forms

(words) to produce its abbreviation is accepted; a long form with un-
necessary elements, e.g., magnetic resonance imaging

::::
unit (MRI) or human

immunodeficiency virus
::::::::
infection (HIV), is not accepted to keep the criteria

for inclusion consistent; a misspelled long-form, e.g., hidden
::::::::
markvov

model (HMM), is accepted to separate the abbreviation-recognition task
from a spelling-correction task. Expressions satisfying the above crite-
ria were accepted regardless of their popularity or relevance because
it is hard for a human subject to determine which long forms are
appropriate for the inclusion to a dictionary.

Figure 36 shows the precision-recall curves when we count the num-
ber of distinct long-forms, i.e., count once even if short/long form pair
〈HMM, hidden markov model〉 occurs multiple times in the text collection.
In general, a system marks the highest recall and lowest precision (i.e.,
plotted at the left-top in a locus) when the threshold θ is two. As the
threshold θ increases, the recall and precision become lower and higher
respectively (i.e., a locus draws a downward-sloping curve).

82 abbreviation

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

R
e

ca
ll

P recis ion

P roposed method
S chwartz and Hearst

S aR AD
Liu and F riedman

C -value scoring
F requency scoring

Figure 36. Precision-recall calculated by the distinct numbers of long forms.

The proposed method (AM) achieved 80.8% precision and 57.5%
recall at θ = 2, and 95.0% precision and 13.9% recall at θ = 20. When
used with a higher threshold (θ > 9), AM outperformed other methods,
marking the highest precision. The simple approach using frequency
of co-occurrence (FREQ) did not yield a good result. The compari-
son between AM and CV also revealed the great improvement of the
proposed likelihood over the original C-value measure. These facts
strongly suggest the importance of term recognition in statistical long-
form recognition.

SaRAD obtained the best result of all systems with a lower threshold,
e.g., 80.4% precision and 88.5% recall at θ = 2. This result reflects the
advantage of the letter-matching approach when statistical clues in
the source text are unavailable. However, SaRAD could not improve
the precision so much with a higher threshold. For instance, SaRAD
could not utilize frequency information to withdraw a misrecognized
long-form systemic arterial pressure (MAP) (44 occurrences). AM could
grasp that mean systemic arterial pressure (42 occurrences) is more appro-
priate, without complicated tuning of heuristic rules, since 95% of the
occurrences of systemic arterial pressure are derived from mean systemic
arterial pressure.

Schwartz and Hearst’s method (SH) sufferred from its low precision.
This was because SH recognized a number of false long-forms such as

:::
the

:::::
mean skin temperature (TSK) (4 occurrences),

:
a water activity (AW) (7

occurrences), and
::::::::::
expression

::
of oestrogen receptor (ER)18 (18 occurrences).

Unlike SaRAD, which is also based on a similar letter matching tech-
nique, SH could not remove trailing words that are unnecessary to form
an acronym such as circular dichroism

:::::::::::
spectroscopy (CD) (23 occurrences)

18 SH has a constraint that the initial word of a long form must begin with the initial letter
of the corresponding short-form. Therefore, SH could not recognize oestrogen receptor as a
long form although oestrogen is an orthographic variant of estrogen.

6.4 experiments with english abbreviations 83

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.94 0.95 0.96 0.97 0.98 0.99 1

R
e

ca
ll

P recis ion

P roposed method
S chwartz and Hearst

S aR AD
C -value scoring

Figure 37. Precision-recall calculated by the numbers of long-form occurrences.

and radiotherapy
:::::
alone (RT) (29 occurrences).

Liu and Friedman’s method had difficulty in dealing with diverse
expressions in a text collection. For instance, LF has the following rule to
withdraw some long-form candidates: “remove a set of candidates Tw

formed by adding a prefix word to a candidate w if the number of such
candidates Tw is greater than a parameter t0”. This rule with to = 3

applied to the collocation myocardial infarction removed the proper long-
form acute myocardial infarction (5,314 occurrences) for the acronym
AMI because myocardial infarction had 15 possible expansions in the
MEDLINE abstracts, e.g., anterior myocardial infarction (34 occurrences),
phase myocardial infarction (13 occurrences), wall myocardial infarction
(5 occurrences), inferior myocardial infarction (4 occurrences), etc. For
the same reason, LF missed a number of frequent long-forms such as
epidermal growth factor (EGF) (10,209 occurrences), high performance liquid
chromatography (HPLC) (8,723 occurrences), acquired immunodeficiency
syndrome (AIDS) (6,111 occurrences), etc. This flaw might be improved
by tweaking the parameters, but I would like to emphasize that our
method achieved the result without a parameter.

Figure 37 shows the precision-recall curves when we count the num-
ber of positive/negative instances in the source text, e.g., count 188 true
positives if a method identifies the acronym hidden markov model (HMM)
defined 188 times in the source text. This evaluation metric assesses the
appropriateness of dealing with frequent long-forms: a system loses
precision/recall with this metric if it misrecognizes/missed a frequent
long-form in the text collection. I did not plot the precision-recall lo-
cuses for CV (86% precision and 85% recall) and LF (77% precision and
60% recall) to focus on the results of superior systems in the figure.

The proposed method (AM) outperformed the other methods, ob-
taining the highest precision and recall with all thresholds (2 6 θ 6 20).
AM achieved 99.1% precision and 98.7% recall at θ = 2, and 99.6%

84 abbreviation

precision and 96.6% recall at θ = 20. These figures revealed that the
proposed method scarcely missed long forms occurring frequently in
the evaluation corpus. Interestingly, Schwartz and Hearst’s method
(SH) was superior to SaRAD with this metric (Figure 37) even though
the order of superiority was reversed with the former metric (Figure
36). In addition, the quality difference between SH and FREQ became
more prominent with this metric.

In general, an acronym defined in a number of places is likely to be
used without its long form, i.e., as a global acronym. Thus, it is criti-
cally important for a recognition method to include frequent acronym
definitions in an acronym dictionary. The absences/errors of frequent
long-forms in a dictionary may decrease the performance of its appli-
cation because the application is unaware of the cross-linked relation
occurring frequently in a text. Figures 36 and 37 demonstrate that the
proposed method has a strong advantage for building a comprehensive
dictionary with potential global acronyms.

I now describe the false cases found by the proposed method in order
to discuss directions for further improvements. The word treatment
(22 occurrences) was misrecognized as the long-form for the acronym
RT. This phenomenon was due to: diverse expressions appear before
treatment in the text collection, e.g., receive treatment, replace treatment,
regular treatment, radiation treatment, etc; the diverse expansions could
not surpass treatment, i.e., Formula 6.5 assigned a higher score to treat-
ment than to the diverse expressions; treatment contains letters ‘r’ and
‘t’ in the same order as the acronym; and long-form extraction chose
treatment and removed all the expansions from the candidate list.

