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Abstract

The problem of soft errors caused by radiation events are expected to get
worse with technology scaling. This thesis focuses on mitigation of soft errors
to improve the reliability of memory caches. We survey existing mitigation
techniques and discuss their issues. We then propose 1) a technique that can
mitigate soft errors in caches with lower costs than the widely-used Error
Correcting Code (ECC), 2) a technique to mitigate soft errors in Content
Addressable Memories, and 3) a cost-effective cache architecture achieving
both variation-induced defect and soft-error tolerance.

ECC is widely used to detect and correct soft errors in memory caches.
Maintaining ECC on a per-word basis, which is preferred for caches with
word-based access, is expensive. Chapter 3 proposes Zigzag-HVP, a cost-
effective technique to detect and correct soft errors for such caches. Zigzag-
HVP utilizes horizontal-vertical parity (HVP). Basic HVP can detect and
correct a single bit error (SBE), but not a multi-bit error (MBE). By dividing
the data array into multiple HVP domains and interleaving different domains,
a spatial MBE can be converted to multiple SBEs, each of which can be
detected and corrected by the corresponding parity domain. Vertical parity
update and error recovery in Zigzag-HVP can be performed efficiently by
modifications to the cache data paths, write-buffer, and Built-In Self Test.
Evaluation results indicate that the area and power overheads of Zigzag-HVP
caches are lower than those of ECC-based ones.

Chapter 4 proposes STCAM, a soft-error tolerant Content-Addressable
Memory (CAM). Soft-error mitigation in a CAM is difficult due to the un-
availability of data outside the cell array in a CAM access. Since CAMs
are used in several components of a processor, making those CAMs being
resilient against soft errors is required to attain high processor’s reliability.
STCAM can successfully detect and correct false hits and false misses caused
by soft errors in a CAM. This is achieved through subdividing a CAM and
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providing backup checking for cases the input tag is partially matched in the
CAM. An original encoding scheme is proposed to reduce the frequency of
backup checking. Modifications to support STCAM do not increase access
latency. Performance degradation incurred by backup checking is very low.

Chapter 5 presents SEVA, a soft-error- and variation-aware cache archi-
tecture. As memory devices are scaled down, the number of variation-induced
defective cells increases rapidly. Combination of ECC, particularly Single-
Error Correction Double-Error Detection (SECDED), with a redundancy
technique can effectively tolerate a high number of defects. While SECDED
can repair a defective cell in a hardware block, the block becomes vulnerable
to soft errors. SEVA exploits SECDED to tolerate variation-induced defects
while preserving high resilience against soft errors. Information about the de-
fectiveness and data dirtiness is maintained for each SECDED block. SEVA
allows only the clean data to be stored in the defective blocks. An error
occurring in a defective block can be detected and the correct data can be
obtained from the lower level of the memory hierarchy. SEVA improves both
yield and reliability with low overheads.

Having memory caches to be tolerable from soft errors is essential for at-
taining high processor’s reliability. Incurring low area and power overheads,
Zigzag-HVP allows support for soft-error tolerance to be more affordable
and therefore pervasive. STCAM increases in the coverage of soft error
protection in a processor. Finally, SEVA shows that soft-error tolerance
for reliability and defect tolerance for yield can be achievable with reason-
able costs, paving the way for successful SRAM designs in future process
technology.
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Chapter 1

Introduction

Computer systems with very high dependability are required as the soci-
ety becomes increasingly dependent on the computation and communication
capability provided by them. Dependable computing has been emerging as
an important and active research field, covering aspects including reliability,
availability, safety, and security of computer systems [1].

Radiation-induced soft errors are expected to have serious impacts on the
reliability of semiconductor devices, particularly as scaling trend continues.
This thesis focuses on mitigation of soft errors to improve the reliability of
memory caches and, as a result, to enhance the dependability of processors.
In this chapter, we explain the problem of soft errors, and briefly review
existing mitigation techniques in memory caches. We then describe the re-
search contributions. At the end of the chapter, we describe the organization
of this thesis.

1.1 Background

1.1.1 Soft Error Problem

Soft errors, also called Single Event Upsets (SEUs), in a semiconductor device
refer to intermittent or transient failures caused by radiation events [2]. Soft
errors cause loss of of data but do not bring about permanent damage to the
device. The problem of soft errors are early recognized in 1950s [3]. Since
then, extensive work has been done to investigate the mechanisms of soft
errors, their impacts on the reliability of semiconductor devices, as well as to

15



16 CHAPTER 1. INTRODUCTION

Figure 1.1: Charge generation and collection in a reverse-biased
junction. Formation of a cylindrical track of electron-hole pairs in (a),
funnel shape extending high field depletion region deeper into substrate in
(b), diffusion beginning to dominate collection process in (c), and the resul-
tant current pulse caused by the passage of a high-energy ion in (d) [4].

develop techniques to mitigate them.

Soft Error Mechanisms

The reverse-biased P/N junction node (i.e., drain node of a transistor) is
the most charge-sensitive part of circuits, particularly if the junction is float-
ing or weakly driven and consequently most susceptible to soft errors. As
ionizing radiation passes through a node, electrons and holes are generated
along the track of ionizing particles, as shown in Figure 1.1-a. Depending
on the type and amount of energy of the incident particles, the generated
charges are produced by either direct ionization by the incident particle, or
indirect ionization of secondary particle produced by nuclear reaction be-
tween the incident particle and the target material [5]. When the resultant
ionization track traverses or comes close to the depletion region, the electric
field rapidly collects carriers, creating a current/voltage glitch at that node.
Charge collection is greatly enhanced by funneling effect [4]. Funneling is
caused by distortion of the potential into a funnel shape extending deeply
into the substrate, as shown in Figure 1.1-b. Excess charges produced by a
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radiation track inside this funneling region are collected very rapidly. This
collection phase completes within tens of picoseconds. Then another phase
follows in which diffusion begins to dominate the process. Figure 1.1-c shows
the resultant current pulse.

Radiation Sources

There are several sources of high-energy particles that can cause soft er-
rors [2]. Soft errors may be caused by alpha particles emitted from radioac-
tive decay of contaminants in the metal, passivation layers, and package
materials. Soft errors may also be caused by cosmic rays (mainly neutrons
and protons) that are the by-products of interactions between high energy
(tens of MeV/nucleus) galactic cosmic ray with oxygen and nitrogen in the
atmosphere. The third source of soft errors comes from alpha particles re-
leased from interaction of low-energy cosmic neutrons with the isotope boron-
10 (10B) present in borophosphosilicate glass (BPSG), which is a common
semiconductor dopant and dielectric component in IC materials [6]. In ad-
vanced processes that use highly purified chip and packaging materials with
extremely low levels of uranium and thorium impurities, and where a di-
electric material free of 10B has replaced BPSG layers, high-energy cosmic
neutrons are responsible for the majority of soft errors observed [4].

Soft errors can cause bit-upsets in dynamic and static memory elements
(e.g., DRAMs, SRAMs, latches, flip-flops). Memory caches have been the
main targets of soft error mitigation. The problem of soft errors in logic
circuits has received attention in recent years.

Soft Error Rate and Impacts of Scaling

The amount of charges collected by a gate after a radiation event depends on
many factors including the substrate structure, device doping and biasing of
circuit nodes, the substrate structure, device doping, the type of ion, where
the ion occurs within the devices, and the device’s state [5]. The collection
slop Qs is a measure of the charge collection efficiency of a device measured
in fC and it is heavily dependent on the process technology [7]. Previous
work has showed that Qs will become smaller as technology scales down [8].

The collection efficiency of a device, however, is not the only factor that
determines if a soft error occurs. The sensitivity of the device to the excess
charges must also be considered. Qcrit is the critical amount of charges that
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has to be deposited to a circuit node for a soft error to occur. Qcrit depends
on many factors including the nodal capacitance, operating voltage, circuit
topology [4]. Circuit simulators can be used to calculate the critical charge
of a circuit [9]. The scaling trend towards lower supply voltage and smaller
device dimensions has decreased Qcrit [4].

For simple isolated junction (e.g., DRAM cells), a soft error will be in-
duced when a radiation event occurs close enough to a sensitive node such
that the collected charge represented by Qs is greater than Qcrit. Conversely,
if the event produces a Qs less than Qcrit, the circuit will survive the event
and no soft error will occur. In SRAM or other logic circuit having active
feedback, there is an additional component of Qcrit related to the magnitude
of the compensating current and the switching time of the device. Increasing
the strength of the feedback circuit and the time to switch the device will in
effect increase Qcrit.

A widely used empirical model relating the soft error rate (SER) to Qs and
Qcrit is indicated by Equation 1.1 [8]. F in the equation is the particle flux
which is the number of particles per unit area per second (particles/(cm2s)).
A is the area of the circuit that is sensitive to particle strikes (cm2).

SER ∝ F ×A × e
−

Qcrit
QS (1.1)

DRAM’s per-bit SER was high when manufacturers used planar capaci-
tor cells that store charges in two-dimensional, large-area junctions. These
cells were very efficient at collecting radiation-induced charges. DRAM man-
ufacturer since then adopted three-dimensional capacitor designs that sig-
nificantly increase Qcrit while greatly reducing junction collection efficiency
by eliminating the large storage junctions. DRAM’s per-bit SER has been
shrinking about 4x to 5x per generation. The increased memory density
(bits per system) almost as fast as the SER reduction that technology scal-
ing provided. DRAM’s system SER has remained essentially unchanged over
generations [4].

A SRAM is more susceptible to soft errors than a DRAM. Designers have
deliberately minimized the SRAM junction area to reduce capacitance, leak-
age, and cell area while aggressively scaling down SRAM’s operating voltage
to minimize power consumption. Which each successive SRAM generation, a
reduction in operating voltage and node capacitance has cancelled out the re-
duction in cell collection efficiency caused by shrinking cell depletion volume.
Initially, SRAM’s per-bit SER was increasing with each successive generation.
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More recently, as feature sizes have size have shrunk into the deep-submicron
range, SRAM’s per-bit SER has reached saturation and might even be de-
creasing. This saturation is primarily due to the saturation in voltage scal-
ing, reduction in junction collection efficiency, and increased charge sharing
caused by short-channel effects with neighboring nodes. SRAM’s per-chip
SER is expected to increase at most linearly with decreasing feature size [8].

A transient pulse caused by ionizing event can propagate through logic
gates and finally be latched by a sequential element, resulting in an incorrect
output. Whether an erroneous pulse in a logic circuit resulting in an incorrect
output depends on three masking effects: logical masking, electrical masking
and latch window masking. Logical masking happens when one of inputs of
a gate is in controlling state (e.g., 0 for a NAND gate) so that then transient
pulse at another input is blocked. Electrical masking happens when pulse is
attenuated by subsequent logic gates because of the electrical property of the
logic gate. Latch window masking means the arrival transient pulse is outside
of the latching window for the sequential elements. The impacts of these
masking effects on SER of logic circuit have been studied [10] [7] [11]. SER
of logic circuits is expected to increase rapidly and contribute a significant
fraction of system SER [7].

The commonly used unit of measure for the soft error rate (SER) and
other hard-reliability mechanisms is the FIT (failure in time). A FIT is
equivalent to one failure in 109 device hours. Soft errors have become a huge
concern in advanced computer chips because, uncorrected, they produce a
failure rate exceeding that of all other reliability mechanisms combined. For
example, a typical failure rate of a hard-reliability mechanism (e.g., gate-
oxide breakdown, metal electro-migration) is about 5 to 150 FITs. However,
without mitigation, SER can easily exceed 50,000 FITs per chip [4].

Necessity of Soft Error Tolerance

Traditionally, soft errors were regarded as a major concern only for space
and avionics electronics. Since the flux of radiation particles increases with
high altitude, electronics working in high altitude environments are exposed
to a much higher SER than those on ground. Specifically, the sea-level flux is
several hundred times smaller than the fluxes seen at aircraft altitudes [12].
The necessity of employing measures against soft errors in space and avionics
electronics also stems from the fact that these applications are extremely
mission-critical such that even a small SER is unacceptable.
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Until recently, the problem of soft errors was largely ignored in commod-
ity electronics. Commodity electronics are highly cost-sensitive so that any
measure against soft errors that imposes a relatively high cost was commonly
considered unacceptable by users. Moreover, SER was low enough so that
the costs and design efforts spent to implement the measures were unjusti-
fied. However, the situation has been increasingly changing. The problem of
soft errors in commodity electronics cannot be negligible any more. Device
scaling enables large scale integration. System-level SER therefore grows
rapidly. Customers become more aware of, and demand stringent tolerance
requirements for soft-error problem. These factors make soft error mitiga-
tion indispensable not only for space and avionics electronics, but also for
commodity electronics.

Soft-error induced failures in commodity electronics have been reported.
SUN servers crashed due to lack of soft error tolerance in the designs of
UltraSparc II processor and its internal cache [13]. Cisco’s 12000 line-card
router reset after SEU failures, requiring two or three minutes to recover [14].
FPGA-based Q Cluster and System X, which were the second and third
fastest supercomputers on the November 2003 Top 500 Supercomputer Sites
list, experienced fatal failures caused by soft errors [15]. The Q cluster,
for example, experienced 26.1 CPU failures a week [15]. Such failures had
unavoidably led to customer’s dissatisfaction, damaged reputation of com-
panies. Advanced processor designs have put a great emphasis on soft error
tolerance. Figure 1.2 shows the diagram of SPARC64 processor [16] [17].
Memory caches, data paths, and 83% of latches in the processor are pro-
tected from soft errors, either by parity or Error Correcting Code (ECC).

1.1.2 Soft-Error Tolerance in Memory Caches

Memory speeds are increasing at a much slower rate than processor speeds
[18]. So even though processors are becoming faster, the overall performance
declines because of the slower memory. The processor will spend increasing
portion of execution time waiting for data to be brought from memory. To
bridge the gap between memory speed and processor speed, an advanced
processor usually devotes a majority of hardware resources for its memory
caches. For instance, Itanimum 2 processor devotes 86% of the transistors
for its L3 cache [19]. Moreover, memory caches are usually SRAMs that are
highly vulnerable to SEUs. Having memory caches to be resilient against
soft errors is indispensable for attaining high processor’s reliability.
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Figure 1.2: Error check diagram in SPARC64 processor. Caches and
data paths are protected by either parity or ECC.

Soft errors in memory caches can be mitigated at multiple levels. At pro-
cess and technology level, by using purified materials or employing shield-
ing, soft errors caused by alpha particles can be mostly eliminated [20] [21].
Charge collection efficiency can be reduced in processes with extra doping
layers [22] [23] [24] [25], or silicon-on-insulator (SOI) [26]. While techniques
at this level can provide an error-hardened substrate for all circuits built
on it, combinations of them with techniques at higher levels are usually re-
quired for achieving a low SER, particularly as neutron-induced soft errors
are increasingly become a major concern.

Coding techniques (e.g., parity and ECC) are very effective in protect-
ing memory caches, thanks to the high regularity of memory arrays. The
overheads of coding techniques are reasonable and acceptable in most cases.
Single-Error Correction Double-Error Detection Hamming code (SECDED)
is the most widely used ECC in practice. As we point out later, SECDED can
incur a high area overhead for some cases. Multi-bit errors can be tolerated
by combining SECDED with interleaving [27] [28], or scrubbing [29] [30].

Circuitry of individual memory cells can be modified to make them more
robust against soft errors [31] [32] [33]. However, since a hardened cell typ-
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ically requires a significant larger area than a typical cell, these techniques
are not suitable for cost-sensitive applications.

By exploiting architectural properties such as dirtiness or access frequency
of data, error protection can be selectively performed on those data having
high impacts on the cache’s SER [34] [35] [36]. While such an approach
requires less area overhead than the approach treating all data equally, its
effectiveness is dependent on the amount of locality of data access in execu-
tion programs.

1.2 Research Contributions

This research focuses on mitigating soft errors in memory caches. We make
the following contributions.