Another type of false case was found where a number of expressions
that end with mean and contain the letters ‘s’ and ‘d’ in that order were
misrecognized as the long forms for the acronym SD, e.g., years and
mean, expressed as mean, increased mean, increased from a mean, etc. In
scientific articles, mean followed by parenthetical expression of SD is
used to describe mean and standard deviation values at the same time, e.g.,
“the mean (SD) age of the patients was 49.8 (20.9) years.” Although this
parenthetical expression does not imply an acronym-definition relation,
our long-form extraction algorithm tried to find candidates with letters
‘s’ and ‘d’ before mean. These cases occur rarely in the evaluation corpus
as Figure 37 suggested, but are expected to be addressed in future work.

6.5 japanese parenthetical expressions

The proposed method, as presented so far, achieved good results for
recognizing abbreviations in English documents. Based on statistical
term recognition, the method is expected to have language indepen-
dence, i.e., applicability to other languages such as Japanese. However,
the system’s actual application is not that simple: the creation process
of Japanese abbreviations is much more complicated than that of En-
glish ones. The author examined the use of parenthetical expressionsClassification of

Japanese
parenthesis usages

in Japanese newspaper articles and classified them into five categories
(Table 10). The first three categories are explained in this thesis because
the fourth and fifth categories are irrelevant to abbreviation recognition.

The first category acronym reduces a full form to a shorter form (shortJapanese acronyms

6.5 japanese parenthetical expressions 85

Type Example (with English translation)
Acronym 東京大学（東大）

Universityof Tokyo (UoT)
Acronym with translation 夜間離着陸訓練（ＮＬＰ）

Night Landing Practice (NLP)
ワールドカップ（Ｗ杯）
World Cup(WC)

Alias 朝鮮民主主義人民共和国（北朝鮮）
Democratic People's Republic of Korea (North Korea)

Proprety (reading) 毅然（きぜん）
Kizen (kizen)
Ｗｉｉ（ウィー）
Wii (pronounced as the pronoun 'we')

Property (location) つくば学園都市（茨城県つくば市）
Tsukuba Science City (Tsukuba City, Ibaraki Pref.)

Property (affiliation) 岡崎直観（東大）
Naoaki Okazaki (UoT)

Property (age) 岡崎直観（２７）
Naoaki Okazaki (27)

Property (member) 六カ国協議（米朝中韓日露）
Six-PartyTalks(USA, DPRK,China,ROK, Japan, Russia)

Property (weekday) １月１日（月）
1st January (Mon)

Property (performance) アストロズ（中地区１位）
Astros (champion in National League Central)

Complementarity 真摯に（批判を）受け止めている．
I take (the criticism) seriously.

Others ... (中略)
... (snip)

Table 10. Japanese parenthetical expressions.

form) basically by choosing and removing letters in the full form (long
form). The characteristic of the acronyms is that a long form is para-
phrasable to its short form and vice versa, as long as a reader is aware
of the association between the short form and long form. In general,
the process of generating English acronyms is easily identified. For
example, University of Tokyo generates the acronym UoT by extracting
the head letter of each word. Some acronyms shuffle letters extracted
from their expanded forms, e.g. gamma interferon (IFN-GAMMA). The
generative process of Japanese acronyms is exactly the same as that of
English ones. Figure 38 shows three instances of Japanese acronyms.
The first acronym (a) takes two Kanji letters from the head of the two
words. The second acronym (b) extracts two Kanji letters from the first
and third words. Acronym (c) looks interesting: it takes letters at the
end of first, second, and fourth words in the expanded forms.

To further complicate matters, numerous Japanese acronyms do not
share letters between short and long forms because of their foreign
origins. In Fig. 39-(a), the expanded form Yakan Ri-chakuriku Kunren Japanese acronyms

with translationis a Japanese translation of the English term night landing practice,
but inherits the English acronym NLP. The generation process of the
abbreviation W hai (b) is much more complicated. The English term
World Cup is translated to a Katakana Japanese [wa-rudo kappu]19, which

19 Japanese language does not make a distinction between ‘l’ and ‘r’, i.e., world is represented

86 abbreviation

東京大学 東大

[Tokyo Daigaku] [ToDai]
University of Tokyo

(a)

(b)

(c)

National Institute

[Shuto-ken Chuo Renraku Jidousha-dou] [Ken-O Dou]
Metropolitan Inter-City Expressway

国研

圏央道

国立試験研究機関

[KokuKen][Kokuritsu Shiken Kenkyu Kikan]

首都圏中央連絡自動車道

Figure 38. Japanese acronyms.

is a notation to represent the English pronunciation with Japanese
consonants and vowels. The first component of the acronym W derives
from the first word of the English term, world. The second component
of the acronym hai is a translation of the English word cup into the
corresponding Kanji word.

The second category presents generic aliases that are not consideredJapanese aliases
as abbreviations, although a formal name is paraphrasable to its alias
and vice versa. For example, Democratic People’s Republic of Korea is
abbreviated as DPRK, but the country is also known as North Korea.
This is true also for their Japanese translations: the formal name of the
country is Cho-sen Minshu Shugi Jinmin Kyo-wakoku (literal translation
of the English name); its alias is Kita Cho-sen, which stands for North
Korea. Even though the formal name does not imply the northern part
of Korea, the English and Japanese aliases consist of Korea (Cho-sen)
with the locational modifier North (Kita).

The third category property has various parenthetical usage. The mostDescribing
additional property
values

common among usage patterns in this category is the parenthetical
expression “... A (B) ...” is interpreted in the following ways.

• ... A, whose X is B, ... (e.g., ... A, whose members are B, ...)

• ... A, which/who is/does X B, ... (e.g., ... A, which is located in B, ...)

In these interpretations, implicit element X specifies the relation be-
tween the elements A and B; also, the elements A and B are not para-
phrasable. For example, the reading usage of a parenthetical expression
A (B) describes the pronunciation B after the expression A. In news-
paper articles, a game console Wii might accompany a parentheticalProperty ’reading’
expression, (pronounced as the pronoun ‘we’), because the spelling is pe-
culiar for an English word. This usage of parentheses is common to
Japanese newspaper articles for annotating pronunciations of difficult
Kanji words20.

In general, it is difficult for a computer to supplement the element
X hidden in parenthetical expressions. The parenthetical expression

as wa-rudo.
20 Japanese uses more Kanji words than those studied at school during the period of

compulsory education.

6.6 validating japanese long forms 87

夜間離着陸訓練

[Yakan Ri-chakuriku Kunren]

[World Cup]

Night Landing Practice NLP

ワールドカップ

World Cup

acronym

acronym

acronym

translation

reading import
in Katakana

letter mapping ('w')

translation (to Kanji character)

Ｗ 杯

(a)

(b)

Figure 39. Japanese acronyms with translation.

Tsukuba Science City (Tsukuba City, Ibaraki Prefecture) should be inter-
preted as Tsukuba Science City, which is located in Tsukuba City, Ibaraki
Prefecture because the inner expression of the parentheses represents a
named entity of a location. The parenthetical expression Naoaki Okazaki
(27) is much more difficult to interpret: the number 27 might repre-
sent the age, uniform number, extended telephone number, etc. of the
person, depending on the context.

Our goal is to estimate the paraphrase likelihood of two expressions
X and Y, given a parenthetical expression X (Y). From this application
point of view, the paraphrase likelihood is expected to discriminate
acronym, acronym with translation, aliases from others. In practice, no
generic rules or exact patterns have been established for dealing with
the various types of lexical paraphrases expressed in parentheses. Con-
sequently, the remainder of this chapter examines an approach to extract
parenthetical expressions belonging to the first and second categories,
i.e., acronyms (with/without translation) and aliases.

6.6 validating japanese long forms

We overviewed the complicated generation processes of Japanese abbre-
viations in the previous section. What would be the result of applying
the same method proposed for English documents to Japanese docu-
ments? Table 11 illustrates the result with 596,058 articles (8,689,536 Parenthetical

expressions in
Japanese
newspapers

sentences) published by the Mainichi Newspapers and the Yomiuri
Shimbun in 1998 and 1999.

Similarly to the English abbreviation recognition described in Section
6.3, we collect sentences with parenthetical expressions. We tokenize a
sentence with a morphological analyzer to obtain a sequence of words.

88 abbreviation

Short form Long form Score Para
1 北朝鮮 朝鮮民主主義人民共和国 4134.1 o

(NorthKorea) (Democratic People's Republic of Korea)
2 Ｗ杯 ワールドカップ 2663.9 o

(W Cup) (World Cup)
3 ＥＵ 欧州連合 2620.8 o

(European Union)
4 ＮＡＴＯ 北大西洋条約機構 2581.9 o

(NorthAtlantic Treaty Organization)
5 ＩＭＦ 国際通貨基金 2461.7 o

(International Monetary Fund)
6 中国 人民日報 1561.0 x

(China) (People's Daily)
7 ＩＯＣ 国際オリンピック委員会 1490.5 o

(International Olympic Committee)
8 ＷＴＯ 世界貿易機関 1457.7 o

(World Trade Organization)
9 独 ディ ・ウェルト 1386.6 x

(Germany) (Die Welt)
10 米 ワシントン・ポスト 1171.0 x

(USA) (Washington Post)

Table 11. Top 10 short/long-form pairs in Japanese newspapers.

Extracting long-form candidates that match to the Pattern (6.8)21,

.*[:NP:]$ (6.8)

we compute the long-form likelihood LH(c) using the Formula 6.5.
Table 11 shows the top 10 short/long-form pairs that have high long-
form likelihood scores. The field "Para" presents the paraphrasability
of the short/long-form pair: 7 out of 10 pairs in the table are acronyms
(#2–5, #7–8) and aliases (#1), but 3 pairs (#6, #9, and #10) express the
nationality of the information source.

Table 11 shows clearly that the strong co-occurrence between a long
form and a short form does not imply paraphrasability. This study
employed a letter-matching algorithm for the English abbreviation
recognition to extract ‘authentic’ long forms. Unfortunately, a naive
letter-matching approach might remove all positive cases from this list: 6

out of 7 acronyms entail English translations and therefore do not share
letters between short forms and their long forms. Therefore, several
validation approaches for Japanese abbreviations are introduced.

strength of co-occurrence Hisamitsu and Niwa [27] proposed
a method for extracting useful parenthetical expressions from Japanese
newspaper articles, measuring the co-occurrence strength between the
inner and outer phrases of a parenthetical expression. They employed
mutual information, χ2 test with Yates’ correction, Dice coefficient,
log-likelihood ratio, etc. Although the long-form likelihood proposed
in this study also measures the co-occurrence strength, I evaluate the
usefulness of other measures, pointwise mutual information PMI(A, B)

21 [:NP:] matches a noun phrase, .* matches an empty string, noun phrase(s), or any
word(s) of any length, and $ matches a short form of the target abbreviation.

6.6 validating japanese long forms 89

European Union (EU)
.... EU

.... EU

.. EU

....

....

.......

European Union (EU)

.... EU

EU

..

....

....

.......

(a) Paraphrase
g('Europian Union') < g('EU')

(b) Non paraphrase
'EU' appears before the parentheses

Figure 40. Occurrences of paraphrasing.

and χ2(A, B):

PMI(A, B) = log
[
N · f(A, B)

f(A)f(B)

]
, (6.9)

χ2(A, B) =
N(ad − bc)2

(a + c)(b + d)(a + b)(c + d)
, (6.10)

(
a b

c d

)
=

(
f(A, B) f(A) − f(A, B)

f(B) − f(A, B) N − (a + b + c)

)
. (6.11)

In those formulas, f(A, B) denotes the number of sentences containing
the expression A followed by the parenthetical expression of B; f(A)
represents the number of sentences containing the expression A; f(B)
represents the number of sentences containing the expression B; and N

is the number of total sentences in the corpus.

letter matching As described in Section 6.5, some Japanese long
forms restore the letters in their short forms (see acronyms without
translation in Table 10). The binary function MATCH(A, B) is a predi-
cate to check if all letters in the short form B appear in its long form A,

MATCH(A, B) =

1 (if A contains all the letters in B)

0 (otherwise)
. (6.12)

This function returns 1 for all cases in Fig. 38 because the long form
reproduces the letters in the corresponding short form. In contrast, this
function returns 0 for all cases in Fig. 39 because some letters in the
short form are missing from the long form.

paraphrase occurrence It is useful to consider a situation in
which a writer introduces the abbreviation or alias B for an expression
A in a document. Once the parenthetical expression A (B) declares

90 abbreviation

the paraphrasing A → B, the writer should prefer the expression B
as A. The writer should not use the abbreviation or alias B before the
parenthetical expression because the expression B might be new to
the readers (i.e., this is the writer’s motivation to use the parenthetical
expression). Therefore, we can estimate the occurrence of paraphrasing
by specifically emphasizing the occurrences of the expressions A and B
before/after the parenthetical expression.

Presume that a document has the expression A followed by the
parenthetical expression of B. We identify a document as an instance of
paraphrasing A→ B if the document satisfies both of the conditions:Requirements for a

paraphrase
instance 1. The expression B appears more frequently than A after the paren-

thetical expression A (B).