• We proposes Zigzag-HVP, a cost-effective technique to detect and
correct soft errors for such caches. While ECC is widely used for SEU
mitigation in VLSI caches, we show that ECC is expensive for being
implemented in caches with word-based access. Zigzag-HVP utilizes
the concept of horizontal-vertical parity (HVP). HVP maintains parity
of a data array in two-dimensional directions: horizontal and vertical.
While requiring fewer check bits than ECC, a basic HVP scheme can
detect and correct only a single bit error (SBE), but not a multi-bit er-
ror (MBE). By dividing the data array into multiple HVP domains and
interleaving the bits of different domains, a spatial MBE can be con-
verted to multiple SBEs, each of which can be detected and corrected
by the corresponding parity domain. Vertical parity update and error
recovery in Zigzag-HVP can be performed efficiently by modifications
to the cache data paths, write-buffer, and Built-In Self Test. Evalua-
tion results indicate that the area and power overheads of Zigzag-HVP
caches are lower than those of ECC-based ones.

• We proposes STCAM, a soft-error tolerant Content-Addressable Mem-
ory (CAM) architecture. Due to differences in circuit structure and
access nature, mitigation of soft errors in a CAM is more difficult than
in a RAM. STCAM can detect and correct false hits and false misses
caused by soft errors in a CAM. The technique involves subdividing
a CAM and providing backup checking for cases the input is partially
matched in a CAM search. An original encoding scheme is proposed to
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reduce the frequency of backup checking. Our evaluation results show
that modifications to support STCAM do not increase access latency.
Performance degradation incurred for false miss checking is very low.

• We propose SEVA, a cost-effective soft-error- and variation-aware cache
architecture. As devices are scaled down, the number of variation-
induced defective memory cells increases rapidly. The proposed SEVA
combines SECDED with a redundancy technique to effectively tolerate
such a high number of defects. While SECDED can repair a defective
cell in a block, the block becomes vulnerable to soft errors. To remedy
the problem, SEVA allows only clean data to be stored in the defective
(but repairable) blocks. Such constraint is enforced through a mecha-
nism called assurance update. An error occurring in a defective block
can be detected and the correct data can be obtained from the lower
level of the memory hierarchy. We also propose techniques to reduce
the frequency of assurance update.

1.3 Thesis Organization

The remaining of this thesis is organized as follows. Chapter 2 provides a
detail survey on existing soft-error mitigation techniques in memory caches.
Chapter 3 presents Zigzag-HVP. Chapter 4 presents STCAM. Chapter 5
presents SEVA. Finally, Chapter 6 makes conclusion.
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Chapter 2

Existing Work on Soft-Error
Tolerance in Memory Caches

This chapter surveys existing techniques for mitigating soft errors in mem-
ory caches. The problem of soft errors can be addressed at multiple levels.
The techniques presented here are classified based on at which level they
are implemented. We then identify those areas that require improvements.
Following chapters will propose techniques dealing with them.

2.1 Process- and Technology-Level Harden-

ing Techniques

The most obvious way to eliminate soft errors is to remove the radiation
sources that cause them. To mitigate the dominant SER cause by low-energy
neutrons and 10B, manufacturers have removed BPSG from virtually all ad-
vanced technology [4]. To reduce alpha particle emissions, semiconductor
manufacturers use extremely high purity material and processes, production
screening all materials having low background alpha emission measurements.
Purified interconnect metal is used to reduce the natural alpha emission [20].
Coating the chip surface with a thick polyimide layer before packaging, can
block alpha particles with energies up to approximately 9 MeV [21]. This
would shield the active silicon from the particles being emitted from the
ceramic packaging. Although large SER reductions are possible either by re-
moving the sources of or shielding the 10B reaction products and alpha par-
ticles, a large portion of the high-energy cosmic neutrons will always reach
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Figure 2.1: Structure and ionized charge collection of SOI. MOSFET
is formed over a buried oxide layer in (a). The charge volume in SOI is
significantly reduced thank to isolation by buried oxide layer, as compared
with a bulk device in (b).

the devices and cause soft errors. Ultimately, high-energy cosmic neutron
radiation defines the SER limit.

Modern methods for technology hardening of memories against SEU rely
on reducing charge collection at sensitive nodes. Introducing extra doping
layer as a novel p-well protection barrier can restrict substrate charge col-
lection [22]. Triple-well [23] or quadruple-well [24] structures can improve
resistivity against soft errors. Built-in junctions in these structure increase
the recombination of charges far away from the active region. Epitaxial sub-
strates reduce charge collection by funneling and provide some benefits in
SEU reduction [25].

In addition to offering high-speed and low-power, silicon-on-insulator
(SOI) is also renown for their resilience again SEUs [26]. Figure 2.1-a show
the cross-section of SOI CMOS structure. MOSFET is formed on a thin
SOI layer over a buried oxide layer, and the entire MOSFET is enclosed in
a silicon oxide layer. The device is fabricated in a thin silicon layer that is
isolated from the substrate by a buried oxide layer that acts as a dielectric.
After an ionized strike, the charges deposited in the silicon substrate below
the buried oxide cannot be collected at the drain because of the isolating
dielectric between the drain and the substrate. The charge volume is signifi-
cantly reduced in SOI, as compared with bulk device, as shown in 2.1-b. The
charge collection depth thereby reduces from as much as a few microns in
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bulk-Si devices to 100 to 300nm in SOI devices. Moreover, the buried oxide
results in the absence of junction depletion region below the source and the
drain. Thus, the P/N junction area is considerably reduced as compared to
bulk CMOS processes, resulting in increased soft error immunity.

The abovementioned process- and technology-level hardening techniques
can provide a significant improvement in SER reduction. Nevertheless, these
techniques are not silver bullets that can provide a total solution to the soft-
error problem. Combinations with hardening techniques at other levels are
required in order to achieve a high degree of soft error tolerance.

2.2 Circuit- and System-Level Hardening Tech-

niques

Parity and error-correcting code (ECC) are widely employed in practice to
protect memory caches from soft errors. In a parity scheme, a parity gener-
ator computes the parity bit of the memory word to be written into a cache.
The parity bit are also stored in the cache. If a particle strike inverts one
bit of a memory word, the error can be discovered by checking the parity
code when the memory word is read. The area overhead of a parity scheme
is very low. However, the drawback is that the scheme can detect but cannot
correct the error. Parity scheme is sufficient for a cache storing only clean
data (e.g., an instruction cache or a write-through data cache). Since all the
data in the cache can also be found in memory, error recovery is simply a
matter of discarding corrupted data and fetching correct data from memory.
However, parity scheme is not sufficient for a cache holding dirty data (e.g.,
a write-back cache). Corruption of dirty data in the cache can leave the sys-
tem into unrecoverable state if the data are referenced later. Error correcting
capability provided by ECC is required for such a cache.

While numerous error correcting codes exist, the incurred area and speed
penalty for implementing them can be excessive, especially for the ones that
enable correction of multiple errors. Single-Error Correction Double-Error
Detection Hamming code (SECDED) is the most widely-used ECC in prac-
tice. As implied by its name, SECDED can detect and correct a single-bit
error, or detect a double-bit error in a codeword. The overheads incurred by
SECDED is moderate and acceptable in most cases. The encoding/decoding
circuitry of SECDED can be constructed as XOR trees and is quite fast.
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A multi-bit error (MBE) in a codeword may be left undetectable, or be
detectable but uncorrectable by SECDED. An MBE may result from the
error bits accumulated from multiple particle strikes over time, or the error
bits caused by a single particle strike. We call the former case a temporal
MBE, and the latter case a spatial MBE. The scaling trend toward smaller
device dimensions and lower supply voltages has increased the probability
that a strike will result in a spatial MBE [37] [38]. Interleaving different
codewords in the same row can disperse the error bits of a spatial MBE into
multiple codewords so that each error bit can be detected and corrected by
SECDED [27] [28].

The probability of a temporal MBE can be negligible for a small, frequently-
accessed memory cache [29]. However, for a very large cache or cache that
may be idle for a long period while still holding data, the probability of a
temporal MBE may not be insignificant. The probability of a temporal MBE
can be reduced by scrubbing [30]. Scrubbing consists of periodically reading
out the data from a memory cache, correcting any latent error, recomputing
ECC, and writing the bits back. If scrubbing interval is short enough, the
opportunity for a temporal MBE to arise is practically eliminated.

Nicolaidis et al. proposed the use of current sensors to protect memory
from SEUs [39] [40]. A memory cell being in the steady state drives a very
small current. But when its state is reversed due to the impact of an ionized
particle, an abnormal current flows through the V dd and Gnd lines of the cell.
It is then possible to detect the occurrence of a SEU by implementing one
current sensor (BICS) on each vertical power line of the cell array, as shown
in Figure 2.2. Because BICSs monitor the vertical power lines of the memory,
the detection of a SEU also indicates the position of the affected bit. Since
memory cells on the same column can share a censor, the area overhead of
BICS is lower than that of ECC. However, implementing BICS significantly
increases the design complexity. Moreover, the efficacy of this technique
relies on the capability of a sensor to capture a small current. Properly
capturing the current will become more difficult due to larger variations in
scaled process technologies.

Techniques to make the static storage cells to be radiation-hardened have
been proposed. Those cells preserve their states even if the electrical states
of some of their nodes is altered by an ionizing particle strike. Resistance
elements can be added to the gate or drain terminals of transistors of the
cross-coupled inverters in a SRAM cell [31] [32]. Those resistance elements
will form RC low-pass filters filtering out the high-frequency components
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Figure 2.2: Memory protection using BICS. A current sensor (BICS)
added to each column of a cell array can detect the abnormal current accom-
panied by ionized particle striking on that row.

of a SEU spike. The main disadvantages of these techniques are that they
increase the cell’s size, and possibly degrade the write time and sense time
of a memory cell.

Dual interlocked storage cell (DICE) employs logic redundancy into a
memory cell [33]. Figure 2.3 shows the principle of DICE. The two latches L1
and L2 store the same data, with the data in the uncorrupted latch providing
state-preserving feedback to the corrupted latch. The differential outputs
OA, OB of each latch section are connected to the differential feedback input
IA, IB of the opposite, dual latch section. The basic drawback of DICE cells
is their hardware cost, which is generally close to duplication.

2.3 Architectural Level Hardening Techniques

Conventional ECC is implemented in a uniform manner. That is every unit
of data is protected by a check code of the chosen capability. Such an im-
plementation treats data equally. However, cache lines stored in a memory
cache can have different access frequency. Most frequently used (MFU) cache
lines are most error-prone and errors in those blocks easily propagate unless
checked. Kim et.al., proposed the concept of parity caching in which a small
cache is allocated to store check bits of recently used data [34]. Parity caching
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Figure 2.3: Principle of logic design hardened storage cell.

can obtain a high reliability with lower area overhead as compared with a
uniformly-implemented ECC. They also proposed shadow checking in which
the copies of MFU blocks are stored in a shadow cache [34]. The underly-
ing idea is the same as parity caching, but the shadow cache performs error
checking by means of comparison using the copies of data rather than check
codes. The goal of shadow checking is to obtain a high reliability enhance-
ment even in the presence of multi-bit errors with smaller chip area overhead.
Replication cache enhances shadow checking concept by using a small fully-
associative cache to store the replica of every write to the L1 cache [35].
ICR cache uses these cache lines that are predicted to be “dead” as replicas
of “hot” dirty data [36]. While these techniques offer lower area overheads
than a uniform ECC, a large portion of the dirty data still remains unpro-
tected if the locality of the data is low. The level of dependability achieved
by these techniques is obviously not acceptable for applications demanding
a very high reliability. In addition, while shadow checking and replication
cache may be applicable to small L1 caches, application of them to large L2
caches is impractical [35].

The use of early writeback to improve cache reliability has been proposed
[41]. Conventionally, a cache line stays in a cache until a cache miss occurs
and the cache line is chosen as an eviction candidate. If a dirty cache line in
a cache has a long lifetime, the possibility that the cache line being corrupted
by SEU and causing an unrecoverable error can be high. By early writing
back dirty blocks to a lower-level cache, the lifetime of the dirty blocks can
be reduced. Instead of using ECC that incurs a high area overhead, simple
parity can be sufficient to protect a cache employing early writeback. When
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a clean cache line is verified to be corrupted by parity, the correct data
can be obtained from the lower-level cache. Interestingly, early writeback
may also have a favorable side-effect on processor performance. If a program
makes frequently data updates, the writeback buffer may be full requiring the
processor to stall its pipeline for the buffer to write back its old entries. Early
writeback can improve performance by reducing those stall cycles caused by
a full writeback buffer [42]. Periodically refreshing a cache with data from
the lower-level cache is proposed in [43]. While these techniques improve
the reliability of a cache with low area overheads, they increase the access
activity to a lower-level cache and consequently its power consumption.

When hardware ECC is not available, software-implemented ECC can be
used to protect memory caches [44] [45]. Given the address and size of the
data block that needs to be protected, ECC software requests the operating
system to allocate another block. Then, it calculates the check bits and stores
them in the allocated block. Any modification to the data block requires
its check bits to be recomputed by the means of software. Software-based
ECC may be applicable to a code section or a less-frequently updated data
section. However, for a data section receiving frequent updates, software-
based ECC is impractical since the performance overhead of recomputing
check bits is excessive in this case. Given that hardware-based approach is
transparent to user’s software and ECC support has increasingly being the
norm in modern memory designs, the benefit of software-based ECC has
become less appealing.

2.4 Room for Improvements

2.4.1 Overhead Reduction

Error-correcting code (ECC) is an effective technique to protect data from
soft errors. ECC may incur a moderate area cost that is acceptable for most
cases. However, for some designs, the area penalty incurred by ECC may
be undesirable. In order to keep area overhead low, a large codeword is
preferred. However, in caches where data are accessed on a per-word ba-
sis, maintaining ECC on a per-word basis is preferred. Otherwise, if large
codewords consisting of multiple data words is used for such caches, par-
tial updates to the large codeword will frequently occur, incurring expensive
read-modify-write operations that read the entire codeword, recompute the
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check bits, and write back the codewords. However, the cost of maintaining
ECC on a per-word basis is high. For instance, a 32-bit word requires seven
SECDED check bits and incurs a 22% area overhead. The proposed Zigzag-
HVP described in Chapter 3 will provide cost-effective technique mitigate
soft errors in caches with word-based access.

2.4.2 Soft Error Mitigation in Content-Addressable Mem-

ory

Memories can be classified into two types based on their access mecha-
nisms: Random Access Memories (RAMs) and Content Addressable Mem-
ories (CAMs). Due to the difference in access mechanism, RAM and CAM
require different mechanisms for mitigating soft errors. Coding techniques
such parity or ECC have proved to be very effective in mitigating soft er-
rors in RAMs. However, those techniques are not immediately applicable to
CAMs because they depend on processing the full contents of the memory
word outside the array, which is not possible in a normal CAM access. Mit-
igation of soft errors in CAMs is more challenging than in RAMs and has
received little attention so far. However, since several components in a pro-
cessor are built as CAMs, having those components to be resilience against
soft errors necessary to increase the coverage of error protection in a proces-
sor. The proposed STCAM in Chapter 4 can deal with soft-error problem in
CAMs.

2.4.3 Pursuit of Soft-Error- and Defect Tolerance

Variation-induced defects become severe in scaled processes [46] [47]. Pre-
vious work has shown that ECC is effective in tolerating a high number of
random defects in memory caches [48] [49]. It would be cost-effective if the
same ECC resource can be used for both soft error tolerance for reliability
and defect tolerance for yield. However, while a defective cell present in
a block can be repaired by ECC, the block becomes vulnerable to soft er-
rors. An error occurring in the block may be detectable but uncorrectable.
This can get the processor system into an unrecoverable state, particularly
when the corrupted data are dirty data that have no backup elsewhere in
the memory hierarchy. The proposed SEVA in Chapter 5 can deal with this
problem.



Chapter 3

Zigzag-HVP: Soft-Error
Mitigation in Caches with
Word-based Access

3.1 Introduction

Error Correction Code (ECC)—specifically Single Error Correcting and Dou-
ble Error Detecting Hamming Code (SECDED)—is widely used to detect and
correct soft errors in caches. For a SECDED codeword consisting of k in-
formation bits and c check bits, the relation between k and c is given by
Equation 3.1.