2. The expression B does not appear before the parenthetical expres-
sion.

Figure 40 illustrates two documents with the parenthetical expression
European Union (EU). We regard the first document (a) as an instance of
paraphrasing, European Union→ EU because the expression EU occurs
more frequently than European Union after the parenthetical expression,
and because EU does not appear before the parenthetical expression.
In contrast, document (b) is not considered as a paraphrase instance
because EU does appear before the parenthetical expression.

Formula 6.13 assesses the probability of paraphrase instances over
the parenthetical expressions of A and B,Counting

paraphrase
occurrences PR(A, B) =

PARA(A, B)

D(A, B)
. (6.13)

In this formula, PARA(A, B) denotes the number of documents satis-
fying the above conditions; and D(A, B) presents the number of docu-
ments having the expression A followed by the parenthetical expression
of B. The function PR(A, B) takes values of 0 (no paraphrase instance)
to 1 (all parenthetical expressions introduce the paraphrase) inclusively.
The paraphrase occurrence is an original idea used for this study.

similarity of local contexts Yamamoto [79] proposed the use
of similarity of local contexts to measure the paraphrasability of two
expressions. His approach is similar to one for Word Sense Disambigua-
tion (WSD) , which exploits the resemblance of the local contexts ofWord Sense

Disambiguation
(WSD)

the target word and its references. In other words, his assumption is
that the sets of words appearing close to the expressions A and B are
expected to be similar if the expressions A and B are paraphrasable.

Following his approach, this study specifically examines each of the
words that has a dependency relation from/to the target expression.
Collecting such words as the local context of an expression, I use the
skew divergence [36] , which is a weighted version of the Kullback-Skew divergence
Leibler (KL) divergence , to measure the resemblance of probabilityKullback-Leibler

(KL) divergence distributions P and Q:

SKEWα(P||Q) = KL(P||αQ + (1 − α)P), (6.14)

6.7 experiments with japanese abbreviations 91

KL(P||Q) =
∑

i

P(i) log
P(i)

Q(i)
. (6.15)

In these formulas, P is the probability distribution function of the words
in the local context for the expression A, Q is that for the expression B,
and α is a parameter set to 0.99. The function SKEWα(P||Q) becomes
nearly zero if the probability distributions of local contexts for the
expressions A and B are similar.

6.7 experiments with japanese abbreviations

An evaluation was made of abbreviation/alias recognition from 596,058

Japanese articles (8,689,536 sentences) published by the Mainichi News-
papers and the Yomiuri Shimbun in 1998 and 1999. In all, 7,887 short/long-
form pairs were obtained from the article collection that satisfy the
following conditions:

• the long-form likelihood of a pair is no less than 8;

• a short form does not begin with a numerical letter;

• a short form or long form contains no symbol (e.g., 4,©, etc.);

• a short form is not registered in the list (see Fig. 41).

The 7,887 short-form and long-form pairs were classified manually
into two groups: paraphrasable (i.e., acronyms and aliases) and non-
paraphrasable (i.e., properties, others). The ratio of paraphrasable and
non-paraphrasable instances was 1,430 : 6,457.

The validation task is also considered as a two-class classification
problem. Therefore, I combined the validation approaches presented in
the previous section using Support Vector Machines (SVMs). A feature Features for SVM

classificationvector for a classification instance (short/long form pair) consists of six
values:

• LH: the long-form likelihood;

• PMI: the pointwise mutual information;

• χ2: the χ2 value;

• MATCH: the binary value indicating the letter match;

• PR: the probability of paraphrase occurrences; and

• SKEW: the skew divergence of the local contexts.

The parameters for SVMs (e.g., the type of kernel function, the degree
in the kernel function) were tweaked slightly, indicating that the fourth-
order of polynomial kernel achieved the best accuracy, 89.0% (at ten-
fold cross-validation). The precision, recall, and f-measure with this
optimal parameter were, respectively, 86.5%, 46.6%, and 60.6%. This
evaluation result is not comparable to those of previous studies because
no previous work assessed results of this validation task. Although

92 abbreviation

当時 (at that time), 元 (former), 同 (same), 日本時間 (JST)
右 (right), 左 (left), 上 (top), 下 (bottom), 中 (middle), 中央 (middle)
日 (Sun), 月 (Mon), 火 (Tue), 水 (Wed), 木 (Thu), 金 (Fri), 土 (Sat), 祝 (holiday)

Figure 41. Stoplist for Japanese abbreviation recognition.

Table 12. Comparison of different validation approaches

Method Accuracy (%)

All 89.0
- LH 89.0
- MATCH 89.0
- SKEW 89.0
- χ2

88.9
- PMI 88.0
- PR 82.8

- PR - LH 82.8
- PR - χ2

82.8
- PR - PMI 82.6
- PR - SKEW 82.4
- PR - MATCH 81.9

the abbreviation recognition for English documents achieved much
higher accuracy, the proposed method exhibits moderate performance
on recognizing Japanese abbreviations/aliases.

The author examined the contribution of each feature to the vali-Comparing
features dation task by eliminating features one by one. The concept of this

step is that, if a feature is important for classification, then removing
the feature will degrade the classification accuracy. Table 12 shows the
impact of each feature on the classification task. Each row presents the
accuracy of the classification (at ten-fold cross validation) after eliminat-
ing some feature(s). For example, the row “- PMI” reports the accuracy
of the classification (e.g. 88.0%) after eliminating the PMI feature.

The table reported that the paraphrase-occurrence feature (PR) had
the most important influence on the validation task: the absence of this
feature reduced the accuracy by 6.2%. Interestingly, the contribution
of letter-matching (MATCH), similarity of local contexts (SKEW), and
co-occurrence strength (LH, PMI, χ2) disappeared when PR is avail-
able. These facts suggest the importance of the PR feature to estimate
the paraphrasability of parenthetical expressions. The letter-matching
feature (MATCH) or similarity of local contexts (SKEW) would play an
influential rule if the paraphrase-occurrence feature (PR) were unavail-
able.

6.8 summary 93

6.8 summary

This chapter described a term recognition approach to extract abbre-
viations and their definitions from a large text collection. The main
contribution of this study has been to show the usefulness of statistical
information for building an abbreviation dictionary of good quality. The
proposed method outperformed the base-line systems, achieving 99%
precision and 82–95% recall on our evaluation corpus, which roughly
emulates all of MEDLINE. Figures 36 and 37 illustrate the superiority
of the proposed method in building a precise and comprehensive abbre-
viation dictionary. A future direction of this study would be to combine
a letter-matching algorithm to improve the recall of recognizing rare
short/long-form pairs (if rare pairs are necessary) and to incorporate
other types of relations that are expressed with parentheses such as
synonyms and paraphrases.

Even though the statistical approach is independent from the target
language, the creation process of Japanese abbreviations was much
more complicated than that of English ones. Strong co-occurrence does
not imply the paraphrasability of a long form to its short form and vice
versa. For that reason, this study proposed a method to classify paren-
thetical expressions into paraphrasable and non-paraphrasable groups.
The proposed method achieved a 60.6% f-measure on an evaluation
corpus constructed from Japanese articles published in Mainichi News-
papers and the Yomiuri Shimbun in 1998 and 1999. A future direction
of this study would be, for example, to incorporate a translation model
for dealing with abbreviations originating from foreign words.

Part IV

C O N C L U S I O N

7C O N C L U S I O N

This thesis examined methodologies for aggregating information and
knowledge across documents. As the first step to aggregate information
in multiple documents, Chapter 4 described sentence extraction. The
problem of sentence extraction was formalized as a combinational
optimization problem that determines a set of sentences containing
as many important information fragments as possible. The presented
system achieved a good result using the TSC-3 evaluation corpus. A
comparison among sentence representations demonstrated that the pair-
wise dependency relation performed better than either bag-of-words or
co-occurrence representations.

The sentence extraction presented in Chapter 4 rejected the inclusion
of redundant information in a summary. However, the approach did not
consider the coherent aggregation of information. Chapter 5 examined
a method to arrange the extracted sentences. The main contribution
of the work was: to propose a method for the effective use of prece-
dent information for improving chronological ordering; to obtain the
optimal combination of four existing criteria for arranging sentences;
and to establish the methodology for evaluating sentence ordering, i.e.,
sentence continuity metric, average continuity metric, and amendment-
based evaluation task. These findings will shed light on the problem
of modeling coherence in information aggregation, which has been a
difficult question in NLP.

Although redundancy similar to that modeled in Chapter 4 was the
target of elimination, the abbreviation recognition presented in Chapter
6 leveraged the redundancy of abbreviation definitions across docu-
ments. This is another form of information aggregation, i.e., knowledge
extraction in source documents for building a useful resource (dictio-
nary). The main contribution of this work was to illustrate the effective-
ness of statistical information for building an abbreviation dictionary
of good quality.

In conclusion, this thesis presents examination of novel methods
for sentence extraction, sentence ordering, and acronym recognition.
Even though this thesis targets these topics as exemplary problems, the
outcomes of this study will contribute to various NLP applications.

97

Part V

A P P E N D I X

B I B L I O G R A P H Y

[1] Eytan Adar. SaRAD: A simple and robust abbreviation dictionary.
Bioinformatics, 20(4):527–533, 2004. (Cited on pages 68, 69, 75,
and 80.)

[2] Hiroko Ao and Toshihisa Takagi. ALICE: An algorithm to extract
abbreviations from MEDLINE. Journal of the American Medical
Informatics Association, 12(5):576–586, 2005. (Cited on page 69.)

[3] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The berkeley
framenet project. In Proceedings of the 17th international conference on
Computational linguistics, pages 86–90, Morristown, NJ, USA, 1998.
Association for Computational Linguistics. (Cited on page 29.)

[4] Michele Banko, Vibhu O. Mittal, and Michael J. Witbrock. Headline
generation based on statistical translation. In ACL ’00: Proceedings
of the 38th Annual Meeting on Association for Computational Linguis-
tics, pages 318–325, Morristown, NJ, USA, 2000. Association for
Computational Linguistics. (Cited on page 25.)

[5] Regina Barzilay and Michelle Elhadad. Using lexical chains for text
summarization. In Proceedings of the Intelligent Scalable Text Sum-
marization Workshop (ISTS’97) (at ACL’97/EACL’97 Joint Conference),
pages 10–17, 1997. (Cited on page 28.)

[6] Regina Barzilay and Lillian Lee. Catching the drift: Probabilistic
content models, with applications to generation and summariza-
tion. In HLT-NAACL 2004: Proceedings of the Main Conference, pages
113–120, 2004. (Cited on pages 41, 42, and 44.)

[7] Regina Barzilay, Michael Elhadad, and Kathleen R. McKeown.
Inferring strategies for sentence ordering in multidocument sum-
marization. Journal of Artifical Intelligence Research (JAIR), 17:35–55,
2002. (Cited on pages 39, 40, 42, 48, 49, 50, 57, and 63.)

[8] Phyllis B. Baxendale. Man-made index for technical literature
— an experiment. IBM Journal of Research and Development, 2(4):
354–361, 1958. (Cited on page 27.)

[9] Adam Berger and Vibhu O. Mittal. Query-relevant summarization
using faqs. In ACL ’00: Proceedings of the 38th Annual Meeting on
Association for Computational Linguistics, pages 294–301, Morristown,
NJ, USA, 2000. Association for Computational Linguistics. (Cited
on page 25.)

[10] Adam L. Berger, Vincent J. Della Pietra, and Stephen A. Della Pietra.
A maximum entropy approach to natural language processing.
Computational Linguistics, 22(1):39–71, 1996. (Cited on page 70.)

[11] Harold Borko and Charles Bernier. Abstracting Concepts and Meth-
ods. Academic Press, San Diego, California, 1975. (Cited on
page 10.)

101

102 bibliography

[12] Ronald Brandow, Karl Mitze, and Lisa F. Rau. Automatic conden-
sation of electronic publications by sentence selection. Information
Processing and Management, 31(5):675–685, 1995. (Cited on page 27.)

[13] Peter F. Brown, John Cocke, Stephen A. Della Pietra, Vincent
J. Della Pietra, Fredrick Jelinek, John D. Lafferty, Robert L. Mercer,
and Paul S. Roossin. A statistical approach to machine translation.
Computational Linguistics, 16(2):79–85, 1990. (Cited on page 70.)

[14] Jeffrey T. Chang and Hinrich Schütze. Abbreviations in biomedical
text. In S. Ananiadou and J. McNaught, editors, Text Mining for
Biology and Biomedicine, pages 99–119. Artech House, Inc., 2006.
(Cited on pages 67 and 69.)

[15] Thomas M. Cover and Peter E. Hart. Nearest neighbor pattern
classification. IEEE Transactions on Information Theory, 13:21–27,
1967. (Cited on page 49.)

[16] Edward T. Cremmins. The Art of Abstracting. Information Resource
Press, Arlington, Virginia, 1996. (Cited on page 11.)

[17] Hal Daumé, III and Daniel Marcu. A noisy-channel model for
document compression. In ACL ’02: Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics, pages 449–456,
Morristown, NJ, USA, 2002. Association for Computational Lin-
guistics. (Cited on pages 25 and 70.)