2c ≥ k + c + 1 (3.1)

Table 3.1 shows the number of check bits, and overhead of SECDED when
the codeword size varies. The number of check bits just increases linearly
as the codeword size increases exponential. Therefore, in order to keep the
overhead low, a large codeword is preferred. However, this is not true for
caches with word-based access where data are accessed on a per-word basis.
Exemplified caches with word-based access are L1 data caches or L2 caches
with write-through L1 caches. The later are commonly found in the memory
hierarchy of multiprocessor systems because maintaining cache coherency
at L2 cache is simpler if the accompanied L1 cache is write-through. For
these caches with word-based access, maintaining ECC on a per-word basis
is preferred [50] [51]. Otherwise, if large SECDED codewords consisting of
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Table 3.1: Number of SECDED check bits for various data unit
sizes. Doubling the size of data unit increases the number of check bits by
one. Large data unit is preferred to keep the overhead low

Data unit size (bits) 16 32 64 128 256
Number of check bits 6 7 8 9 10
Overhead (%) 37.5 21.9 12.5 7.0 3.9

multiple words is used, partial updates to the large codeword will frequently
occur, incurring expensive read-modify-write operations that read the entire
codeword, recompute the check bits, and write back the codewords. However,
the cost of maintaining SECDED on a per-word basis is high. For instance,
a 32-bit word requires seven check bits and incurs a 22% area overhead.

This chapter describes Zigzag-HVP—a low-cost technique to detect and
correct soft errors for these word-based accessed caches. The technique makes
use of horizontal-vertical parity (HVP) [52]. HVP maintains the parity of the
data array both horizontally and vertically. Basic HVP can detect and correct
a single bit error (SBE), but not a multi-bit error (MBE). The probability
that multiple errors will be accumulated from multiple particle strikes is
very low in frequently accessed caches. Instead, MBE is mostly caused by
a single particle strike that corrupts multiple bits at once [38]. Therefore,
the corrupted bits are located close to one another. By dividing the data
array into multiple HVP domains and interleaving bits of different domains,
a spatial MBE is converted into multiple SBEs, each of which can be detected
and corrected by the corresponding domain.

An error recovery routine is executed when an error is detected by hori-
zontal parity. By sequentially reading the data words belonging to the parity
domain, vertical parity can be recomputed to locate the error bit. The Built-
In Self Test (BIST) [53] [54] is enhanced to include such a recovery function.
We also modify the cache data path and write buffer to efficiently accom-
modate vertical parity updates. The evaluation results indicate that the
area and power overheads of Zigzag-HVP caches are lower than those of the
ECC-based ones.

The remainder of this chapter is organized as follows. Section 3.2 dis-
cusses related work. Section 3.3 explains the basic concept of HVP and its
limitations. Section 3.4 describes Zigzag-HVP. Section 3.5 discusses the ap-
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plication of Zigzag-HVP. Section 3.6 presents the evaluation results. Finally,
Section 3.7 summarizes this chapter.

3.2 Related Work

The use of a small cache to store check bits or replicas of recently used data
has been proposed [34]. Replication cache [35] enhances this concept by using
a small fully associative cache to store the replica of every write to the L1
cache. ICR cache [36] uses these cache blocks that are predicted to be “dead”
as replicas of “hot” dirty data. While these techniques offer lower overheads
than ECC, a large portion of the dirty data still remains unprotected if
the locality of the data is low. The portion of unprotected data for some
benchmarks has been as high as 40% [34], 30% [36], or 5% [35]. The level
of dependability achieved by these techniques is obviously not acceptable
for applications demanding extremely high reliability. In addition, while a
replication cache [35] may be suitable for small L1 caches, its application
to large L2 caches is impractical. Zigzag-HVP can reduce the error rate by
many orders of magnitude and can be applied to both L1 and L2 caches.

Cross-parity [55] can deal with MBEs by maintaining parity in the diag-
onal parity, in addition to the horizontal and vertical. However, an exam-
ination of the horizontal parity alone cannot expose the existence of some
MBEs (e.g., MBEs where the number of error bits in the same row is even).
Recomputation and checking of vertical or diagonal parity are required to
detect such MBEs. However, these operations are expensive and it is im-
practical to execute them on every data access. By relying on interleaving
to disperse the error bits, the existence of spatial MBEs in Zigzag-HVP can
be detected by only examining the horizontal parity and the vertical parity
only needs to be recomputed after the errors have been detected.

Nicolaidis et al. propose the use of current sensors that are built into the
vertical power lines of a data array to detect the abnormal current dissipa-
tion accompanied with a particle strike [39] [40]. Memory cells on the same
column can share a censor, resulting in a lower area overhead than ECC.
However, the efficacy of this technique relies on the capability of the sen-
sors to capture the small current; capturing the current more difficult due to
larger variations in scaled process technologies. Zigzag-HVP is more scalable
since it is not affected by process variations, and the degree of interleaving
can be easily increased to deal with a higher probability of MBEs in scaled
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process technologies.
The concept of interleaving has been used to combat burst errors (e.g.,

in data communications, compact disks, magnetic storages, hologram mem-
ories, and two-dimension barcodes). Existing interleaving schemes usually
require intensive computation to be able to detect and correct the errors.
However, on-chip caches are latency-critical, making these complex inter-
leaving schemes unacceptable. Simple interleaving of ECC datawords in the
same row to tolerate MBEs has been used in caches or memories [27] [28].
Zigzag-HVP interleaves the data in two dimensions and its practicality is
explained in this chapter.

3.3 Horizontal-Vertical Parity and Its Limi-

tations

Since our proposed Zizag-HVP is based on horizontal-vertical parity (HVP),
this section first describes the concept of a basic HVP. We then explains the
limitations of the basic HVP, namely HVP is unable to detecting and/or
correcting multi-bit errors (MBEs). We then describes the characteristics of
MBEs and the impacts of process technology having on the trends of MBEs.
How such limitations of basic HVP are overcome by Zigzag-HVP is described
in the next section.

3.3.1 HVP Concept

Figure 3.1 shows the concept of HVP [52]. The parity of the m×n cell array
is maintained both horizontally and vertically. di|j denotes a data bit in the
i-th row and j-th column of the array. hpi are vpj are respectively the parity
bits of the i-th row and j-th column. hvp is the sum parity of the vertical
parity bits and this is also equal to the sum parity of the horizontal parity
bits.

HVP can detect and correct single-bit errors (SBEs). Assume that the bit
di|j is corrupted. When row i is accessed, the parity of the row is recomputed
and compared to hpi. A mismatch indicates the existence of an error in the
row. The vertical parity is recomputed by sequentially reading all rows of
the array. The resultant vertical parity are compared to those previously
stored in the array. A mismatch in column j of the vertical parity indicates
the position of the error bit in the victim row.
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d1|1 d1|2 . . . d1|n hp1

d2|1 d2|2 . . . d2|n hp2

...
...

. . .
...

...
dm|1 dm|2 . . . dm|n hpm

vp1 vp2 . . . vpn hvp

hpi = di|1 ⊕ di|2 ⊕ . . .⊕ di|n

vpj = d1|j ⊕ d2|j ⊕ . . . ⊕ dm|j

hvp = vp1 ⊕ vp2 ⊕ . . . ⊕ vpn

= hp1 ⊕ hp2 ⊕ . . .⊕ hpm

⊕ denotes Exclusive OR

Figure 3.1: Horizontal-vertical parity. The parity is maintained both
horizontally and vertically.

For an m×n data array, HVP requires m+n check bits or an (m+n)/(m×
n) area overhead. The overhead is small when m and n are sufficiently large.

3.3.2 Limitations with Basic HVP

While the basic HVP scheme previously described can detect and correct an
single-bit error (SBE), it may be unable to detect and correct a multi-bit
error (MBE). Figure 3.2 shows several cases of MBEs in a 4×4 cell array. In
case A, since the corruption of both d2|1 and d2|2 leaves the parity of row 2
unchanged, horizontal parity is unable to detect the existence of the errors.
Examining vertical parity can show the existence of the error. However,
recomputation of vertical parity is an expensive operation which requires all
the rows to be read from an array. Examining vertical parity on every cache
access is therefore impractical. In case B, while the existence of errors in row
3 and row 4 can be detected by hp3 and hp4, the exact positions of the errors
in the rows cannot be revealed by vertical parity since the vertical parity of
column 1 remains unchanged. In case C, while horizontal parity reveals the
existence of errors in rows 3 and 4 and vertical parity reveals the existence
of errors in columns 3 and 4, HVP still cannot determine which one of the
two pairs (d3|4, d4|3) or (d3|3, d4|4) has been corrupted.
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Figure 3.2: Examples of multi-bit errors. Multi-bit errors may be unde-
tectable by horizontal parity (case A), or detectable but uncorrectable (case
B and C).

3.3.3 Multi-Bit Errors and Characteristics

An MBE results from the error bits accumulated from multiple particle
strikes, or the error bits caused by a single particle strike. We call the former
case a temporal multi-bit error, and the latter case a spatial multi-bit error.

In a temporal MBE, a particle strike occurs and corrupts a single bit.
Another strike occurs and corrupts a different bit before the erroneous data
are accessed through which the error could have been detected and corrected.
The error bits in a temporal MBE are randomly located in the data array.
Temporal MBE can occur in very large memories where the data might not
be accessed for a long time and the probability that undetected errors will
accumulate cannot be ignored.

A spatial MBE is resulted from a single strike corrupting multiple bits
at once. In contrast to a temporal MBE, the error bits in a spatial MBE
are closely located. The scaling trend toward smaller device dimensions and
lower supply voltages has increased the probability that a strike will result
in a spatial MBE [37] [38]. Experiments have confirmed the existence of up
to four-bit spatial MBEs for SRAM fabricated in a 90 nm process [38].
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3.4 Zigzag-HVP

Since on-chip caches usually have a high access frequency, an error generated
by a strike is likely be detected and corrected before the next strike occurs.
The results in Section 3.6 confirm that probability for a temporal MBE to
occur in an on-chip cache is very low. We therefore focus on measures against
spatial MBEs.

Zigzag-HVP enhances the basic HVP to effectively deal with spatial
MBEs. Zigzag-HVP exploits the property that the error bits in a spatial
MBE are closely located. Zigzag-HVP groups the data bits of a cache into
multiple parity domains. Each parity domain consists of several data words
and is protected by HVP. By interleaving different parity domains, the spa-
tial error bits in a spatial MBE are converted to multiple SBEs. Each SBE
belongs to a parity domain that can be successfully detected and corrected.
The bit interleaving scheme, parity update mechanism, error detection, and
recovery mechanism are described in this section.

Let us define some terminology. A cache can be expressed as a data array
with NR rows. Each row contains NL cache lines, each line contains NW

words, and each word contains NB bits. Cache size is NR ×NL ×NW × NB

bits. The cache size, NW , and NB are usually specified in advance in a
cache design. Given the predetermined architectural parameters (e.g., cache
size, NW , NB , cache associativity), tools like Cacti [56] can automatically
calculate NR, NL that yield good trade-offs between access time and power
efficiency.

3.4.1 Bit Interleaving Schemes

A spatial MBE can have multiple error bits in the same row, or the same
column [38]. We will now describe the interleaving schemes to deal with these
patterns of error bits.

Dealing with Horizontal MBEs

Interleaving layout of words converts adjacent error bits on the same row into
SBEs in different words. ECC-protected caches have used this technique to
effectively reduce MBEs on the same ECC unit [27] [28]. We use the same
technique in Zigzag-HVP to deal with horizontal MBE. The words interleaved
in a row belong to different parity domains. Figure 3.3-a illustrates a simple



40 3. ZIZAG-HVP ARCHITECTURE

example; two words are interleaved in each row and up to two bit errors can
be tolerated (bj

i indicates the j-th bit of the i-th word in a row).
To tolerate up to d bit errors, we must interleave at least d different words.

Upon data access, only one bit is multiplexed for every d consecutive bits. We
have two possible options in choosing how to interleave words horizontally:
1)interleaving words from different cache lines or 2) interleaving words from
the same cache line. If the the number of cache lines in each row NL is larger
than or equal to d, we should interleave words from different cache lines. In
this case, the words belonging to a cache line can be accessed at once, which
is preferred for line-based cache operations such as line replacements or cache
refills. If NL is smaller than d (possible in small caches), the interleaved word
could be selected from the same line. In this case, reading a whole cache line
requires several cache accesses since an access can only read a subset of words
of the cache line.

The number of horizontal parity bits is equal to the number of cache
words (NR ×NL ×NW ) and is independent of how the words are interleaved.

Dealing with Vertical MBEs

Vertical MBE can also be dealt with by using the same interleaving concept
as in the case of horizontal MBE. Consecutive bits in the same column are
protected by different vertical parity bits. In Figure 3.3-b, bits in the even and
odd rows are protected by a different vertical parity and up to two bit errors
can be tolerated in this example. In order to tolerate up to d bit errors, this
scheme requires d vertical parity bits in each column, or d× (NL×NW ×NB)
bits in total. Since the vertical parity bits are frequently updated, they
should be implemented as flipflops or latches which consume larger areas
than normal SRAM cells. The overheads for vertical parity increase with a
large d and may offset the benefit of HVP.

We instead propose an original scheme for encoding vertical parity. The
HVP domain is constructed so that a vertical bit is calculated from bits
located in a zig-zag path, rather than from bits in the same column. The
physical locations of any two bits in the same zig-zag path are separated by
a sufficient distance so that both cannot be corrupted by a particle strike.
The number of vertical parity bits in this scheme is equal to the number of
columns and is independent of d.

To formalize the scheme, the expression wijk (0 ≤ i < NW , 0 ≤ j < NL,
0 ≤ k < NR) is used to refer to the i-th word of the j-th cache line of the
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Figure 3.3: Interleaving schemes to deal with MBEs. Bits are inter-
leaved to tolerate horizontal MBEs in (a). Scheme in (b) tolerates horizontal
& vertical MBEs but requires many vertical parity bits. Scheme in (c) can
tolerate horizontal & vertical MBEs with fewer vertical parity bits.
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k-th row. A parity domain PDmn (0 ≤ m < NW , 0 ≤ n < NL) is a set of
words that can be expressed by Equation 3.2.

PDmn = {winj | (i − j) ≡ m (mod NW )} (3.2)

Figure 3.3-c illustrates a simple example. The data array has four rows,
each row contains two cache lines, and each cache line has two two-bit words.
bl
ijk indicates the l-th bit of word wijk. The two cache lines in each row are

interleaved to tolerate horizontal MBEs. Two zigzag paths which consist of
bits belonging to the same parity domain (PD00) are shown in the figure.
The parity domain consists of four words: w000, w101, w002, and w103. MBEs
having up to two bits can be tolerated in this example.

The proposed scheme can tolerate up to an NW -bit vertical MBE. Given
that a cache line typically consists of 8∼32 words and an SS-MBE contains no
more than four bits in current processes [38], our zigzag scheme can effectively
deal with vertical MBEs.

Other MBEs

If the interleaving scheme in Section 3.4.1 tolerates up to d1 consecutive error
bits in a row and the interleaving scheme in Section 3.4.1 tolerates up to d2

consecutive error bits in a column, then any MBE in which the error bits are
confined to a d2 × d1 array can be successfully detected and corrected.

3.4.2 Parity Update Mechanism

Any update of a word (e.g., in processor writes or cache line replacements)
requires the parity of the corresponding domain to be updated. From Equa-
tion 3.2, the parity domain that a word belongs to can easily be determined
from the values of the bits used to index the row, and the values of the bits
used to index the word inside the cache line.

Updating of horizontal parity is simple: The parity bit is newly calculated
from the updated word value and stored together with the word. Updating
of the vertical parity follows Equation 3.3.

VPnew = VPold ⊕ wold ⊕ wnew (3.3)

The new vertical parity of the domain (VPnew) is the exclusive-OR of the
old vertical parity (VP old), old and new values of the data word (wold and
wnew). The horizontal parity bits are included in the wold and wnew.



3.4. ZIGZAG-HVP 43

The update the vertical parity requires the old value of the word. Section
3.5 discusses how caches can be modified to effectively supply the old words.

A Vertical parity update can be done in parallel with writing the data
word into data array. Therefore, the access latency of a Zigzag-HVP cache
is comparable to that of a cache protected by a simple parity.