[18] Harold P. Edmundson. New methods in automatic extracting.
Journal of the Association for Computing Machinery, 16(2):264–285,
1969. (Cited on pages 27 and 28.)

[19] Brigitte Endres-Niggemeyer. Summarizing Information. Springer,
Berlin, 1998. (Cited on pages 12 and 25.)

[20] Charles J. Fillmore. The case for case. In Emmon Bach and Robert T.
Harms, editors, Universals in Linguistic Theory, pages 1–88. Holt,
RineHart, and Winston, New York, NY, USA, 1968. (Cited on
page 29.)

[21] Katerina T. Frantzi and Sophia Ananiadou. The C-value / NC-
value domain independent method for multi-word term extraction.
Journal of Natural Language Processing, 6(3):145–179, 1999. (Cited on
pages 72 and 73.)

[22] Sylvain Gaudan, Harald Kirsch, and Dietrich Rebholz-Schuhmann.
Resolving abbreviations to their senses in medline. Bioinformatics,
21(18):3658–3664, 2005. (Cited on page 68.)

[23] Jade Goldstein, Vibhu Mittal, Jaime Carbonell, and Mark
Kantrowitz. Multi-document summarization by sentence extrac-
tion. In NAACL-ANLP 2000 Workshop on Automatic Summarization,
volume 4, pages 40–48, 2000. (Cited on page 29.)

[24] Tsutomu Hirao, Hideki Isozaki, Eisaku Maeda, and Yuji Mat-
sumoto. Important sentence extraction based on support vector
machines. In Proceedings of COLING-2002, pages 342–348, 2002.
(Cited on page 28.)

bibliography 103

[25] Tsutomu Hirao, Manabu Okumura, Takahiro Fukushima, and
Hidetsugu Nanba. Text Summarization Challenge 3 — Text sum-
marization evaluation at ntcir workshop 4 —. In NTCIR Workshop
4: Proceedings of the Fourth NTCIR Workshop on Research in Informa-
tion Access Technologies Information Retrieval, Question Answering and
Summarization, 2004. (Cited on pages 17 and 34.)

[26] Tsutomu Hirao, Manabu Okumura, Takahiro Fukushima, Hidet-
sugu Nanba, and Chikashi Nobata. Corpus and evaluation mea-
sures for multiple document summarization with multiple sources.
In Proc. of the 20th International Conference on Computational Lin-
guistics (COLING2004), volume 1, pages 535–541, 2004. (Cited on
page 18.)

[27] Toru Hisamitsu and Yoshiki Niwa. Extracting useful terms from
parenthetical expression by combining simple rules and statistical
measures: A comparative evaluation of bigram statistics. In Didier
Bourigault, Christian Jacquemin, and Marie-C L’Homme, editors,
Recent Advances in Computational Terminology, pages 209–224. John
Benjamins, 2001. (Cited on pages 69, 70, and 88.)

[28] Jerry R. Hobbs. Literature and Cognition. Center for the Study
of Language and Information (CSLI). The University of Chicago
Press, 1990. (Cited on page 40.)

[29] Eduard Hovy. Automated text summarization. In Ruslan Mitkov,
editor, The Oxford Handbook of Computational Linguistics. Oxford
University Press, Oxford, UK, 2001. (Cited on page 9.)

[30] David Hume. An Enquiry Concerning Human Understanding. Project
Gutenberg (Online Book Catalog), 1748. (Cited on page 40.)

[31] Karen Sparck Jones. A statistical interpretation of term specificity
and its application in retrieval. Document retrieval systems, pages
132–142, 1988. (Cited on page 27.)

[32] Donald E. Knuth. Computer programming as an art. Commun.
ACM, 17(12):667–673, 1974. (Cited on page xi.)

[33] Taku Kudo and Yuji Matsumoto. Japanese dependency analysis
using cascaded chunking. In CoNLL 2002: Proceedings of the 6th
Conference on Natural Language Learning 2002 (COLING 2002 Post-
Conference Workshops), pages 63–69, 2002. (Cited on pages 20

and 29.)

[34] Julian Kupiec, Jan Pedersen, and Francine Chen. A trainable
document summarizer. In SIGIR ’95: Proceedings of the 18th annual
international ACM SIGIR conference on Research and development in
information retrieval, pages 68–73, New York, NY, USA, 1995. ACM
Press. (Cited on page 28.)

[35] Mirella Lapata. Probabilistic text structuring: experiments with
sentence ordering. In Proceedings of the 41st Meeting of the Associ-
ation of Computational Linguistics, pages 545–552, 2003. (Cited on
pages 41, 42, 44, 61, and 63.)

104 bibliography

[36] Lillian Lee. On the effectiveness of the skew divergence for statis-
tical language analysis. In Artificial Intelligence and Statistics 2001,
pages 65–72, 2001. (Cited on page 90.)

[37] Chin-Yew Lin and Eduard Hovy. NEATS: A multidocument sum-
marizer. In Proceedings of the Document Understanding Conference
(DUC01), Aug. 2001. (Cited on pages 40, 42, 46, and 57.)

[38] Chin-Yew Lin and Eduard Hovy. From single to multi-document
summarization: a prototype system and its evaluation. In ACL
’02: Proceedings of the 40th Annual Meeting on Association for Com-
putational Linguistics, pages 457–464, Morristown, NJ, USA, 2002.
Association for Computational Linguistics. (Cited on pages 29

and 46.)

[39] Hongfang Liu and Carol Friedman. Mining terminological knowl-
edge in large biomedical corpora. In 8th Pacific Symposium on
Biocomputing (PSB 2003), pages 415–426, 2003. (Cited on pages 69,
70, and 80.)

[40] Hans Peter Luhn. The automatic creation of literature abstracts.
IBM journal of Research and Development, 2(2):159–165, 1958. (Cited
on pages 26, 27, and 39.)

[41] Inderjeet Mani. Automatic Summarization. John Benjamins, Amster-
dam/Philadelphia, 2001. (Cited on pages 4 and 9.)

[42] Inderjeet Mani and Eric Bloedorn. Multidocument summarization
by graph search and matching. In Proceedings of the Fifteenth Na-
tional Conference on Artificial Intelligence (AAAI-97), pages 622–628,
1997. (Cited on page 28.)

[43] Inderjeet Mani and Eric Bloedorn. Machine learning of generic
and user-focused summarization. In The 15th National Conference
on Artificial Intelligence, pages 821–826, 1998. (Cited on page 28.)

[44] Inderjeet Mani and George Wilson. Robust temporal processing
of news. In ACL ’00: Proceedings of the 38th Annual Meeting on
Association for Computational Linguistics, pages 69–76, Morristown,
NJ, USA, 2000. Association for Computational Linguistics. (Cited
on page 47.)

[45] Inderjeet Mani, Barry Schiffman, and Jianping Zhang. Inferring
temporal ordering of events in news. In NAACL ’03: Proceedings of
the 2003 Conference of the North American Chapter of the Association
for Computational Linguistics on Human Language Technology, pages
55–57, Morristown, NJ, USA, 2003. Association for Computational
Linguistics. (Cited on page 47.)

[46] William C. Mann and Sandra A. Thompson. Rhetorical structure
theory: Toward a functional theory of text organization. Text, 8:
243–281, 1988. (Cited on page 40.)

[47] Daniel Marcu. From local to global coherence: A bottom-up ap-
proach to text planning. In Proceedings of the 14th National Conference
on Artificial Intelligence, pages 629–635, Providence, Rhode Island,
1997. (Cited on page 55.)

bibliography 105

[48] Daniel Marcu. The rhetorical parsing of natural language texts. In
Proceedings of the 35th annual meeting on Association for Computational
Linguistics, pages 96–103, Morristown, NJ, USA, 1997. Association
for Computational Linguistics. (Cited on page 28.)

[49] Daniel Marcu. Discourse trees are good indicators of importance in
text. In Inderjeet Mani and Mark T. Maybury, editors, Advances in
Automatic Text Summarization. MIT Press, 1999. (Cited on page 28.)

[50] Kathleen R. McKeown, Judith L. Klavans, Vasileios Hatzivas-
siloglou, Regina Barzilay, and Eleazar Eskin. Towards multidocu-
ment summarization by reformulation: progress and prospects. In
AAAI ’99/IAAI ’99: Proceedings of the sixteenth national conference on
Artificial intelligence and the eleventh Innovative applications of artificial
intelligence conference innovative applications of artificial intelligence,
pages 453–460, Menlo Park, CA, USA, 1999. American Association
for Artificial Intelligence. (Cited on pages 40, 42, and 57.)

[51] Norifumi Murayama and Manabu Okumura. Noisy-channel model
wo mochita ryakugo jidou suitei (automatic estimation of abbre-
viaion using noisy-channel model). In Proceeding of Gengo Shori
Gakkai Dai 12 Kai Nenji Taikai (Proceeding of the 12th Japanese Domes-
tic Conference on Natural Language Processing), pages 763–766, 2006.
(Cited on page 70.)

[52] David Nadeau and Peter D. Turney. A supervised learning ap-
proach to acronym identification. In 8th Canadian Conference on
Artificial Intelligence (AI’2005) (LNAI 3501), page 10 pages, 2005.
(Cited on page 69.)

[53] Katashi Nagao and Koichi Hasida. Automatic text summarization
based on the global document annotation. In Proceedings of the 17th
International Conference on Computational Linguistics / 36th Annual
Meeting of the Association for Computational Linguistics (COLING-
ACL ’98), pages 917–921, Montreal, Quebec, Canada, Aug. 1998.
(Cited on page 29.)

[54] Naoaki Okazaki, Yutaka Matsuo, Naohiro Matsumura, Hironori
Tomobe, and Mitsuru Ishizuka. Two different methods at NTCIR3-
TSC2: Coverage oriented and focus oriented. In Working Notes
of the Third NTCIR Workshop Meeting, Part V: Text Summarization
Challenge 2 (TSC2), pages 39–46, 2002. (Cited on page 29.)

[55] Naoaki Okazaki, Yutaka Matsuo, Naohiro Matsumura, and Mit-
suru Ishizuka. Sentence extraction by spreading activation with
similarity measure. IEICE Transactions on Information and Systems
(Special Issue on Text Processing for Information Access), E86-D(9):
915–926, 2003. (Cited on page 28.)

[56] Manabu Okumura and Hidetsugu Nanba. Automated text sum-
marization: A survey (in japanese). Shizen Gengo Shori (Japanese
Journal of Natural Language Processing), 6(6):1–26, 1999. (Cited on
page 26.)

106 bibliography

[57] Chris D. Paice. The automatic generation of literature abstracts: an
approach based on the identification of self-indicating phrases. In
SIGIR ’80: Proceedings of the 3rd annual ACM conference on Research
and development in information retrieval, pages 172–191, Kent, UK,
1981. Butterworth & Co. (Cited on page 27.)

[58] Chris D. Paice. Constructing literature abstracts by computer:
techniques and prospects. Information Processing and Management,
26(1):171–186, 1990. (Cited on page 26.)

[59] Serguei Pakhomov. Semi-supervised maximum entropy based
approach to acronym and abbreviation normalization in medical
texts. In 40th Annual Meeting of the Association for Computational
Linguistics (ACL), pages 160–167, 2002. (Cited on page 69.)

[60] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu.
BLEU: A method for automatic evaluation of machine transla-
tion. Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 311–318, 2002. (Cited on
page 46.)

[61] Youngja Park and Roy J. Byrd. Hybrid text mining for finding
abbreviations and their definitions. In 2001 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 126–133,
2001. (Cited on page 73.)

[62] Martin F. Porter. An algorithm for suffix stripping. Program, 14(3):
130–137, 1980. (Cited on page 72.)

[63] James Pustejovsky, José Castaño, Brent Cochran, Maciej Kotecki,
and Michael Morrell. Automatic extraction of acronym meaning
pairs from MEDLINE databases. MEDINFO 2001, pages 371–375,
2001. (Cited on page 67.)

[64] Dragomir Radev, Timothy Allison, Sasha Blair-Goldensohn, John
Blitzer, Arda Çelebi, Stanko Dimitrov, Elliott Drabek, Ali Hakim,
Wai Lam, Danyu Liu, Jahna Otterbacher, Hong Qi, Horacio Sag-
gion, Simone Teufel, Michael Topper, Adam Winkel, and Zhu
Zhang. MEAD - a platform for multidocument multilingual text
summarization. In 4th International Conference on Language Resources
and Evaluation (LREC 2004), Lisbon, Portugal, May 2004. (Cited on
page 15.)

[65] Dragomir Radev, Jahna Otterbacher, Adam Winkel, and Sasha
Blair-Goldensohn. Newsinessence: summarizing online news top-
ics. Communications of the ACM, 48(10):95–98, 2005. (Cited on
page 14.)

[66] Dragomir R. Radev and K. McKeown. Generating natural language
summaries from multiple on-line sources. Computational Linguistics,
24(3):469–500, 1998. (Cited on page 5.)