3.4.3 Error Recovery

When a word is read, the horizontal parity bit is recomputed and compared
with the pre-stored value. A mismatch indicates the existence of a bit error in
the word. A dedicated error recovery routine is then triggered. Since there is
a possibility that bit error(s) may also be present in other word(s), the routine
examines not only the parity domain containing the identified erroneous word
but also all the parity domains. For each domain, the routine sequentially
reads all the words belonging to that domain. The horizontal parity of each
word and the vertical parity of the domain are recomputed, and compared
with the old ones. If an SBE is present in the domain, its location can be
determined.

Modern caches are typically equipped with a Built-In Self Test (BIST)
[53]. The BIST accesses data in particular access patterns, also called march-
ing patterns, to locate potential manufacturing defects. Modern BISTs are
programmable and support various marching patterns [54]. The capability of
sequentially reading the words belonging to a parity domain can be supported
by extending the existing BIST hardware. The address patterns of those data
words belonging to the same parity domain are derived from Equation 3.2.
By accommodating such patterns into the BIST, an error recovery routine
can be achieved at modest hardware cost.

Recovering from errors requires the cache to be fully scanned. Never-
theless, the overhead for error recovery is small since soft errors occurs very
infrequently, For instance, let us consider a 512KB cache. Assuming a per-
word access throughput of 512M-word/sec, a full scan of all parity domains
in the cache requires 269 μsec. Such an overhead is incurred once every 17
years and is therefore negligible (refer to Section 3.6.5 for the cache error
rate).
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3.5 Applications of Zigzag-HVP

Two possible candidates for Zigzag-HVP are 1) L1 write-back caches and 2)
L2 caches with write-through L1 caches. These two candidates share unique
properties: They receive frequent word-based updates from processors, and
they may hold dirty data so that not only detection but also correction
capabilities are required to be able to fully tolerate soft errors. This section
focuses on how the data paths of these caches can be modified so that the
vertical parity update of Zigzag-HVP can be efficiently executed.

3.5.1 L1 Write-back Caches

Zigzag-HVP requires the old value of the modified word for vertical parity
update. Before writing a word, the L1 cache needs to probe its tag to deter-
mine whether it is holding the word or not. The L1 cache is adapted so that
data access occurs in parallel the tag probing. If the line is found in the L1
cache, the old value of the data word is accessible after the tag probe phase.
The cache then proceeds to write the new value while the old value is passed
to the vertical parity update unit. Such a modification is easily accomplished
since, in practice, L1 caches already perform a tag probe and data access in
parallel to achieve minimum latency.

Write-back caches usually employ a write-allocate policy [57]: A write
miss fetches the missed line from the lower level cache and allocates the
location for storing the line. In the case of a write miss, the vertical parity
update unit will receive the old value of the modified word when the line is
retrieved from the lower level cache.

3.5.2 L2 Caches with Write-through L1 Caches

Many processors adopt a cache hierarchy in which the L1 data cache is write-
through and is backed by a large L2 write-back cache [58] [50] [59]. Making
the L1 data cache a write-through cache simplifies the task of maintaining
cache coherency in multiprocessor systems [60]. Maintaining simple parity for
the detection of errors is sufficient for write-through L1 caches since correct
data can be obtained from the L2 caches. The application of Zigzag-HVP to
L2 caches is discussed hereafter.
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Write Buffer and Its Implication:

A processor with a write-through L1 cache usually includes a write buffer.
The write buffer has two essential functions: 1)absorbing processor writes
at a rate faster than the L2 cache could, thereby preventing processor stalls
and 2) coalescing writes to the same cache block, thereby reducing the traffic
to the L2 cache. The reduction of word-based updates to the L2 cache by
the write buffer has an implication in the implementation of ECC in the L2
cache. One could maintain ECC in large data units (e.g., double-word (64-
bit) [61], or per quad-word (128-bit) [62]) to reduce the hardware overheads,
and rely on the write buffer to merge updates to consecutive words into a
single update of a large ECC word so that the read-modify-write operations
could be reduced.

To evaluate the capability of the write buffers to coalesce modified words
into a large ECC data unit, we model a superscalar processor with a write
buffer of eight entries, where each entry is of 32 byte (equal to the size of L1
cache line). The L1 data cache is a four-way, 16KB, non-write-allocate, write-
through cache. The details of the configurations of the processor are indicated
in Table 3.6.1. The write buffer attempts to retire the oldest entry whenever
more than six entries are occupied (retire-at-6 policy [63]). Two ECC unit
sizes are evaluated: double-word and quad-word. For each ECC unit size,
we measure the amounts of partially-modified and fully-modified ECC units
retired from the write buffer to the L2 cache for SPEC2000 benchmarks. The
results are shown in Figure 3.4. A majority of ECC codewords are partially
modified. These partially-modified ECC codewords require expensive read-
modify-write operations and unavoidably incur significant overheads.

Per-word ECC incurs a large hardware cost, while a larger ECC unit
incurs frequent read-modify-write operations even with the presence of the
write buffer. Zigzag-HVP can deal with such shortcomings with ECC schemes.

Support for Efficient Vertical Parity Updates

The old values of the modified words, which are required for vertical parity
update in Zigzag-HVP, can be supplied directly by the L2 cache. However,
since the L2 cache is large, reading the old values from L2 caches incurs a large
power overhead. Moreover, while tag access and data access are performed
in parallel in L1 caches, the tag access and data access in L2 cache are done
sequentially for low-power consumption. Therefore, the latency of reading
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Figure 3.4: Distribution of partially- and fully-modified ECC code-
words. Applications such as art, swim, gcc, gzip, mcf , twolf have large
fractions of partially-modified codewords that require expensive read-after-
write operations.

the old values from the L2 cache cannot be hidden.

The old words can be supplied by the L1 cache instead of being supplied
from the L2 cache. Before writing a word, the L1 cache must probe its
tag to determine whether it is holding the word or not. The L1 cache is
adapted so that data access occurs in parallel with tag probing. If the write
hits in the L1 cache, the old value of the data word is accessible and passed
to the vertical parity update unit of the L2 cache. This scheme does not
incur additional latency since tag probing usually takes more time than data
access [56]. Reading the data word from a small L1 cache consumes less
power than reading from a large L2 cache. The modified data path is shown
in Figure 3.5.

Let us consider the case in which a write miss occurs in the L1 cache. If
the L1 cache adopts a write-allocate policy [57], L1 cache will fetch the missed
cache line from the L2 cache. The old value of the data word can be obtained
from the cache line retrieved from the L2 cache. However, while write-back
caches may adopt write-allocate policy, write-through caches usually employ
a no-write-allocate policy: The missed line is not allocated in the L1 cache.
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Figure 3.5: Modified data path of L2 cache with write-through L1
cache. The L1 cache provides the old value of the being-updated word to
the vertical parity update unit of the L2 cache.

When a write miss occurs in the no-write-allocate L1 cache, the old value of
the updated word is explicitly supplied by the L2 cache to the vertical parity
update unit.

Figure 3.6 shows the write miss rate for a 16-KB, 4-way set associative,
non-write-allocate L1 data cache (please consult Table 3.6.1 for the details of
the configurations of the processor). Since the majority of writes hit in the
L1 cache, the frequency of accesses to the L2 cache to obtain the old values
is low.

The write buffer is also modified. Figure 3.7 shows an entry of the mod-
ified write buffer. The v bit, if set, signifies that the entry is valid and it is
holding the words addressed by the addr field. The vi bit indicates whether
the i-th word is valid or not. A new bit h bit is added to each word. The
hi bit, if set, indicates that the i-th word did hit in the L1 cache and that
the vertical parity update unit has already been updated with the old value
of the word. When an entry retires, the valid words are written back to the
L2 cache. For those valid words for which h bits are not set, the old values
must be explicitly read from L2 and passed to the vertical parity update unit.
When an error is detected in the L2 cache, the write buffer must write back
all valid entries to the L2 cache before the error recovery can take place.
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Figure 3.6: Write miss rate of L1 data cache. Since most writes hit in
the L1 cache, the the frequency of accesses to the L2 cache to obtain the old
values of updated words is low.

Figure 3.7: An entry of write buffer. An h-bit is added to each word of
a cache line to remember whether the word has been hit in L1 cache or not.
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3.6 Evaluation

This section evaluates the application of Zigzag-HVP to L2 caches with write-
through L1 caches. Compared to L1 caches, L2 caches are typically much
larger and the costs of implementing protection against soft errors are also
higher; therefore, the reduction of such costs is preferred. L2 caches also
present other interesting considerations due to the presence of write buffers.

3.6.1 Evaluation Methodology

The L2 cache used in the evaluation is a unified, 512 KB, 64 B-line, four-way
set associative cache. The L2 cache is accompanied by a 16 KB, write-through
L1 data cache, and an eight-entry write buffer. The write buffer attempts to
retire the oldest entry whenever more than six entries are occupied (retire-
at-6 policy [63]). The detailed configuration of the evaluated architecture is
listed in Table 3.6.1.

While 64-bit processors are increasingly gaining popularity, there are still
many 32-bit processors and software built on 32-bit architectures in use in
practice. Even in the 64-bit processors, support for efficient execution of
32-bit software is essential. For instance, the L2 caches in Itanium proces-
sors maintain ECC per 32-bit data to accommodate frequent 32-bit data
updates encountered when executing 32-bit software [50]. A 32-bit word size
is assumed in the evaluation.

Four caches with different error protection schemes are assumed in the
evaluation:

• NOPRT: L2 cache without any soft error protection.

• ECCSW: L2 cache in which both the tag and data portions are pro-
tected by SECDED per single-word. Data words in the same row are
interleaved to tolerate horizontal MBE.

• ECCQW: L2 cache in which both the tag and data portions are pro-
tected SECDED per quad-word. Data words on the same row are
interleaved to tolerate horizontal MBE.

• ZHVP: L2 cache in which the tag and data portions are protected by
Zigzag-HVP.
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Table 3.2: Parameters of Simulated Architecture.

Processor Parameters
Frequency 1 GHz

Functional Units 4 integer ALUs, 4 FP ALUs
1 integer multiplier/divider

1 FP multiplier/divider
LSQ size 16 instructions
RUU size 32 instructions

Issue Width 4 instructions/cycle
Memory Hierarchy Parameters

L1 i-cache 16 KB, direct-map, 32 B block
1 cycle latency

L1 d-cache 16 KB, 4-way, 32 B block
1 cycle latency

write-through & no-write-allocate
Write buffer eight 32 B entries

retired-at-6
L2 512 KB, unified, 4-way

64 B block
6 cycle latency

write-back
Memory 100 cycle latency
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We evaluate the unrecoverable error rate, number of check bits, and power
consumption. Cache access activity, which is required for calculating the
error rate and power consumption, is collected from cycle-accurate processor
simulation using SimpleScalar toolset [64]. SPEC2000 benchmarks are used
in the evaluation. Each benchmark is run for four billion instructions. Cacti
tool [56] is used to determine the physical configurations of the L2 caches.

3.6.2 Physical Configurations of L2 caches

Soft error experiments with SRAM fabricated in 130 nm and 90 nm processes
confirmed the existence of up to four bit MBEs [38]. Implementation of the
protection schemes to tolerate spatial MBEs of up to four-bit is considered
in the evaluation.

The L2 cache contains 2048 sets. Each set has four 64-B cache lines. Each
tag entry has 19 bits (15 tag bits and four status bits). Cacti tool suggests
that the tag portion should be divided into 256 rows, each row containing
32 tags from eight sets. Interleaving the tags of different sets in the same
row together tolerates horizontal MBE while allowing four tags of the same
set to be read simultaneously in a cache access. Each tag is an ECC unit
in ECCSW and ECCQW. For ZHVP, the tag portion consists of 32 parity
domains and each domain is a 256 × 19 bit array.

Cacti similarly suggests the data portion to be an array of 2048 rows; each
row holds four cache lines of the same set. The tag portion and the data por-
tion of a L2 cache are accessed sequentially to attain low power consumption.
Thus, while four tags of the same set are required to be read simultaneously,
only the data for the hitting line are read from the data portion. Therefore,
four lines of the same set can be interleaved to tolerate MBEs without com-
promising the latency of the line-based accesses. In ECCSW, each word in
the data portion is an ECC unit. The ECC unit in ECCQW is comprised of
four consecutive words of the same line. For ZHVP, the data portion consists
of 64 parity domains; each domain is a 2048 × 32 bit array.

3.6.3 Area Overhead

Table 3.3 lists the overhead in terms of the number of check bits required to
implement the protection schemes. For ECCSW, each tag requires six check
bits and each data word requires seven check bits, resulting in 944 Kb of
check bits in total, or an 22.22% overhead. For ECCQW, each tag requires
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Table 3.3: Area overheads of protection schemes. ZHVP incurs lower
overhead than ECC-based schemes.

Protection Number of Overhead (%)
Scheme check bits (Kb)
NOPRT 0 0
ECCSW 944 22.2
ECCQW 336 7.9
ZHVP 138.6 3.3

six check bits and nine check bits are required for every four words, resulting
in 336 Kb of check bits in total, or an 7.91% overhead.

In ZHVP, the tag and data portions respectively require 8.6 and 130
Kb of check bits or an 3.26% overhead in total. The overhead of ZHVP is
definitively smaller than those for ECCSW and ECCWQ.

We implemented a BIST similar to the one described in [54]. It is synthe-
sized using the Hitachi 0.18 μm process. The original BIST occupies 0.28%
the area of the L2 cache. The BIST is then extended to support the error
recovery function. The modified BIST occupies 0.35% the area of the cache.
Therefore, the cost of implementing error recovery is very small.

3.6.4 Power Overhead

When implementing Zigzag-HVP to the L2 cache, the L1 data cache needs to
supply the old values to the vertical parity update unit of the L2 cache. This
increases the power consumption of the L1 cache. Power consumed by both
the L1 data cache and the L2 cache are taken into account in the evaluation.

The power consumption of individual accesses to the L1 and L2 caches are
computed with Cacti. We modified Cacti to allow the power consumption to
be computed based on the granularity of the accessed data. We implemented
32-bit SECDED, 128-bit SECDED, and horizontal vertical parity calculation
circuits in 0.18 μm process and then used Synopsis NanoSim to calculate their
power consumption.

Figure 3.8 breaks down the power consumed in the L1 data cache and
L2 cache for the benchmarks. ECCSW increases the power consumption
in the L2 cache by 28% on average, mainly due to the power consumed by
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Figure 3.8: Breakdown of power consumption. ECCQW incurs a large
power overhead due to read-modify-write operations. ZHVP consumes less
power than ECCSW on average.

accessing the check bits in the tag and data portions. ECCQW increases the
power consumption in the L2 cache by 80%, of which 54% is consumed by
reading partially-modified quad-words and the remaining 26% is consumed
by accessing and computing the check bits. The power consumption of the
L1 cache remains unchanged for ECCSW and ECCQW. For ZHVP, reading
the old values the updated data words increases the power consumption of
the L1 cache by 18%. We also confirmed that 94.4% of writes hit in L1
cache. Additional access to the L2 cache to obtain data words missed in the
L1 cache and parity calculation together increase the power consumption of
the L2 cache by 4%.

When both the L1 cache and L2 cache are taken into account, ECCSW,
ECCQW, and ZHVP respectively increase the total power by 17%, 49%, and
10%. ZHVP therefore consumes less power than ECC-based schemes.

3.6.5 Unrecoverable Soft Error Rate

We assume that the soft error rate (SER) of an unprotected SRAM equal to
1.6 KFIT1 per megabit [4] and soft errors follow uniform distribution. We
will now describe the mechanism for calculating the unrecoverable soft error
rates (URSER) of the L2 caches. The unrecoverable errors include those

1One FIT (Failure In Time) corresponds to one failure per 109 hours
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i-th access
(read or write)

(i+1)-th access
(read)

time
s1 s2

T

Figure 3.9: Illustration of unrecoverable error. Two strikes occurring
between consequent accesses to the same data unit results in unrecoverable
error.

detected but unrecoverable errors and those undetected errors.

Any error in NOPRT results is unrecoverable; thus the URSER in this
case is equal to SER× cachesize. Unrecoverable errors in caches other than
NOPRT result from errors accumulated from multiple strikes. Figure 3.9
shows two successive accesses to the same data unit. The second access is
a read access, following the first after a delay of T . Two strikes occurring
in the interval between the two accesses result in unrecoverable errors in the
data unit, and such a possibility is equal to P1(T ) × P2(T ), where P1(T ),
P2(T ) are the probabilities of the two strikes occurring in a time interval
T . For ECCSW, the data unit in consideration is a data word, and P1(T ),
and P2(T ) are the probabilities of strikes occurring in the same data word
(P1(T ) = P2(T ) = SER × T × wordsize). Similarly, the data unit is a
quad-word, and P1(T ) and P2(T ) are equal to SER× T × quadwordsize for
ECCQW. For ZHVP, the data unit is a single word. Unrecoverable errors re-
sult if one strike occurs in the data word (P1(T ) = SER×T×wordsize), and
the other strike occurs in the same parity domain with the data word in con-
sideration (P2(T ) = SER × T × paritydomainsize where paritydomainsize
is the number of bits in a parity domain).

Cache access activity for each data unit collected from the cycle-accurate
processor simulation allows us to compute the URSER of each data unit.
The USRER of the entire cache is the sum of the URSER of all individual
data units.

Table 3.4 lists the URSER of the L2 caches, averaged for all benchmarks.
NOPRT’s URSER is 6.63 KFIT, or equivalent to roughly one error in 17
years. Such an URSER would be unacceptable since a parallel system con-
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Table 3.4: Unrecoverable Soft Error Rate.

Protection Scheme URSER(KFIT)
NOPRT 6.63
ECCSW 1.72 ∗ 10−16

ECCQW 5.85 ∗ 10−16

ZHVP 2.37 ∗ 10−13

sisting of 1024 processor nodes must fail for every week. Protection schemes
other than NOPRT achieved great reductions in URSER. While ECCSW and
ECCQW have lower URSER, the level achieved by ZHVP is clearly sufficient
for all practical purpose. More specifically, ZHVP’s URSER is equivalent to
one failure in one million products in about every 500 million years. 2.

3.7 Summary

VLSI caches must employ measures against soft errors to provide high reli-
ability. Maintaining ECC on a per-word basis, which is preferred for word-
based accessed caches, is expensive. This chapter presents Zigzag-HVP, an
alternative technique to SECDED ECC to detect and correct the soft errors
in such caches. The technique utilizes the concept of horizontal-vertical par-
ity. Two-dimension interleaving of the data words converts a spatial MBE
to multiple SBEs, each of which can be successfully detected and corrected
within the capability provided by horizontal-vertical parity. Modifications to
the cache data paths, write buffer, and BIST allow the parity update and
error recovery to be performed efficiently. Implementation of Zigzag-HVP in
a 512 KB L2 cache indicates that the overheads in terms of area and power
consumption are respectively 3.3% and 10%, and are smaller than those of
the ECC-based ones. While Zigzag-HVP is vulnerable to MBEs accumu-
lated from multiple particle strikes, our results show that such a probability
is extremely small.

2For reference, IBM has targeted undetected error corrupting rate of 114 FIT (one
error per 1000 years) for high reliable systems [65]
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Chapter 4

STCAM: Soft-Error Tolerant
Content-Addressable Memory

4.1 Random Access Memory and Content Ad-

dressable Memory

Memories can be classified into two types based on their access mechanisms:
Random Access Memory (RAM) and Content Addressable Memory (CAM).
In a RAM access, user supplies a memory address and the RAM returns
the data stored at that address. On the other hand, in a CAM access, user
supplies the data and the CAM searches its entire memory to see if that data
are stored any where in it. If the data were found, the search is recognized as
a hit. In this case, the CAM returns the address where the data were found.
Otherwise, if the data were not found, the CAM reports a search miss.

Figure 4.1-a shows the basic circuit structure of a RAM. Given an input
address, the decoder decodes the address and asserts a horizontal word line.
The contents of the cells on the asserted row are read through pairs of vertical
bit lines. Since the data are explicitly read from the data array and available
for examination in a RAM access, mitigating soft errors in a RAM is fairly
easy. When a RAM is going to store data, it generates check bits from the
data. The check bits are then stored in RAM along with the data. When
the data are accessed, the check bits are also read. New check bits are then
generated from the data. The new check bits are compared with the check
bits previously stored in RAM. If the data have been corrupted by a soft error,
the presence of the error will be recognized through a mismatch between the

57



58 CHAPTER 4. STCAM ARCHITECTURE

0SL 0SL 1SL 1SL 2SL 2SL 3SL 3SL

0ML

1ML

2ML

3ML

0SL 0SL 1SL 1SL 2SL 2SL 3SL 3SL

0ML

1ML

2ML

3ML

WL
BL BL

0SL 0SL 1SL 1SL 2SL 2SL 3SL 3SL

0ML

1ML

2ML

3ML

0SL 0SL 1SL 1SL 2SL 2SL 3SL 3SL

0ML

1ML

2ML

3ML

MLSL SL

In-built comparator

MLSL SL

In-built comparator

decoder

(a) (b)

Figure 4.1: Structures of RAM and CAM. Structure of a RAM in (a)
and structure of a CAM in (b). Each CAM cell is equipped with an in-built
comparator.

two kinds of check bits.

Figure 4.1-b shows the basic circuit structure of a CAM. At the begin-
ning of a CAM search, all the horizontal matchlines are precharged to a high
voltage. The input data are then fed through the pairs of vertical search
lines. Each CAM cell, equipped with an in-built comparator, compares its
content with the input bit. Any mismatch between an input bit and the
data bit stored in a cell on a row discharges the matchline of that row from
the high voltage to zero voltage. After the search, any matchline remain-
ing at high voltage indicates a search hit. Otherwise, if all matchlines are
discharged, there is no row matching with the input; the search results in
a miss. CAM effectively performs a table lookup operation, which speeds
up variety of lookup-intensive applications. Contrary to a RAM access, the
data stored in the CAM cells are not explicitly read out of the array in a
CAM access; only hit/miss information is available after the search. This
very difference in the access mechanisms leads to difference in soft error mit-
igation in RAMs and CAMs. The techniques used to mitigate soft errors in
RAM cannot be directly applicable to CAM. Mitigating soft errors in CAMs
is more challenging and has usually been ignored so far.
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In practice, CAMs are usually not used stand-alone but instead a CAM
is associated with a RAM, forming a CAM-RAM structure, as shown in
Figure 4.2. Pairs of address and data are usually stored in a CAM-RAM
structure: the addresses are stored in CAM and data are stored in RAM.
Given an input address, associative search is performed in CAM. In case of
a search hit, the hit match line is used to drive the corresponding word line
in the RAM, from which the data are read. There are several components
in a microprocessor having such a CAM-RAM structure: instruction and
data caches, Translation Look-aside Buffer (TLB), load-store queue (LSQ).
These components play important roles in the functioning of a processor.
Making these components being tolerable against soft errors is important for
achieving high processor’s reliability.

CAM
tag

CAM
tag

RAM
data

RAM
data

address

data

CAM
tag

CAM
tag

RAM
data

RAM
data

address

data

Figure 4.2: A CAM-RAM structure. Associative search is performed in
CAM. Data for matched entry are read from RAM.

Our research concentrates on mitigating soft errors in CAMs used as tag
portions of instruction and data caches in a processor. CAMs in instruction
and data caches are bigger and hold more entries than those CAMs found in
other components (e.g., TLB, load-store queue), so they are more vulnerable
to data integrity problems caused by soft errors. However, the proposed
technique is also applicable to other CAM-RAM components in a processor.

4.2 CAM-RAM Caches

In typical implementation of a memory cache, data portion is implemented
using a RAM while tag portion can be implemented using either a RAM or
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Figure 4.3: Structure of highly associative CAM-RAM cache. Cache
lines belonging to the same set forms a CAM-RAM macro. Only one macro
is activated in an access.

a CAM. We refer to a cache with a RAM tag as a RAM-RAM cache, and a
cache with a CAM tag as a CAM-RAM cache.

Figure 4.3 shows the basic structure of a CAM-RAM cache. The cache
consists of several CAM-RAM macros. Each CAM-RAM macro corresponds
to a cache set. Each row in a CAM-RAM macro holds the tag and data of a
cache line. The number of rows in a CAM-RAM macro therefore represent
the number of cache lines in a set (i.e., the cache associativity). Upon a cache
access, some low order bits of the input address are decoded to select a CAM-
RAM macro. The remaining bits are used as input tag. Associative search for
the input tag is performed on the selected CAM-RAM macro. If the search
results in a hit, the data of the hit cache line is read from the RAM. Such a
CAM-RAM structure allows the realization of highly associative caches. 32-
or 64-way set associative CAM-RAM caches can be found in practice [66] [66].

There are several advantages with such highly associative CAM-RAM
caches. First, a highly associative cache reduces conflict misses and improves
processor performance. Second, fine granularity of cache lock-down is pos-
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sible [67]. In cache lock-down, a portion of cache is reserved exclusively for
storing instructions or data of critical routines. By cache lock-down, the
non-determinism of processor performance caused by unpredictable cache
misses can be avoided when the routines are executed. Cache lock-down is
an useful feature for systems with high real-time requirement. With a 4-way
set-associative cache, for example, it is practical to lock down a quarter of
cache (1-way), half of the cache (2-way), or three-quarters of the cache (3-
way). This is a coarse granularity and is inefficient if, for example, all that
need be lock down is memory to hold data for a small interrupt handler.
With a 32-way CAM-RAM cache, for instance, cache lock-down can be done
in units of 1/32 of the cache, which is a much finer granularity. Third, since
only one CAM-RAM macro is activated for each access and other macros
are clock gated, CAM-RAM cache can be power-efficient. Previous work
claimed that a CAM-RAM cache consumes less power than a RAM-RAM
cache [68] [69] [70] [71]. These advantages make CAM-RAM cache a valu-
able design choice.

4.3 False Hits and False Misses

Data corruption by soft errors in the tag portion of a cache raises the possi-
bilities of false hits and false misses. This section explains how false hits and
false misses happen as well as the data integrity problems caused by them.

A false hit refers to a search hit that would have been a miss if soft
errors had not occurred. Figure 4.4 illustrates an example of a false hit.
The tag portion initially held two tag entries 〈1010〉 and 〈1000〉. A particle
then struck and corrupted a bit in the first entry, making its value change
from 〈1010〉 to 〈1000〉. Under that situation, if the tag 〈1000〉 is inputted for
searching, then the search will result in a hit in the corrupted entry. Such a
hit is a false hit. A false hit in the tag portion leads the processor to load
data from or store data to the incorrectly matched location. Soft errors may
also result in a multi-hit—a search hits in multiple entries.

A false miss refers to a miss that would have been a hit if the soft error
had not occurred. Referring back to Figure 4.4, if the tag 〈1010〉 is inputted
for searching, the search would cause a mismatch for the first entry which
value was originally 〈1010〉 but now is 〈1000〉 due to the soft error. A false
miss causes data integrity problems if the would-have-hit entry holds dirty
data. The false miss in this case will trigger fetch and use of the stale data
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Figure 4.4: Examples of false hits and false misses.

from lower level caches. Since write-back caches can hold dirty data, such
caches are susceptible to the data integrity problem caused by false misses.

There are several “naive” methods to deal with false misses and false
hits in CAM tag of a CAM-RAM cache. First, false misses/false hits can be
detected by replicating the CAM tag. Tag search is performed in both CAMs.
The search results including the hit/miss information as well as hit addresses
are compared. A mismatch in the search results indicates the presence of a
soft error in one of the CAMs. While the concept is simple, tag replication
incurs large area overhead. A CAM cell typically has much larger size than
a RAM cell. For instance, a CAM cell occupies an area approximately four
times larger than that of a RAM cell [69]. Moreover, while tag replication
can detect errors, a coding technique must be employed to determine which
one of the two CAMs is not corrupted.

Second, false hits and false misses can be reduced through cache scrubbing
[29]. In cache scrubbing, the content of the CAM tag is periodically read and
check for data integrity. Errors can be detected/corrected before showing up
as false hits or false misses later. Data integrity problem is still possible
with cache scrubbing if the data are corrupted and accessed in a scrubbing
interval. Such a probability can be high for frequently accessed L1 caches [29].
Performing scrubbing more frequently while helps reduce the probability of
false hits and false misses but increases scrubbing overheads.
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Third, false misses in CAM tag can be made harmless by making the
cache a write-through cache. With a write-through cache, the lower level
cache is always updated with the up-to-date data. A false miss will the
fetch the up-to-date data from lower level cache. However, compared with
a writeback cache, write-through cache increases the traffic to lower level
cache and therefore has impacts on performance and power consumption.
Moreover, while false misses can be eliminated with write-through cache, we
still need to deal with false hits.

The naive methods described above have their limitations. To our knowl-
edge, there has been no cost-effective technique to deal with false hit and
false miss problems in the CAM tag of a CAM-RAM cache so far. Our pro-
posed STCAM architecture allows the CAM tag to be tolerable against soft
errors.

4.4 STCAM Architecture

STCAM provides tolerability against soft errors in the CAM portion of a
CAM-RAM cache. In this section, we first explain the mechanisms to deal
with the false hits and false misses. We then describe the access algorithm
of a STCAM cache.

4.4.1 Mitigation of False Hits

STCAM deals with false hits by storing the check bits for each CAM tag entry
into the corresponding data entry in the RAM, which is shown in Figure 4.5.
When a search for a given input tag results in a hit, the corresponding check
bits of the hit CAM tag are read from RAM along with the data. The check
bits are compared with those check bits directly computed from the hit input
tag. Mismatch in the check bits signifies that the hit tag has been corrupted
and the hit is indeed a false hit. Otherwise, it is a true hit.

Using parity as check bits for tags can detect the false hits. In order to
be fully recoverable from false hits, error correcting code must be used.

4.4.2 Mitigation of False Misses

STCAM divides the CAM in each CAM-RAM macro into two sub-CAMs,
as shown in Figure 4.6. A tag is divided into two subtags and each subtag



64 CHAPTER 4. STCAM ARCHITECTURE

RAM
data

RAM
data

CAM
tag

CAM
tag

address

data

Check bit 
computation
Check bit 

computation

=?=?

check bits of tags

Set 0
Set 1

Set n

RAM
data

RAM
data

CAM
tag

CAM
tag

address

data

Check bit 
computation
Check bit 

computation

=?=?

check bits of tags

Set 0
Set 1

Set n

Figure 4.5: Mechanism for mitigating false hits. Check bits of CAM
tags are stored in RAM. Tag is checked on a cache hit.

is stored in a sub-CAM. The matchlines of the sub-CAMs are called local
match lines. Pair of local match lines belonging to the same tag are ANDed
to create a global match line. The OR logic of the two local match lines,
called close-hit line, is also provided.

The global match lines have the same function as the match line of a
normal CAM. A global match line staying high after a search indicates a
hit. If the global match line of a row is discharged while the close-hit line
of the same row stays high, then the case is called a close hit. The close hit
indicates that the tag stored in that row is partially matched with the input
tag. Since soft errors are infrequent events and a soft error effects only one
or a very few bits located closely, the separation of the sub-CAMs makes the
probability that both subtags of the same tag be corrupted very low. A false
miss therefore will show up as a close hit in STCAM that can be recognized
by an asserted close-hit line.

When a close hit is encountered, the tag with the close hit line asserted
is explicitly read from the CAM and its check bits are read from RAM.
Verification are performed to determine whether the tag has been corrupted
or not. The corrupted tag is corrected and compared with the input tag to
determine whether the close hit is a false miss or a true miss.
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CAM2
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global match line

close-hit line

local match line

Figure 4.6: Modified CAM tag for mitigating false misses. CAM tag
is divided in horizontal direction into two sub-CAM. A back-up checking
is required for a partially-matching case which is signified by an asserted
close-hit line.

4.4.3 Cache Access Algorithm

Figure 4.7 indicates the access algorithm of STCAM. Given an input address,
the set index portion and the tag portion are derived. The set index portion
is used to select a CAM-RAM macro. The tag portion of the address is
divided into two subtags. The subtags are fed into the sub-CAMs of the
selected macro. The sub-CAMs then perform associative search in parallel.
A global match line staying asserted after the search indicates a cache hit.
In this case, the check bits of the hit tag are also read from RAM together
with the data word. Check is performed to verify whether the hit is really a
true hit or a false hit.