[67] Dragomir R. Radev, H. Jing, and M. Budzikowska. Centroid-based
summarization of multiple documents: Sentence extraction, utility-
based evaluation, and user studies. In The ANLP/NAACL2000

bibliography 107

Workshop on Automatic Summarization, pages 21–30, 2000. (Cited on
page 29.)

[68] Hiroyuki Sakai and Shigeru Masuyama. Improvement of the
method for acquiring knowledge from a single corpus on corre-
spondences between abbreviations and their original words. Shizen
Gengo Shori (Japanese Journal of Natural Language Processing), 12(4),
2005. (Cited on page 69.)

[69] Gerard Salton and Chung-Shu Yang. On the specification of term
values in automatic indexing. Journal of Documentation, 29(4):351–
372, 1973. (Cited on page 27.)

[70] Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space
model for automatic indexing. Communications of the ACM, 18(11):
613–620, 1975. (Cited on pages 29 and 49.)

[71] Gerard Salton, A. Singhal, M. Mitra, and C. Buckley. Automatic
text structuring and summarization. Information Processing and
Management, 32(2):53–65, 1997. (Cited on page 28.)

[72] Roger C. Schank. Conceptual Information Processing. Elsevier Science
Inc., New York, NY, USA, 1975. (Cited on page 29.)

[73] Ariel S. Schwartz and Marti A. Hearst. A simple algorithm for
identifying abbreviation definitions in biomedical text. In Pacific
Symposium on Biocomputing (PSB 2003), number 8, pages 451–462,
2003. (Cited on pages 69, 75, and 77.)

[74] Karen Sparck-Jones. Automatic summarizing: Factors and direc-
tions. In Inderjeet Mani and Mark T. Maybury, editors, Advances in
Automatic Text Summarization. MIT Press, 1999. (Cited on page 9.)

[75] Kazem Taghva and Jeff Gilbreth. Recognizing acronyms and
their definitions. International Journal on Document Analysis and
Recognition (IJDAR), 1(4):191–198, 1999. (Cited on page 69.)

[76] Yoshimasa Tsuruoka, Sophia Ananiadou, and Jun’ichi Tsujii. A
machine learning approach to acronym generation. In Proceedings
of the ACL-ISMB Workshop on Linking Biological Literature, Ontologies
and Databases: Mining Biological Semantics, pages 25–31, Detroit,
USA, June 2005. Association for Computational Linguistics. (Cited
on page 70.)

[77] Jonathan D. Wren and Harold R. Garner. Heuristics for identi-
fication of acronym-definition patterns within text: towards an
automated construction of comprehensive acronym-definition dic-
tionaries. Methods of Information in Medicine, 41(5):426–434, 2002.
(Cited on pages 69 and 75.)

[78] Jonathan D. Wren, Jeffrey T. Chang, James Pustejovsky, Eytan Adar,
Harold R. Garner, and Russ B. Altman. Biomedical term mapping
databases. Database Issue, 33:D289–D293, 2005. (Cited on page 67.)

108 bibliography

[79] Kazuhide Yamamoto. Acquisition of lexical paraphrases from texts.
In 2nd International Workshop on Computational Terminology (Comput-
erm 2002, in conjunction with Coling2002), pages 1–7, Morristown,
NJ, USA, 2002. Association for Computational Linguistics. (Cited
on page 90.)

[80] Hong Yu, George Hripcsak, and Carol Friedman. Mapping ab-
breviations to full forms in biomedical articles. Journal of the
American Medical Informatics Association, 9(3):262–272, 2002. (Cited
on page 69.)

[81] George K. Zipf. Human Behaviour and the Principle of Least-Effort.
Addison-Wesley, Cambridge MA, 1949. (Cited on pages 74 and 79.)

colophon

This thesis was typeset with LATEX 2ε with André Miede’s A Classic
Thesis Style version 1.3.1 (August 2006). The style uses Hermann Zapf’s
Palatino and Euler type faces (Type 1 PostScript fonts URW Palladio L
and FPL were used). The listings are typeset in Bera Mono, originally
developed by Bitstream, Inc. as “Bitstream Vera”. (Type 1 PostScript
fonts were made available by Malte Rosenau and Ulrich Dirr.) The typo-
graphic style was inspired by Robert Bringhurst’s genius as presented
in The Elements of Typographic Style (Version 2.5, Hartley & Marks, 2002).

Final Version as of January 28, 2007 at 16:47.

D E C L A R AT I O N

I hereby declare that this submission is my own work and that, to the
best of my knowledge and belief, it contains no material previously
published or written by another person nor material which to a sub-
stantial extent has been accepted for the award of any other degree or
diploma of the university or other institute of higher learning, except
where due acknowledgment has been made in the text.

7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, JAPAN,

Naoaki Okazaki

	Abstract
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	I Preliminaries
	1 Introduction
	1.1 Background
	1.2 Outline of this thesis

	2 Automatic Text Summarization
	2.1 Introduction
	2.2 Basic notions
	2.3 Professional summarizing
	2.4 Multi-document summarization
	2.5 Application examples

	3 Text Summarization Challenge (TSC)
	3.1 Text Summarization Challenge (TSC)
	3.1.1 Evaluation metrics for extracts
	3.1.2 Evaluation metrics for abstracts

	3.2 Our summarization system

	II Extraction
	4 Sentence Extraction
	4.1 Introduction
	4.2 Related work
	4.3 Sentence representation
	4.4 Sentence extraction for MDS
	4.5 Evaluation
	4.6 Summary

	5 Structuring Extracts
	5.1 Introduction
	5.2 Sentence ordering problem
	5.3 Evaluation methodology
	5.3.1 Subjective grading
	5.3.2 Semi-automatic evaluation

	5.4 Chronological ordering
	5.5 Leveraging precedence relations
	5.5.1 Precedence relation
	5.5.2 Implementation
	5.5.3 Experiment
	5.5.4 Results

	5.6 Machine-learning approach
	5.6.1 Bottom-up approach for text structuring
	5.6.2 Criteria for arranging sentences
	5.6.3 SVM classifier to assess the integrated criterion
	5.6.4 Evaluation
	5.6.5 Results

	5.7 Summary

	III Compaction
	6 Abbreviation
	6.1 Introduction
	6.2 Related work
	6.3 Extracting English abbreviations
	6.3.1 Recognizing abbreviations based on co-occurrence
	6.3.2 Term recognition approach to long-form recognition
	6.3.3 Extracting authentic long-forms for abbreviations
	6.3.4 Implementation

	6.4 Experiments with English abbreviations
	6.5 Japanese parenthetical expressions
	6.6 Validating Japanese long forms
	6.7 Experiments with Japanese abbreviations
	6.8 Summary

	IV Conclusion
	7 Conclusion

	V Appendix
	Bibliography
	Colophon
	Declaration