In the case of a cache miss (e.g., there is no global match line staying high
after the search), if there is no close-hit line asserted, then the miss is a true
miss. Otherwise, if there is a close hit, the close hit tag are explicitly read
from CAM and its check bits are read from RAM. The check bits recomputed
from the tag read from CAM are compared with the check bits previously
stored in RAM. The close hit is a false miss if the tag is found out to be
corrupted and the corrected tag is identical to the input tag. Otherwise, the
close hit is considered a true miss.

It is possible that a search results in hits or close hits of multiple tag
entries. In this case, the checking routine is repeated for each of those entries.
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Figure 4.7: Access algorithm of a STCAM cache.
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4.5 Close Hit Rate and Tag Encoding Scheme

There are two causes of close hits: soft errors and accidental matching of
subtags. A soft error occurs and corrupts a tag so that an access that would
have been a true hit if the soft error had not happened becomes a close hit. A
close hit also results if an input subtag is accidentally matched with a subtag
stored in the CAM. Since soft errors are very infrequent events, accidental
matching of tags is the main cause of close hits. Since verifying if the close
hit is a false miss or a true miss requires the tag to be explicitly read from
the sub-CAMs, overheads in term of access latency and power consumption
incur. This section first discusses how often the close hits may occur due
to accidental matching of subtags. An encoding scheme for reducing the
frequency of close hits is then proposed.

4.5.1 Close Hit Rate

If we assume that the values of input tags as well as the tags stored in the
tag portion are random, the rate of close hits caused by accidental matching
of subtags, Rch, can be roughly estimated by Equation 4.1.

Rch = Rm ∗
1

2T/2
∗ W ∗ 2 (4.1)

Here, Rm is the cache miss rate, W is the cache associativity, and T is the
length of a tag in bit.

Close hits are considered only on cache misses (no global match line as-
serted), hence the multiplication of Rm in the right hand side (RHS) of the
equation. The second term in RHS is the probability that a two randomly
chosen T

2
-bit subtags are coincident. A input subtag needs to be compared

with W subtags belonging to the same set, hence the multiplication of W .
Finally, close hit can be triggered by the matching of either of the two input
subtags, hence the last term in the RHS.

Let us consider a concrete example. Here we assume a 32KB, 32-way, 32B
line cache which is similar to the data cache found in Intel XScale processor
[72]. With 32-bit address, five bits are used for indexing bytes inside a cache
line, another five bits are used for set indexing (the cache have 32 sets),
leaving the remaining 22 bits used for tag. Substituting these values (W=32,
T=22) into Equation 4.1, we have Rch = Rm/32. That means that a close hit
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Figure 4.8: Cache miss rate and close hit rate. Close hit rate of the
data cache is many times higher than the miss rate.

is estimated to occur once for every 32 cache misses on average. With such
low close hit rate, the overhead of checking for a false miss can be tolerable.

We perform simulation to verity the estimated close hit rate with real-
world close hit rate. Figure 4.8 shows the miss rate, close hit rate obtained
when SPEC2000 benchmarks are executed with the above-mentioned 32KB
data cache. The data cache is virtually-indexed, virtually-tagged. The cache
simulation is carried out using SimpleScalar toolset [64]. The ARM binaries
generated using a GCC compiler (version 2.95) are used in the evaluation.
Each benchmark is run for 20 billion instructions. A tag is divided based on
high and low order bits.

Contradict to our estimation (Rch = Rm/32), the real close hit rate is pro-
hibitively high, particularly for ammp, art, gcc, and mcf. The close hit rates
many time higher than the miss rates are possible since multiple close hits
may occur in a single miss. We next investigate the cause of such excessively
high close hit rate.

4.5.2 Distribution of Access Addresses

The cause of high close hit rate exhibited in real applications can be under-
stood by considering the distribution of the target addresses of the accesses
to the data cache, shown in Figure 4.9. Here, the 32-bit (i.e., 4GB) address
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Figure 4.9: Distribution of the target addresses of accesses. Accesses
to the data cache cluster in only a few region.

space is divided into regions of 4MB. The X-axis shows the number of regions
have been most accessed, and the Y-axis shows the accumulated access rate
of the selected number of regions.

Accesses cluster in a very few ”hot” regions in the address space for all
benchmarks. The cluster of accesses results in low diversity of the high order
bits of the target addresses. If we simply divide the tags to subtags containing
respectively the high and low order bits, as shown in Figure 4.10-a, many
close hits will result from the coincidences of the subtags containing the high
order bits.

4.5.3 Tag Encoding Scheme

We propose an original tag encoding scheme, shown in Figure 4.10-b. A
tag is first divided into two parts containing respectively the high and low
order bits. The part containing the low order bits is used as first subtag.
The second subtag is produced by XORing the two parts together. Since
the diversity of the parts containing the high order bits of the tags is low,
by XORing the two parts together, we essentially impose the diversity of
the low order bits to the high order bits. The probability that the parts
containing the high order bits being accidentally matched is reduced, leading
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Figure 4.10: Tag encoding schemes. Scheme in (a) causes frequent close
hits. The proposed scheme in (b) effectively reduces the close hit rate.

to reduction in the frequency of close hits. XOR operation in the proposed
tag encoding scheme preserves data information. The original high order bits
of a tag can be reproduced by XORing the two encoded subtags.

Figure 4.11 shows the close hit rates of the data cache employing the
proposed tag encoding scheme. Cache configuration and simulation method
are identical to those described in Section 4.5.1. Compared to the results
shown in Figure 4.8, the close hit rates are reduced greatly for all benchmarks.
The proposed tag encoding scheme is therefore very effective in reducing close
hits.

Noteworthy, with the proposed tag encoding scheme, the detection (or
correction) of soft errors should be based on the encoded subtags. Specifically,
check bits should be directly computed from the encoded tag (e.g., consisting
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Figure 4.11: Miss and close-hit rates with proposed tag encoding.
The close-hit rate is reduced greatly.

of subtag1 and subtag2 in the Figure 4.10). If the check bits are computed
from the original tag otherwise, a bit corruption in subtag1 stored in CAM
would generate a another bit corruption when restoring the high order bits
(by XORing subtag1 and subtag2). Since SECDED ECC are usually used,
the double-bit error may exceed the error detection/correction capability
provided by the ECC.

4.6 Overheads of STCAM

Implementing STCAM requires modifications to the circuitry of a CAM-
RAM cache. This section discusses how the modifications may impact the
cache access latency. Furthermore, when a close hit occurs, additional cycles
must be spent to verify whether the close hit is a true miss or a false miss.
The impact of such an overhead on processor performance is also considered.

4.6.1 Cache Access Latency

The access time of the 32KB, 32-way, 32B line CAM-RAM cache is evaluated
using Cacti tool [56]. Given cache’s architectural parameters such as cache
size, cache line size, and associativity as well as a scaling parameter repre-
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senting the process technology being used, Cacti performs analytical analysis
to determine the optimal cache structure that yields the best trade-offs in
access latency, area, and power consumption. Since the original Cacti is only
able to model a monolithic fully-associative CAM-RAM, we enhance Cacti
to allow it to be able to model an CAM-RAM cache consisting of multiple
CAM-RAM macros, taking into account the time to route and select a macro.

The access times of the CAM-RAM cache, before and after modification,
are listed respectively in Equation 4.2 and Equation 4.3. Here, we assume
0.18 um process technology. The access time is the sum of 1) the time to
route and select a CAM-RAM macro (macro select), 2) time to search the
CAM (cam search), and 3) time to read data from RAM (ram read).

access time = macro select(0.21ns)

+cam search(0.66ns)

+ram read(0.51ns)

= 1.38ns (4.2)

access time = macro select(0.21ns)

+cam search(0.29ns)

+ram read(0.51ns)

= 1.01ns (4.3)

CAM search time dominates the access time in the original cache. Since
matchlines in a CAM typically have high capacitances, driving such match-
lines consumes much time. Subdivision of a CAM into two sub-CAMs in
the modified cache reduces the effective lengths of the matchlines and conse-
quently reduces the time required to charge/discharge the matchlines. This
results in considerable improvement in CAM search time in the STCAM(from
0.66ns to 0.29ns).

We evaluated that the time required for tag encoding is 0.067ns. Since
tag encoding can perform in parallel with macro selecting and tag encoding
requires less time than macro select, the latency of tag encoding is completely
hidden.

The latency of computing or verifying check bits is not included in Equa-
tion 4.2 and 4.3 for several reasons. First, since a reliable cache must protect
the data portion from soft errors, the overhead of computing and verify-
ing check bits for the data already present, regardless of whether soft error
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Figure 4.12: Performance of processor using STCAM. When STCAM
is employed in processor’s data cache, performance degradation incurred by
close-hit checking is very small.

measures for the tag portion are employed or not. Second, computing and
verifying the check bits can be removed from the critical path of the cache
access. The processor can immediately use the data obtained without wait-
ing until the checking for false hit/miss completes. If a false hit is detected
later, the processor simply discards the intermediate results produced from
the corrupted data.

Modifications to the cache to support our technique therefore do not
increase the cache access time. For cases of close hits, additional execution
cycles for checking the potential false miss are explicitly allocated and such
an overhead is evaluated next.

4.6.2 Processor Performance

Our modified cache requires backup checking on a close hit to verify whether
the close hit is a true miss or a false miss. Such checking needs additional
execution cycles and degrades processor performance. We used an execution-
driven, cycle-accurate simulator from SimpleScalar toolset [64] to measure
the performance degradation of a processor using the modified data cache.
We modeled a processor similar to Intel XScale processor [72]. The processor
is a 5-stage, in-order scalar processor, having 32KB, 32B line, 32-way set as-
sociative instruction and data caches. Cache hit latency is 1 clock cycle. The
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memory is idealized (i.e., alway hit) with access latency of 32 cycles. Each
benchmark are run for 10 billion instructions. We assumed that verifying
each close hit requires an additional cycle. Figure 4.12 shows the evaluation
results. Execution time for all benchmarks increases no more than 0.005%.
Such very small performance degradation results from very low close hit rate
brought by our tag encoding scheme.

4.7 Summary

The circuit structure and access nature of content addressable memories
(CAMs) make it difficult to mitigate false hits and false misses caused by
soft errors. This chapter proposed STCAM, a soft-error tolerant CAM ar-
chitecture. In STCAM, the check bits of the CAM portion are stored in the
associated RAM portion of a CAM-RAM structure. False hits in the CAM
tag can be detected by examining the check bits of the hit tags. Mitigation
of false misses involves subdividing a CAM and providing backup checking
for cases the input is partially matched in the CAM. An original encoding
scheme is proposed to reduce the frequency of back-up checking. Evaluation
results indicated that the circuit modifications to support the technique do
not increase cache access latency. The performance degradation imposed by
backup checking was extremely low.



Chapter 5

SEVA: Soft-Error- and
Variation-Aware Cache
Architecture

5.1 Introduction

SRAM designs are confronted with two serious problems: soft errors and
variation-induced defects. Soft errors refer to radiation-induced transient er-
rors [6]. Soft error rate (SER) per bit of SRAM is expected to stay steady
over process generations [73]. However, device scaling allows the number
of bits integrated on a chip to increase exponentially, rising the total SER
rapidly. Tolerance of soft errors is highly required. Error Correcting Code
(ECC)–particularly, Single Error Correction Double Error Detection Ham-
ming code (SECDED)– is widely employed to detect and correct soft errors
in SRAMs.

Process variation causes spreads in the electrical characteristics of scaled
devices. The effect is pronounced in SRAMs where minimum-geometry tran-
sistors are used. The number of variation-induced defective memory cells
becomes high with device scaling [46] [47], leading the conventional redun-
dancy techniques (e.g., using redundancy rows/columns) to become imprac-
tical. Combination of a redundancy technique with ECC can tolerate a high
degree of random defects [48] [49]. A block containing a single defective cell
can be repaired by ECC. At a much lower probability, a block may contain
multiple defective cells that exceed the error detection and/or correction ca-

75
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pability provided by ECC. Only such a block is replaced by a redundancy
element. With such a combined approach, a small number of redundancy
elements can be sufficient.

It is cost-effective if the same ECC resource can be used to tolerate both
defects and soft errors. However, while a defective cell in a block can be
tolerated by SECDED, the block becomes vulnerable to soft errors. Soft
errors occurring in the block could be left undetectable and/or uncorrectable.
While the error detection and correction capability of ECC can be enhanced
by using codes that are more powerful than SECDED, these codes incur
significant overheads and are impractical for being implemented in high-speed
SRAMs. Previous work therefore improves defect tolerance at the expense
of degraded soft error tolerance [48] [49].

This chapter proposes SEVA, a Soft Error and Variation Aware cache
architecture. SEVA exploits SECDED to tolerate variation-induced defects
while preserving high resilience against soft errors. SEVA allows only the
clean data to be stored in the defective (but still usable) blocks. Such a
constraint is enforced through a selective write-through mechanism called
assurance update. Soft errors cannot cause integrity problem in these blocks
because SECDED is still able to detect the errors. When soft errors are
detected, correct data can always be obtained from the lower levels of the
cache hierarchy. Assurance updates can be effectively executed by maintain-
ing information about defectiveness and dirtiness for each SECDED block.
We also propose data swapping between blocks of the same cache line to
reduce number of assurance updates. SEVA improves yield and reliability
with modest costs.

The rest of this chapter is organized as follows. Section 5.2 respectively
discusses the existing techniques for defects in SRAMs. Section 5.3 discusses
the limitation of these existing tolerance techniques. Section 5.4 describes
SEVA architecture. Section 5.5 presents defect and yield analysis for an
SEVA cache. Section 5.6 presents the performance and reliability evaluations.
Finally, Section 5.7 summarizes this chapter.
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Table 5.1: Variation of Vth over process generations. Variation becomes
severe as process scales down.

Technology (nm) 65 57 50 45 36
Vth (V) 0.18 0.17 0.16 0.15 0.14

σVth (mV) 19 21 22 24 27

5.2 Variation-induced Defects and Defect Tol-

erance

5.2.1 Variation-induced Defects

As process scales down, precise control of various device parameters such as
gate width (W), gate length (L), number and locations of dopant atoms in
manufacturing becomes increasingly difficult. Variations of such parameters
result in considerable variations in electrical properties of a device. Thresh-
old voltage (Vth) is an important parameter that characterizes the electrical
property of a transistor. Table 5.1 shows variation of Vth over process gen-
erations, predicted by ITRS [73]. Particularly, fluctuations in number and
locations of dopant atoms in the channel region of a transistor are known
as the dominant source of Vth variation in scaled devices [74] [75] [76]. Such
variation is intrinsic and cannot be solved by lithography improvements.

Effect of variation is pronounced in SRAMs where minimum-geometry
transistors are used. Figure 5.1 shows the schematic of an SRAM cell. The
cell consists of two cross-coupled CMOS inverters (comprised by transistor
T3 ∼ T6) and two N-type access transistors (T1, T2). Large mismatches in
the strengths of these transistors in an SRAM cell can make the cell fail to
function. Three types of failures can occur in an SRAM cell: read, write, and
access time failures. We now provide brief descriptions about the mechanisms
of these failures.

• Read Failure. Read failure is defined as the flipping of cell data while
reading an SRAM cell. The voltage of node B (the node storing 0 in
Figure 5.1), VB , is raised from zero to Vread due to a voltage divider
between BL (precharged at V DD) and GND through T1 and T3. If
Vread is larger than the tripling voltage Vtrip of {T4,T6} inverter, the
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0=B 1=B

BLBL

Figure 5.1: Schematic of a SRAM cell. The cell is consisted of six
transistors. Variations in threshold voltages of these transistors can lead to
a cell failure.

cell flips resulting in a read failure. Variations in Vth of T1 and T3 (or
T6 and T4) lead to large variation in Vdiv (or Vtrip).

• Write Failure. Write failure is defined as the inability to successfully
write to a cell. When writing 0 to node B which originally stores 1,
VB develops to Vwrite due to a voltage divider between BL at GND
and V DD through T2 and T6. If Vwrite is larger than Vtrip of {T3,T5}
inverter, the write will fail. Since T2 and T6 (also T1 and T5) are typ-
ically the smallest transistors in the cell, Vth variations in these tran-
sistors causes large variation in Vwrite, resulting in a high probability of
write failure [46].

• Access Time Failure. The access time (Taccess) is defined as the
time required to develop a predefined voltage difference between BL
and BL. When node B stores 0, BL will discharge through T1 and
T3 in a read operation. The discharge speed depends on the strengths
of T1 and T3. Vth variations in these transistors cause a spread in
Taccess. An access fails if Taccess is larger than the maximum tolerable
limit Tlimit.

Table 5.2 shows the failure probability of a cell at 45nm process with
different amount of Vth variations [47]. PRF , PWF , and PAF are respectively
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Table 5.2: Probability of failure cell versus σV th in 45nm process [47].

σVth
(mV) PRF PWF PAF PFault

20 1x10−4 1x10−4 1x10−4 1x10−4

30 2x10−4 2x10−4 5x10−4 8x10−4

40 1x10−3 6x10−4 3x10−3 4x10−3

the probability of read, write, and access failures. PFault is the total failure
probability. The failure probability is quite high and highly sensitive to V th

variation.

5.2.2 Defect Tolerance Techniques

Redundancy techniques have been used to tolerate manufacturing defects
in SRAMs to improve yield. After fabrication, SRAMs go through a test
process. A test algorithm applies input data in particular patterns to the
SRAMs, and diagnoses the receiving output data to locate the defects. Com-
mon defects in SRAMs are malfunction cells, stuck-at faults, and bridging
faults. When the defects have been identified, a repair algorithm is executed
to replace the defective locations with redundancy elements. Traditionally,
external equipments are extensively used to test the chips, to localize the
defects, and to drive a laser beam to perform repair, or to blow fuses or anti-
fuses. However, external test & repair method is costly. Modern SRAMs
typically includes Built-In Self Test (BIST) and Built-in Self Repair (BISR)
to maintain reasonable test and repair cost [77].

Conventional redundancy techniques usually use subarrays [19], cache
lines [78], rows or columns [61] as the redundancy elements. However, high
defect densities in scaled processes make such coarse-grain redundancy tech-
niques become impractical. Fine-grain redundancy techniques have also been
proposed. In [47], a row can contain several cache lines and an individual
cache line, rather than an entire row, can be replaced through modifications
to the column multiplexers. Maintaining redundancy at a word level (e.g.,
32-bit) allows more efficient utilization of redundant resources [79] [80]. Nev-
ertheless, such fine-grain redundancy techniques are still impractical for high
defect densities. For instance, assuming that the defect probability per cell is
0.001, then a 512-KB cache will have roughly 4K defective words. The BISR



80 CHAPTER 5. SEVA ARCHITECTURE

Table 5.3: Number of check bits required for different information-
bit lengths. DEC requires about two times more check bits than SECDED.

Information-bit length 32 64 128
SECDED 7 8 9
BCH DEC 12 14 16

and decoder circuitry supporting the replacement of such a high number
of defective words is very complex. Particularly, the Content-Addressable
Memory (CAM), which is usually used in BISR to store the addresses of
the defective words that need to be rerouted to other non-defective words,
becomes excessively large and degrades the access latency of the cache.

There have been proposals that combine a redundancy technique with
ECC to tolerate a high number of random defects [48] [49]. ECC, usually
SECDED, is maintained for each data block. In the case a defective cell is
present in the block, the defective cell can be corrected by SECDED. Only
in the case where more than one defective cells present in the same block,
the block is replaced by a redundancy element. The probability of the later
case is much lower than the former case. With such a combination approach,
the number of redundancy elements can be kept at low and the BISR can be
keep simple.

5.3 Limitation of Existing Techniques

Defect tolerance and soft-error tolerance are the two topics that have usually
been treated separately. ECC has proved to be effective for tolerating either
high defect densities or soft errors. It would be cost-effective if the same ECC
resource can be used for both of these purposes. However, while a defective
cell present in a block can be tolerated by SECDED, the block becomes
vulnerable to soft errors. An error occurring in the block is detectable but
uncorrectable. This can get the processor system into an unrecoverable state,
particularly when the corrupted data are dirty data that have no backup
elsewhere in the cache hierarchy.

Error detection/correction capability of ECC can be improved by using
codes that are more powerful than SECDED. For instance, if Double Error
Correction Code (DEC) is used, a defective cell present in a block can be
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tolerated while a single-bit error occurring in the block can be successfully
detected and corrected. Some conventional DEC codes described in the liter-
ature are Bose-Chaudhury-Hocquenghem (BCH), Reed-Solomon [81]. How-
ever, their overheads are considerably larger than those of SECDED. Table
5.3 shows the number of check bits required to implement SECDED and BCH
DEC at various information bit lengths. DEC increases number of check bits
significantly. Moreover, while encoding/decoding circuitry of SECDED can
be constructed as XOR trees and is quite fast, the powerful codes including
BCH DEC are typically cyclic codes employing multi-bit Linear Feedback
Shift Registers (LFSR) which introduce inordinate delay and are unsuitable
for being implemented in SRAMs requiring fast access. Even in an optimized
implementation of a Reed-Solomon code, it requires tens of nanoseconds to
encoder/decoder the code [82].

Therefore, it is important to use SECDED as an ECC of choice. Exist-
ing work [48] [49] that have advocated for SECDED/redundancy-combined
approach have limitation that they improve defect tolerance at the expense
of degraded tolerance against soft errors. SEVA can overcome such a limi-
tation. SEVA utilizes SECDED to tolerate variation-induced defects while
preserving high resilience against soft errors.

5.4 SEVA Architecture

5.4.1 Cache Structure and Block Classification

A SEVA cache consists of several subarrays. A subarray has several rows.
Each row is comprised of several blocks. Each subarray has its own decoder,
BIST, BISR, and some redundancy rows. BIST detects the defective cells
in the subarray. The blocks are classified based on the number of defective
cells they contain. A block that does not have any defective cell is called a
good block (g-block). A block that has a defective cell is called a tolerable
block (t-block). A block that has more than one defective cells is called a
bad block (b-block). The row containing at least one b-block is a bad row.
BISR replaces the bad rows with redundancy rows.

SEVA associates each block with a g-bit. The g-bit of a block is set (or
reset) if the block is a g-block (or t-block). Defect analyzing and setting of
the g-bits are performed by BIST every time system is booted. Alternatively,
such an overhead can be reduced by storing the values of the g-bits into a
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Figure 5.2: Distribution of blocks at different defect rates. As defect
rate becomes high, there is a significant proportion of t-blocks which are
susceptible to unrecoverable soft errors.

non-volatile storage and reloading these values into the g-bits at rebooting.

SEVA interleaves multiple blocks in the same row to disperse the error
bits of a spatial MBE. We assume that a block contains as much as one error
bit and focus on how to deal with a single-bit error in a block. If the block is a
g-block, SECDED can be exclusively used for soft error tolerance. Therefore,
the single-bit error is detectable and correctable. However, if the block is a
t-block, a part of SECDED capability is used for repairing the defective cell,
leaving the reduced capability for soft error tolerance. The error in this case
is detectable, but uncorrectable. If the block holds the only instance of the
data, soft error occurring in the block can get system into an unrecoverable
state.

Figure 5.2 shows the distribution of three types of blocks at different
defect rates. Section 5.5 will describe how to calculate such a distribution.
The block size is 72 bits (64 information bits and 8 check bits). With a high
defect rate, after the b-blocks are replaced by redundancy elements, there is
a significant proportion of t-blocks and these blocks are vulnerable to data
integrity problem caused by soft errors.
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5.4.2 Inclusion Properties in Multi-level Cache Hier-

archies

There are two factors that determine whether data corruption in a t-block
can lead to an unrecoverable state or not. The first relates to the dirtiness
of data—whether the corrupted data are dirty or clean. The second relates
to whether or not the cache hierarchy maintains inclusion property [83].

In some processors (e.g., Intel Pentium as well as most RISCs), the data
in a cache may also be in its lower level cache. In other words, data stored
in a cache constitute a superset of the data stored in its lower level cache.
These caches are called inclusive. Other processors (e.g., AMD Athlon) have
exclusive caches; the data are guaranteed to be in at most one of a cache and
its lower level cache. The major advantage of inclusive caches is that they
simplify the maintenance of cache coherency in a multiprocessor system. To
process a coherency request from other processors, a processor must deter-
mine whether or not it currently holds the requested cache line. In inclusive
caches, examining the lowest level cache is sufficient. In an exclusive cache
hierarchy, however, the upper level caches must be checked as well. Another
advantage of inclusive caches is that the lower level cache can use larger cache
lines, which increases the spatial locality and reduces the size of the cache
tags. Exclusive caches have an advantage that they store more data. How-
ever, as processors include more and more on-chip caches and the relative
difference in sizes of a cache and its lower level cache becomes larger, the
merit of storage saving provided by exclusive caches becomes less significant.

There is only one instance for each piece of data stored in an exclusive
cache hierarchy. If the data stored in a t-block are corrupted due to a soft
error, no matter whether the data are clean or dirty, there is no way to
recover the data. If such data are referenced by the processor, the system
can get into an unrecoverable state. On the other hands, in an inclusive
cache hierarchy, the clean data in a cache always have a copy in its lower
level cache. When clean data in a t-block of a cache are corrupted due to
a soft error, the correct data can be obtained from the lower level cache.
Only dirty data in a t-block being corrupted can raise the possibility of an
unrecoverable error.

In this research, we assume that multi-level cache hierarchy maintains
inclusive property. The unrecoverable data integrity problem due to corrup-
tion of dirty data stored in t-blocks is dealt with by the assurance update
mechanism described in the next section.
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5.4.3 Assurance Update

The data integrity problem caused by soft errors can be prevented by allowing
only clean data to be stored into t-blocks. Whenever a t-block of a cache
receives an update from an upper level cache (or processor), the updated data
are also sent to the lower level cache. Such a selective update is referred to
as an assurance update. An assurance update is also necessary if the update
goes to a cache line which the block storing its tag is a t-block. It is because
if the tag is corrupted by a soft error, we cannot reclaim the correct address
to which the cache line originally belonged.

Assurance updates increase the number of accesses to lower level cache.
Conventionally, there is a writeback buffer sitting between a cache and its
lower level cache. Data updated to lower level cache are temporarily stored in
writeback buffer and will be written back later when the bus is free. Thanks
to writeback buffer, an assurance update can be mostly removed from the
critical path of a cache access. However, if writeback buffer is full, an up-
date will be stalled for writeback buffer to retire its entries to make room
for newly coming data. Stalling caused by assurance updates will degrade
processor performance. Assurance updates also increase power consumption.
As previously indicated in Figure 5.2, with a high defect rate the propor-
tion of t-blocks and consequently the frequency of assurance update can be
significant. The next section will describe techniques that efficiently per-
form assurance updates to limit their impacts on performance and power
consumption.

5.4.4 Assurance Update Reduction

In this section, we are going to describe three techniques that can help reduce
the frequency of assurance update.

A. Maintaining dirtiness at block level

In conventional caches, the dirtiness of data is maintained at cache line
level. Since typical cache line size is 64B∼256B while SECDED block size is
32b∼256b, a cache line usually consists of multiple SECDED blocks. When
a dirty cache line is written back, all the constituent blocks are written back,
no matter whether the blocks have been modified or not. It is wasteful since
clean blocks in a cache already have their copies in the lower level cache. By
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maintaining the dirtiness of data at the block level rather than at cache line
level, unnecessary writebacks of clean blocks can be omitted.

Each block is associated with a d-bit. The d-bit of a block is set (or reset)
if the block stores dirty (or clean) data. When a cache line is written back,
only those blocks having their d-bits set are sent to its lower level cache. The
d-bits are then reset to indicate that the data in the blocks are now clean. By
reducing the number of blocks updated to lower level cache, the probability
of assurance update triggered by lower level cache can also be reduced.

B. Data swapping

The clean data stored in a g-block are “over-protected” by SECDED since
the capability of detecting single-bit error is sufficient in this case. On the
other hand, the dirty data stored in a t-block are “under-protected” since
an error occurring in the block drives the data into unrecoverable state. For
other two combinations–clean data stored in a t-block or dirty data stored
in a g-block–the data are just sufficiently protected. We propose the scheme
in which the under-protected and over-protected data can be swapped to
improve the protectiveness of the data as a whole. Swapping is carried out
between data blocks belong to the same cache line. An assurance update can
be avoided if the number of dirty blocks in a cache line is no more than the
number of t-blocks in the same cache line.

Figure 5.3 shows an example of data swapping. In Figure 5.3-a, since dirty
data are stored into a t-block (the third block in the figure), an assurance
update is required. By swapping data between the third and fourth blocks,
the assurance update can be avoided, as shown in Figure 5.3-b.

In data swapping, overheads in terms of power and latency incur for clean
data to be read from g-blocks and then stored back into t-blocks. However,
we believe that performing a data swapping in a cache consumes less power
than making an update request to its lower level cache which is typically
many times bigger and slower. This is particularly true if the lower level
cache is an off-chip memory.

Swapping is executed based on the information of t-bits and d-bits. There
could be several ways to implement the swapping function. Instead of focus-
ing on the detail implementation of swapping function, this research concen-
trates on investigating the potential of data swapping in reducing the number
of assurance updates.
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Figure 5.3: Example of data swapping. An assurance update is required
since dirty data are stored in a t-block in (a). By swapping data between
block the third and fourth blocks, assurance can be avoided in (b).

C. Data superimposition

Dirty data stored in a t-block are under-protected by SECDED since a soft
error occurring in the block causes uncorrectable data corruption. In data
superimposition, we propose that in addition to being stored in a t-block,
the under-protected data are also encoded and “cached” into those block(s)
storing clean data. Figure 5.4-a shows the encoding process in data superim-
position. Only clean data blocks are modified by the encoding process; those
dirty data blocks stored either in t-blocks or g-blocks remain unchanged.
Each clean data block is exclusive-ORed with all under-protected dirty data
blocks belonging to the same cache line to produce encoded data. The en-
coded data in this case are also considered to be clean. Encoded data blocks
are stored in a cache.

When a cache line are read, the encoded clean data need to be decoded.
If soft error has not occurred, clean data block can be restored by exclusive-
ORing the encoded data with those dirty data stored in other t-blocks, as
shown in Figure 5.4-b.

We consider two cases in which a soft error in a t-block causes data
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Figure 5.4: Encoding and decoding in data superimposition. In data
encoding in (a), the clean data are XORed with dirty data stored in other
t-block(s) belong to the same cache line to produce encoded clean data. In
data decoding in (b), the clean data are restored by XORing the encoded
clean data with dirty data stored in t-blocks.
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Figure 5.5: Example of data superimposition. In (a), an assurance
update is required since dirty data are stored in a t-block (the third block).
In (b), by superimposing data in the third block into the clean blocks (the
first and fourth blocks), assurance update can be avoided.

corruption that cannot be corrected by SECDED. In the first case, a soft
error has occurred in a t-block storing encoded clean data. Since clean data
always have its copy in the lower level cache, when the error is detected, the
correct data can be obtained from lower level cache.

In the second case, a soft error has occurred in a t-block storing dirty data.
We assume that in a SEVA cache different cache lines are interleaved in the
same row to disperse the error bits of a spatial multi-bit error. The victim
t-block therefore has been corrupted by a single-bit error and it is the only
block having been corrupted in the cache line. The corrupted dirty data can
be restored from an encoded clean data block and other uncorrupted dirty
t-blocks. First, the original clean data are fetched from the low level cache.
The corrupted data are then the exclusive-OR summary of 1) the original
clean data fetched from lower level cache, 2) the encoded clean data, and 3)
the exclusive-OR summary of uncorrupted dirty data blocks stored in other
t-blocks belonging to the same cache line.

Figure 5.5 shows an example of data superimposition. In Figure 5.5-a,
since dirty data are stored into a t-block (the third block in the figure), an
assurance update is required. By superimposing the dirty data in the third
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Figure 5.6: Example structure of a SEVA cache. The cache is a 512KB,
four-way set-associative cache. The cache is consisted of 34 subarrays (two
for tag and 32 for data). The g-bits and d-bits of data blocks of a cache line
are stored in its tag.

block into the clean data in the first block, the assurance update can be
avoided, as shown in Figure 5.5-b.

An assurance update can be avoided by data superimposition as long as
there is at least one clean data block in a cache line. This condition is less
strict than the condition required in data swapping. In data swapping, for
an assurance update to be avoided, the number of dirty blocks in a cache line
must be no more than the number of t-blocks in the same cache line. We
therefore expect that more assurance updates be reduced in data swapping
than in data superimposition.

5.4.5 Example SEVA Cache

Figure 5.6 shows a simplified structure of a 512KB, four-way set-associative
SEVA cache. The size of a cache line is 64B. The cache is constructed from
two tag subarray and 32 32-KB data subarrays. Each data subarray has 512
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rows, each row is comprised of eight 72b blocks. The tag subarray has 256
rows, each row is comprised of sixteen 45b blocks. A tag entry consists of
a tag address, some state bits (for LRU replacement, cache coherency), and
g-bits and d-bits of all blocks belonging to the corresponding cache line.

In a typical cache, tag access usually proceeds data access. By storing
g-bits and d-bits of those data blocks belong to the same cache line into the
corresponding tag block in a SEVA cache, the decisions of 1) whether an
assurance write is needed or not upon a cache write, and 2) which blocks
are dirty that are needed to be written back upon a line eviction or an
assurance update, can be determined at the end of the tag access. Accesses
to unmodified blocks in a cache line can be skipped, thereby saving power
consumption.

5.5 Defect and Yield Analysis

In this section, we perform defect and yield analysis of a SEVA cache. Our
analysis focuses on variation-induced defects, which are the dominant type
of defects in scaled devices. Other types of defects (e.g., stuck-at faults at
wordlines, decoders) can also be dealt with using redundancy rows, but they
are not considered in this analysis. We assume the defects are randomly
distributed and λ is the probability that a cell is defective. Since a cache
consists of multiple subarrays, we start with defect and yield analysis of a
generalized subarray. The subarray has Nrow rows. Each row contains Nblk

blocks. Each block has BS bits, including information bits and check bits.
The subarray has Nrdrow redundancy rows.

The probabilities that a block is a g-block, t-block, and b-block are re-
spectively Pg−blk, Pt−blk, and Pb−blk , and are given by Equation 5.1, 5.2, and
5.3. Approximations in these equations are based on the assumption that λ
is sufficiently small.

Pg−blk = (1 − λ)BS ≈ 1 − BS · λ +
BS(BS − 1)λ2

2
(5.1)

Pt−blk = BS(1 − λ)BS−1λ ≈ BS · λ − BS(BS − 1)λ2 (5.2)

Pb−blk = 1 − Pg−blk − Pt−blk ≈
BS(BS − 1)λ2

2
(5.3)
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A row is a bad row if it holds at least a b-block. The probability that a row
is a bad row, Pb−row, is given by Equation 5.4.

Pb−row = 1 − (1 − Pb−blk)
Nblk (5.4)

An array is passable if the number of bad rows, Nb−row, is at most equal to
the number of redundancy rows that are not bad rows, Nnb−rdrow. The yield
of a array is given by Equation 5.5.

Y ieldarray = Prob(Nb−row ≤ Nnb−rdrow) (5.5)

We can simulate the yield of the subarray by assuming that Nb−row and
Nnb−rdrow follow Poisson distribution which means are given by Equation 5.6
and 5.7.

Nb−row = NrowPb−row (5.6)

Nnb−rdrow = Nrdrow(1 − Pb−row) (5.7)

The yield of a cache is the product of the yields of its constituent subarrays,
expressed in Equation 5.8.

Y ieldcache =
all subarrays∏

Y ieldsubarray (5.8)

5.5.1 Results

We perform yield simulation for the SEVA cache shown in Figure 5.6. The
yields of the tag and data subarrays are calculated separately. The configu-
ration parameters {Nrow, Nblk, BS} of the tag and data subarrays are respec-
tively {512, 8, 44} and {512, 4, 72}. We vary the number of redundancy rows
to investigate its impact on the yield of the subarray. Figure 5.7 shows the
yields of the tag and data subarray as the defect probability is varied from
0.0001 to 0.005. When defect probability is low, the subarrays can archieve
high yield with a very few rows. As the defect probability becomes high,
the number of redundancy rows required to achieve adequate yields increases
appreciably.

Table 5.4 shows the yield and number of redundancy rows required in the
tag and data subarrays in order to attain roughly 90% cache yield. Hardware
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Figure 5.7: Yields of tag and data subarrays. The yields of a tag and
data subarray are calculated as defect rate is varied from 0.0005 to 0.005.

Table 5.4: Yields and overheads of subarrays and cache

Defect rate Tag subarray Data subarray Cache Overhead (%)
(yield/Nrdrow) (yield/Nrdrow) yield

0.0001 0.998/3 0.997/5 0.905 13.9
0.0005 0.997/8 0.997/9 0.903 14.7
0.001 0.995/14 0.997/17 0.899 16.4
0.005 0.997/142 0.997/165 0.903 46.4
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overhead of SEVA is also shown in the table. The overhead is simply the
total number of SECDED check bits, g-bits, d-bits, and the bits consumed
by redundancy rows, divided by the number of memory bits in the original
cache. The overhead of SECDED check bits is fixed and the overhead of re-
dundancy rows grows up as defect probability increases. If defect probability
is 0.001, SEVA can achieve 90% yield with 16.4% overhead. The overhead
of redundancy rows grows substantially when defect probability becomes as
high as 0.005.

5.5.2 Discussion

When defect probability becomes high enough (0.005 or larger), the approach
in which all bad elements (i.e., those cannot be repaired by SECDED) must
be replaced by good ones may require a large number of redundancy rows and
complex repairing circuitry. One could consider another approach in which
bad cache lines are marked and the processor simply does not use them. A
set having bad cache line(s) is treated as a set with reduced associativity.
This approach can be easily realized by providing a flag bit to each cache
line to indicate whether the corresponding line is bad or not.

No matter which one of the two approaches is chosen, we need to deal
with the problem of soft errors occurring in t-blocks. Assurance update
mechanism therefore is applicable to both approaches.

5.6 Performance and Reliability Evaluation

The applications of SEVA caches on a processor’s cache hierarchy are consid-
ered in this section. The performance overhead and reliability improvement
are evaluated.

5.6.1 Evaluation Methodology

The simulated system is an out-of-order superscalar processor. Table 5.5 lists
the configuration parameters. The processor has 16KB instruction and data
caches, and a 512KB unified L2 cache. The data cache and L2 cache are
writeback caches, each equipped with a four-entry writeback buffer.

SECDED is maintained for every 64 information bits in the L1 caches
and L2 cache. We assume that all bad rows in the caches are replaced by
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Table 5.5: Parameters of Simulated Architecture

Processor Parameters
Frequency 1 GHz

Functional Units 4 integer ALUs, 4 FP ALUs
1 integer multiplier/divider

1 FP multiplier/divider
LSQ size 32 instructions
RUU size 64 instructions

Issue Width 4 instructions/cycle
Cache Hierarchy Parameters

L1 i-cache 16KB, direct-map, 32B line, 1 cycle latency
72b SECDED block

L1 d-cache 16KB, 4-way, 32B line, 1 cycle latency, writeback
72b SECDED block, 4-entry writeback buffer

L2 cache 512KB, unified, 4-way, 64B line, 6 cycle latency
72b SECDED block, 4-entry writeback buffer

Memory 100 cycle latency
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redundancy rows. The probability that a block is a t-block or g-block is
derived from Equation 5.1 and 5.2. The g-bits are randomly initialized at
the beginning of the simulation based on such a probability. We consider
defect tolerance only in SRAM caches and assume the memory to be fault-
free.

The following target systems are evaluated:

• Baseline: The data cache and L2 cache do not perform assurance
update

• Seva-line: The caches perform assurance updates and maintain dirti-
ness at cache line level.

• Seva-blk: The caches perform assurance updates and maintain dirti-
ness at block level.

• Seva-blkswap: The caches perform assurance updates at block level
and data swapping.

• Seva-blksuper: The caches perform assurance updates at block level
and data superimposition.

Simulation is performed using SimpleScalar [64]. SPEC2000 benchmarks
are used in the simulation. For each benchmark, we skip the first one billion
instructions and simulate the next four billion instructions.

We assume that the soft error rate of an unprotected SRAM equal to
1.6 KFIT per megabit [4], and soft errors follow an uniform distribution.
The timestamps of accesses to the cache lines and blocks of the caches are
recorded. Such information allows us to calculate the error rates.

5.6.2 Evaluation Results

Figure 5.8 shows the normalized performance when the defect rate (λ) is
equal to 0.005. Seva-line degrades performance significantly for some appli-
cations (e.g., lucas, gcc). However, the performance degradation is reduced
significantly for Seva-line and becomes extremely small for Seva-blkswap
and Seva-blksuper. Seva-blksuper slightly outperforms Seva-blkswap.
The same trend is also observed in Figure 5.9 which shows the performance
degradation averaged for all benchmarks as λ is varied.
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Figure 5.8: Normalized performance when defect rate is equal to
0.005.
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Figure 5.10: Breakdown of accesses from L2 cache to memory per
1,000 instructions when λ is equal to 0.005. Five bars in each group
from left to right correspond to the five target caches.

Figure 5.10 shows number of accesses from L2 cache to memory per one
thousand instructions with λ equal to 0.005. The breakdowns of the accesses
are also shown in the figure. The number of accesses to memory for Seva-
line increases considerably due to assurance updates for most benchmarks.
Since assurance updates can have the effect of early writing back the dirty
cache lines, some normal writebacks (upon cache replacements) are converted
to assurance updates which can be observed through the reduction in the
number of writebacks for Seva-line as compared with baseline. The number
of assurance updates and writebacks are reduced greatly for Seva-blk. Data
swapping and data superimposition allow further significant reductions in
the number of assurance updates. The same trend can also be observed
when λ is varied, as shown in Figure 5.11. The reduction in the number of
assurance updates reduces the stalled cycles caused by a full writeback buffer
and results in very small performance degradation that we noticed earlier in
Figure 5.8.

Figure 5.12 shows the number of written back blocks to memory per one
thousand instruction averaged for all benchmarks as λ is varied. The figure
clearly confirms the effectiveness of maintaining data dirtiness per block for
eliminating unnecessary block updates and improving power efficiency.
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Table 5.6: Uncorrectable error rate of L2 caches

Cache Uncorrectable Error Rate (FIT)
Baseline 631

Assurance update 3.84e-14

Table 5.6 shows the uncorrectable error rate of the baseline L2 cache
and the L2 cache performing assurance update. For the baseline cache, an
uncorrectable error occurs if a strike occurs on a t-block of a dirty cache line
and the cache line is read later. For the cache performing assurance update,
an uncorrectable error occurs if two strikes occur on the same t-block between
two consecutive accesses to the block. The error rate of the cache performing
assurance update is many orders of magnitude lower than that of the baseline
cache.

5.7 Summary

Tolerating soft errors for high reliability and tolerating defects for yield im-
provement are highly required in advanced SRAM designs. The proposed
SEVA cache architecture can satisfy both the requirements. By combining
SECDED with a redundancy technique, SEVA can effectively tolerate a high
number of variation-induced defects. To prevent unrecoverable erroneous
states caused soft errors occurring in defective blocks, SEVA allows only the
clean data to be stored in those blocks. This constraint is enforced through
assurance update mechanism. We proposed three techniques to effectively
reduce the number of assurance updates in a SEVA cache: maintaining dirt-
iness at SECDED’s block-level, data swapping between blocks, and data
superimposition. Yield analysis and performance evaluation verified the ef-
fectiveness of SEVA caches. The performance overheads caused by assurance
updates in SEVA caches are very low even with high defect probability (as
high as 0.01).
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Chapter 6

Conclusions

6.1 Conclusions

This thesis focused on mitigating soft errors in memory caches. We have
addressed the issues of existing soft-error mitigation techniques. We then
proposed techniques that allow soft-error mitigation to be implemented with
low costs in caches with word-based access, or in memory caches made use
of Content-Addressable Memory (CAM). We also propose a cache architec-
ture that achieves both soft-error- and defect tolerance with low cost. The
followings are conclusions through this thesis.

Chapter 3: we proposed Zigzag-HVP, a cost-effective technique to de-
tect and correct soft errors in caches with word-based access. Zigzag-HVP
enhanced horizontal-vertical parity (HVP) to make it be able to detect and
correct spatial multi-bit errors, which are expected to occur frequently in
scaled processes. By dividing the data array into multiple HVP domains
and interleaving the bits of different domains, a spatial MBE can be con-
verted to multiple SBEs, each of which can be detected and corrected by the
corresponding parity domain. Vertical parity update and error recovery in
Zigzag-HVP can be performed efficiently by modifications to the cache data
paths, write-buffer, and Built-In Self Test. Implementation of Zigzag-HVP in
a 512 KB L2 cache indicated that the overheads in terms of area and power
consumption were respectively 3.3% and 10%, which were smaller than those
of the ECC-based ones. While Zigzag-HVP is vulnerable to MBEs accumu-
lated from multiple particle strikes, our results show that such a probability
is extremely small.

101
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Chapter 4: we proposed STCAM, a soft-error tolerant CAM architec-
ture. The unavailability of data outside a memory array in a CAM access
make mitigation of soft errors in a CAM more challenging. Since CAMs
are used in several components in a processor, making those CAMs being
resilient against soft errors is indispensable to attain high processor’s relia-
bility. Check bits of the CAM portion in the RAM portion of a CAM-RAM
structure. False hits in a CAM tag can be detected by examining the check
bits of the hit tags. Mitigation of false misses involves subdividing a CAM
and providing backup checking for cases the input is partially matched in
the CAM. An original encoding scheme is proposed to reduce the frequency
of back-up checking. Performance degradation incurred by additional cycles
for false miss checking is very low (less than 0.01%).

Chapter 5: we proposed SEVA, a soft-error- and variation-aware cache
architecture. Combination of SECDED with a redundancy technique can ef-
fectively tolerate a high number of variation-induced defects. While SECDED
can repair a defective cell in a block, the block becomes vulnerable to soft
errors. SEVA exploits SECDED to tolerate variation-induced defects while
preserving high resilience against soft errors. SEVA allows only the clean
data to be stored in the defective (but still usable) blocks. An error oc-
curring in a defective block can be detected and the correct data can be
obtained from the lower level of the memory hierarchy. We proposed three
techniques to effectively reduce the number of assurance updates in a SEVA
cache: maintaining dirtiness at SECDED’s block-level, data swapping be-
tween blocks, and data superimpositioning. Yield analysis and performance
evaluation verified the effectiveness of SEVA caches. Overheads incurred by
assurance updates in SEVA caches were low even when defect probability
was as high as 0.01.

Having memory caches to be resilient against soft errors is essential for at-
taining high processor’s reliability. Incurring low area and power overheads,
Zigzag-HVP makes support for soft-error tolerance to be more affordable
and therefore pervasive. STCAM increases in the coverage of soft error pro-
tection in a processor making use of content-addressable memories. Finally,
SEVA shows that soft-error tolerance for reliability and defect tolerance for
yield can be archievable with reasonable costs, paving the way for successful
SRAM designs in future processes.
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6.2 Suggestions for Future Work

Mitigation of soft errors in memory caches is highly required, given the
amount of resources devoted for them in a processor. However, as SERs
of memory caches can be greatly reduced, the relative portion of SER at-
tributed to soft errors in logic circuits will grow up. Due to the irregularity
of the circuitry, mitigating soft errors in logic is more difficult than in a
memory array. Methods to attack soft errors in logic employing spatial re-
dundancy [84] [85] [86] or time redundancy [87] [88] [89] have been proposed.
However, those methods incur high hardware overheads, or assume special
microprocessor architectures. Novel techniques that can mitigate soft errors
in logic with relatively low hardware overheads and broad applicability are
still highly required to be developed.

The second suggestion is the development of tools that allow SERs to
be estimated at high-level designs. Such tools are very helpful for designers
to 1) verify the effectiveness of mitigation techniques, 2) explore the design
spaces of soft error tolerance design, and 3) make proper trade-offs between
the degree of SER reduction and the incurred hardware costs at early design
stages. Early tools tended to model soft errors at device level with a lot
of physics involved [90] [91]. While achieving high accuracy, they require
intensive computation and are therefore inapplicable to large circuits. We
have seen in very recent years several attempts to model SER at circuit-
or system-levels [92] [93] [94]. While encouraging performance improvement
have been reported, those tools are still at the early stage of development
that require further improvements and, particularly, throughout experiments
to verify their accuracy.
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